
Heuristic Learning of Rules for Information Extraction from
Web Documents

Dawei Hu1,2,3, Huan Li1,2,3, Tianyong Hao3, Enhong Chen1,2, Liu Wenyin2,3
1Department of Computer Science and Technology, University of Science & Technology of China, Hefei, China

2Joint Research Lab of Excellence, CityU-USTC Advanced Research Institute, Suzhou, China
3Department of Computer Science, City University of Hong Kong, Hong Kong, China

dwhu@mail.ustc.edu.cn, huanl@mail.ustc.edu.cn, tianyong@cityu.edu.hk, ehchen@ustc.edu.cn,
csliuwy@cityu.edu.hk

ABSTRACT
The efficacy of an information extraction system is mostly
determined by the quality of the extraction rules. Building these
extraction rules is time-consuming and difficult to implement by
hand. Hence, we propose a Heuristic Rule Learning (HRL)
algorithm which can automatically and efficiently acquire high-
quality extraction rules from a user labeled training corpus.
Moreover, these extraction rules are maintained at the most
suitable generalization level to enhance information extraction
efficacy. In HRL, we use a Dynamic tErm eXtraction Technique
(DEXT) to construct terms and extraction rules at different
generalization levels. The conditional entropy model is used to
evaluate the suitability of these different generalization levels of
the extraction rules so as to maintain them at a high-quality level.
Experimental results show the algorithm’s efficacy of acquiring
extraction rules at different generalization levels and the efficacy
of these extraction rules in the information extraction tasks.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: retrieval models,
search process.

General Terms
Algorithms, Experimentation

Keywords
Information Extraction (IE), Conditional Entropy, Extraction Rule

1. INTRODUCTION
Over the past years, the explosive growth of information on the
web makes it necessary to design a system to help people extract
what they want from the infinite web documents. Many
researchers in natural language processing started to develop

information extraction systems which can extract the specific data
items from text documents. The methodologies of these systems
are mainly using extraction rules to parse the text documents and
extracting the matching data out of these documents. As a result,
the efficacies of these systems are mostly determined by the
quality of their extraction rules. However, building these
extraction rules by hand is tedious and error-prone job. Hence,
automatic learning of these extraction rules becomes an important
research issue.

In early years, some systems focused on learning single-slot
extraction rules which could only extract one information piece of
interest from a sentence [1, 4, 9, 11]. When processing a
document, these systems must pre-define the relations of these
extraction rules; otherwise, they could not organize these
extracted isolated information pieces. Consequently, these
systems could only process the formal documents with single
theme, and when applied to processing the documents on the web,
they were too domain-specific since the web documents were so
informal that most of them contain several themes. Therefore,
some researchers had tried to construct more complicated multi-
slot rules. Based on the multi-slot rules, those systems could
extract several information pieces from a sentence and correlate
them automatically [2, 5, 6, 7, 8, 12, 13, 15]. Obviously,
comparing to with single-slot rules, these multi-slot rules were
more suitable to extract information from the web. However,
these researchers did not give a strategy to control the
generalization level of the rules. As being discussed by Hu et al.
[3], choosing an appropriate generalization level would greatly
enhance the rule’s efficacy in extracting knowledge from the
documents. Hence, in this paper, we propose a Heuristic Rule
Learning (HRL) algorithm which can efficiently acquire high-
quality extraction rules automatically from a user labeled training
corpus. Moreover, these extraction rules are maintained at the
most suitable generalization level to enhance information
extraction efficacy.

An extraction rule in HRL is represented as a context-slot
sequence in which context patterns (CP) and slots (S) appear
alternatively, in which the slot is referred to the string to be
extracted and the context pattern is referred to the context
information of the slots. The formal definition of our extraction
rule will be given in the rest of our paper. On the basis of these
rules, we can efficiently locate the information piece
corresponding to the desired slot through matching its adjacent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Infoscale 2007, June 6-8, 2007, Suzhou, China.
Copyright 2007 ACM 978-1-59593-757-5.

fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
INFOSCALE 2007, June 6-8, Suzhou, China
Copyright © 2007 ICST 978-1-59593-757-5
DOI 10.4108/infoscale.2007.214

context patterns with the text in the document. Moreover, since
the slot number of an extraction rule is variable, we can acquire
both single- and multi-slot rules using HRL. Additionally,
semantic information for the slots can be learned and annotated
on the rules to help analyze the semantic class of each extracted
information piece and the interrelation of two pieces and organize
all these information pieces to construct high-quality knowledge.

To control the generalization level of the extraction rules, we
present a frequent term extraction algorithm which can construct
the terms whose lengths are variable according to the different
implementation situations. On the basis of these frequent terms,
we can easily construct the extraction rules at different
generalization levels. Moreover, as mentioned before, choosing a
suitable generalization level for the extraction rules is an
important task to enhance the efficacy of the rules in the
information extraction task. Hence, after generating these terms,
we use the conditional entropy model to evaluate the sensitivity of
each frequent term, and on the basis of this evaluation value, we
can estimate whether a term is sensitive to distinguish different
types of context information.

We have done two experiments to test the efficacy of our learning
algorithm. In the first experiment, we construct five groups of
extraction rules based on the terms at different occurrence
frequency. These extraction rules are used to extract the birthday
for a person. We then apply these five extraction rule groups to
extract the birthday for a given person on the test documents from
the web to test the quality of our extraction rules. In the second
experiment, we construct five groups of extraction rules based on
the different sensitive terms and then apply these rules to
extracting the birthday for a given person. The empirical results
show that the rules which are constructed by the sensitive terms at
a more suitable generalization level can perform more accurately.

The remaining part of the paper is organized as follows. Section 2
introduces some related works on extraction rule learning. Section
3 describes our rule representation and the HRL algorithm. We
present the experimental results in Section 4 and finally, the
concluding remarks and future work in Section 5.

2. RELATED WORK
Efficient learning of the extraction rules is an important issue in
information extraction area because the information extraction
systems can locate and identify the specific information pieces of
the data needed from the documents accurately if a high-quality
rule base is available.

Information extraction is coined in the Message Understanding
Conferences (MUCs). Earlier approaches [1, 9, 10, 11] are mostly
focused on formal documents and the possible rules they can
learn are very limited. AutoSlot [9] can only generate single-slot
rules from those strings which fit the particularly provided 13
syntax templates. Only syntactic constraints are allowed in their
rules. In Crystal [11], both single-slot and multi-slot rules can be
generated. To parse the text more accurately, Soderland et al.
allow both syntactic and semantic constraints on context patterns
and slots. In RAPIER [1], only single-slot rules can be learned.
Moreover, as shown in Figure 1, besides the syntactic and
semantic constraints, Califf use 1-term list as the constraints to
construct more adaptive rules. Obviously, AutoSlot and RAPIER
cannot work efficiently on the web because they use single-slot

rules which are insufficient to organize the extracted information
pieces from informal documents with several themes. On the
other side, all these two systems use 1-term which has no
structure information to construct their context patterns. These
approaches loose the restriction of the context patterns and limit
the precision of processing documents.

To extract and organize the information pieces from the informal
documents on the web, we need build more complicated rules
which can contain several slots and semantic relations of these
slots. Therefore, some researchers focus on generating the multi-
slot rules which can be used to extract several correlated
information simultaneously. In a multi-slot rule, several slots exist
and a context pattern exists between each two adjacent slots.
Moreover, the semantic relation of each pair of two slots is
defined in the rule. On the basis of these multi-slot rules, the
systems [8, 13] can extract several correlated information pieces
instead of isolated pieces. Compared with single-slot rules, these
multi-slot rules are more efficiently to extract information from
the informal document with several themes. At the same time,
how to enable context patterns to supply more strict constraints is
another important issue. Ravichandran and Zhang used the most
specific n-term which is a sequence of n words instead of general
syntactic and semantic class constraints to construct a hard
context patterns as shown in Figure 2 [8, 13]. These hard context
patterns enable their systems achieve a high precision but the
recall decreases dramatically. Meanwhile, Cui used two
sequential 1-term lists to construct a soft context pattern as shown
in Figure 3 [2].

Obviously, these learning methods all use the terms in fix length
to construct the context pattern. The Dynamic tErm eXtraction
Technique in this paper can extract the terms whose lengths are
variable to generate the extraction rules in different generalization
level according to the different implement situations.

3. THE HRL ALGORITHM
In the following discussion, we firstly describe the representation
of our extraction rules and then the Dynamic tErms eXtraction
Technique (DEXT). Our DEXT has two parts: 1) Frequent terms
extraction algorithm using which we can extract the terms in
different lengths and different occurrence frequencies; 2)

CP1: S1: CP2
word: {located, offices, in} list: length 1 word : ,

list: length 1 syntactic: nnp tag : ,

Figure 1. The rule extracted by RAPIER.

CP1: S1: CP2: S2: CP3:
 Φ <NAME> was born in <BIRTHDATE> Φ

Figure 2. The rule extracted by Ravichandran.

CP1 : S1 : CP2 :

NN 0.12
According 0.03
Known 0.09

, 0.11
to 0.03
as 0.20

. 0.4
BE$ 0.2

DT$ 0.2
VB 0.1

Figure 3. The rule extracted by Cui.

Conditional entropy model based evaluation strategy which is
used to estimate the sensitivity of the generated terms. At last, we
present our HRL algorithm.

3.1 Rule Representation
An extraction rule R is represented by a 3-tuple <T, S, StC>. In
our extraction rule R, T={CP-S1, S1, CP S1-S2,…, Sn, CP Sn-} is a
sequence of rule elements E which are categorized into context
pattern CP and slot S, in which CP and S appear alternatively. |T|
is denoted as the length of T and equal to the number of the rule
elements in T. Si is denoted as the i-th string to be extracted by R
and CPSi-1-Si is denoted as the context pattern between Si-1 and Si,
i.e., Si∈T for 1≤i≤n, CPSi-1-Si∈T for Si-1, Si∈T. Additionally, CP-

S1 is referred to the context pattern before S1 and CPSn- is referred
to the context pattern following Sn. Obviously, each slot is
embraced by two adjacent context patterns which are applied to
matching the text so as to locate the position of their median slot
in the documents.

S=UnS∪BiS is a set of semantic annotations for the slots of the
extraction rule R. UnS is denoted to the semantic class of a slot
and we denote UnS(Si) as the semantic class of Si. We use
WordNet semantic class set as our semantic class set. BiS is
denoted as the semantic relation of two slots and we denote BiS(Si,
Sj) as the semantic relation between Si and Sj. We have defined 34
types of binary semantic annotations, as shown in Table 1.

StC represents structure constraints for the context patterns of the
extraction rule R and we denote StC(CPSi-1-Si) as the structure
constraints of CPSi-1-Si. In our algorithm, StC is composed of a
context maximum length StC.Length, a context type StC.Type and
two disjunctive lists of terms StC.NT and StC.OT. StC.OT is a list
of the terms in which each term may appear in the context pattern
while StC.NT is a list of terms in which each term must appear in
the context pattern. StC.Type whose value is Ti in which the
subscript i is generated by connecting the semantic class of its two
adjacent slots. For example, StC.Type(CPSi-1-Si) = TUnS(Si-1)-UnS(Sn).

Figure 4 shows an example of our extraction rule which is used to
extract the birthday of some persons. It has five columns, three of
them are context patterns and two of them are slots. In this rule,
there are two unary semantic annotations and one binary semantic
annotation. In which, these two unary semantic annotations are
“UnS(S1)= Person” which means the extracted information by S1

belongs to the semantic class “Person” in WordNet [14] and
“UnS(S2)= Date” which means the extracted information by S2
belongs to the semantic class “Date” in WordNet. The only one
binary semantic annotation is “BiS(S1, S2)= PropertyOf” which
means the information extracted by S2 is a property of the
information extracted by S1. On the other side, from the structure
constraints of CPS1-S2, we know that the context pattern between
S1 and S2 must consist of “born in” and may have “was” or “am”,
and its length must be no more than 3 words, and its type is
TPerson-Date. Based on this extraction rule, we can learn from the
sentence “John was born in 1994 .” that the date “1994” is a
property of the person “John”.

Using this extraction rule we can efficiently locate the
information pieces, the semantic class of each piece and the
relation of two pieces from the text in the documents. After
describing the representation of our extraction rules, we will then
provide the Dynamic tErm eXtraction Technique (DEXT).

3.2 Dynamic tErm eXtraction Technique
Compared with those systems which use fix-length terms to
construct the structure constraints [8, 13] and the systems which
use 1-term lists to construct the structure constraints [1, 2], we use
the variable-length term lists to build our structure constraints. To
extract and estimate these variable-length terms, we put forward
frequent terms extraction algorithms and conditional entropy
based evaluation strategy.

3.2.1 Frequent Terms Extraction Algorithm
Given a context pattern type T and its instance list L, we use span
methodology to extract variable-length terms which frequently
occur in L. Using this methodology, we firstly expand the
frequent i-term to obtain the candidate (i+1)-term. Then, we count
the candidate (i+1)-term and eliminate those infrequent ones to
obtain frequent (i+1)-term.

Table 1. Binary semantic annotation types defined.

DateOf AntonymOf IsA SubjectOf

HeightOf PropertyOf ShapeOf CnumberOf

ColorOf QualityOf SizeOf DistanceOf

PartOf DefinedAs UsedFor CapableOf

MannerOf SynonymOf TimeOf SubeventOf

LengthOf SubclassOf Nextevent LocationOf

ObjectOf SubPropertyOf WidthOf MadeOf

TimeCost SubRelationOf PriceOf EffectOf

ReasonOf UCquantityOf

CP-S1 : S1 : CPS1-S2 : S2: CPS3-
StC.NT: Φ StC.NT : StC.NT: Φ

StC.OT: StC.OT:
 StC.OT:

StC.Length: 1 StC.Length: 3 StC.Length: 1
StC.Type:T -Person StC.Type: TPerson-Date StC.Type: TDate-
UnS(S2) = Date UnS{S1) = Person
BiS(S1, S2) = PropertyOf

born in

was
am

.
)
(

.
)
(

 Figure 4. The rule extracted by HRL.

FrequentTermList = Φ
InstanceList = L
CurrentFrequentTermList = Φ
TermList = Initialize (InstanceList)
While (TermList != Φ)
{
 CurrentFrequentTermList =

RemoveUnFrequentTerms (TermList, θ*|L|)
 If (CurrentFrequentTermList != Φ)

FrequentTermList.Add(CurrentFrequentTermList)
 TermList = SpanTerms(CurrentFrequentTermList)
 n ++
}

 Figure 5. Frequent terms extraction algorithm.

Figure 5 shows the detail of our frequent terms extraction
algorithm. In our algorithm, there is one parameter θ which is
referred to the minimum support that the frequent terms must
satisfy and θ*|L| means the minimum support count of the
frequent terms. To initiate the term set, we firstly take every word
occurred in L as a 1-term and insert them into the term lists. Then
we count the occurrence time of each 1-term in all the instances in
L and eliminate the infrequent 1-term whose occurrence time is
less than the minimum support count. After spanning the frequent
ones to candidate 2-term through combining the 1-term with the
word next to it, we update the term list and iterate the above steps
until there is no longer generate frequent terms.

Using the above algorithm, we can extract the frequent terms
which occur more than θ*|L| in L. Figure 6 shows how to extract
frequent terms using our algorithm. In this example, θ is set to 0.5.
The top figure shows five annotated sentences. The bottom-left
figure shows two context pattern types and their instance lists.
The bottom-right figure shows the frequent terms we extracted.
We can see from the example that, for TPerson-Date, we extract three
frequent 1-term which are “born”, ”in” and “is”, two frequent 2-
term which are “born in” and “is born” and one frequent 3-term
which is “is born in” since these six terms reach the minimum
support count of 0.5 * 4 = 2. While for TPerson-Location, we extract
two frequent 1-term which are “in” and “is” and one frequent 2-
term which is “is in” since these three terms reach the minimum
support count of 0.5 * 1 = 0.5.

Having these terms, we then need an evaluation strategy to
estimate the quality of these frequent terms, which means we need
to estimate whether these terms are representative or sensitive for
its corresponding context pattern type. Hence, we use a
conditional entropy based evaluation strategy to evaluate it.

3.2.2 Conditional Entropy based Evaluation Strategy
In this section, we describe how to use the conditional entropy
model to evaluate the sensitivity of a term for distinguishing
different context pattern types. Before we describe our evaluation
strategy, we would like to give some definitions, Let CPL refer to
the context pattern list and CPi be the i-th context pattern in CPL,
so CPL = {CP1, CP2, … , CPn}. CPTL is referred to the context
pattern type list, and the j-th context pattern type in CPTL is
denoted as CPTi, so CPTL = {CPT1, CPT2, …, CPTm}. We use
equation (1) to calculate the sensitivity of a term T for

distinguishing different context pattern types. In equation (1),
p(CPi,T) is referred to the probability of CPi and T both occurs
and p(CPi|Tj) is referred to the probability of CPi given Tj.
p(CPi,T) and p(CPi|Tj) can be calculated using equation (2) and
(3), in which N(T) is the occurrence times of T in the entire CPL.
The larger entropy value H is, the less insensitive the term T is for
distinguishing different context pattern types.

()

1
(|) (,) log

(|)
i

i
CPT CPTL i

H CPTL T p CPT T
p CPT T∈

= ∑ (1)

(, . ())

()

(,)

(,)
(,)

,j j i

k

j
CP CPL StC Type CP CPT

i
k

CP CPL

CP T

p CPT T
CP T

δ

δ
∈ =

∈

=
∑

∑

1
(,)

0
j

j

j

T CP
CP T

T CP
δ

∈
=

∉

⎧
⎨
⎩

 (2)

(, . ())

(,)

(|)
()

,j j i

j
CP CPL StC Type CP CPT

i

CP T

p CPT T
N T

δ
∈ =

=
∑

1
(,)

0
j

j

j

T CP
CP T

T CP
δ

∈
=

∉

⎧
⎨
⎩

 (3)

For the example shown in Figure 6, we use the following two
equations to calculate the entropy of “is” and “born”. Obviously,
the term “is” has much larger entropy value than “born”, so
“born” is more sensitive to distinguish the different context
pattern types than the term “is”.

()

(| " ")

1
(, " ") log

(| " ")

2 3 1
log() log(3)

3 2 3
0.866

i

i
CP CPL i

H CPTL is

p CPT is
p CPT is∈

=

= +

=

∑

()

(| " ")

1
(, " ") log

(| " ")

1log(1) 0 0
i

i
CP CPL i

H CPTL born

p CPT born
p CPT born∈

=

= + =

∑

3.3 HRL algorithm
In this section, we will describe our Heuristic Rule Learning
algorithm (HRL) for information extraction. The input of our
algorithm is human labeled training corpus and the output is the
extraction rules. Our algorithm has four steps: rule base
initialization, frequent term extraction, sensitivity evaluation, and
pattern generalization and merging.

3.3.1 Rule Base Initialization
In this step, we initialize our extraction rules base on the basis of
a human labeled training corpus. Firstly, we convert each
annotated word to an abstract slot and mark the slot with its unary
semantic class. Secondly, based on the unary semantic class of

<Person : John> is born in <Date : 1987>.
<Person : Mary> was born in <Date : 1998>.
<Person : My parents> are born in <Date : the 90-th>.
<Person : Peter> is born in <Date : 1832>.
<Person : Peter> is in <Location : China>.

TPerson-Date TPerson-Location
is born in is in

was born in
are born in
is born in

TPerson-Date TPerson-Location

{born, in, is} {in, is}
{born in, is born} {is in}

{is born in}

Figure 6. The results of the frequent terms extraction
algorithm (θ = 0.5).

two adjacent slots, we dynamically construct the type of their
median context pattern. Then, we collect the instances for each
context pattern type and construct its instance list. At last, we
initialize rules based on the slot semantic annotations and the
context pattern types.

As shown in Figure 7, for five given training sentences, we firstly
generalize the annotated words to the abstract token S and
construct the unary semantic class UnS for each slot. Then on the
basis of the semantic class of each two adjacent slots, we generate
two types of context patterns TPerson-Date and TPerson-Location. At last,
we collect the instances and construct an instance list for each
type of context pattern. After converting the context instances to
the context pattern tags, we obtain two initial extraction rules
Figure 7-(a) and Figure 7-(b).

3.3.2 Frequent Term Extraction
In this step, we use frequent terms extraction method to extract
frequent terms in different lengths and construct a frequent term
list for each context pattern type in the rule base.

Figure 8 shows the frequent term lists we constructed for TPerson-

Date and TPerson-Location if the θ is set to 0.5. The left figure shows
the frequent term list for TPerson-Date, which contains six terms, “is”,
“born”, “in”, “is born”, “born in” and “is born in”. The right
figure shows the frequent term list (FTL) for TPerson-Location, which
has three terms, “is”, “in’ and “is in”.

3.3.3 Sensitivity Evaluation
In this step, we use conditional entropy model to evaluate the
sensitivity of each term for distinguishing different context
pattern types. Then we compare the entropy value with a given

threshold H and eliminate those non-sensitive frequent terms
whose entropy values are larger than H. Those terms whose
entropy values are smaller than H are regarded as sensitive
enough to distinguish different context pattern types and will be
kept to construct SyC.NT. The conditional entropy based
evaluation strategy is mentioned in Section 3.2.2 Figure 9 shows
the sensitive frequent term list (SFTL) for Tperson-date and TPerson-

Location. In this example, H is set to 0.5. The left graph is the
sensitive frequent term list of TPerson-Date, and right graph is the
sensitive frequent term list of TPerson-Location.

3.3.4 Pattern Generalization and Merging
In this step, we generalize the context pattern of the initial rules
through converting the instance list to two more general term lists
StC.OT and StC.NT. To achieve this, we firstly use all sensitive
frequent terms occurred to build StC.NT and use all the other
words to build StC.OT for each instance in the instance list. Then
we merge StC.OT of all the instances whose StC.NT are the same
and use the merging result and StC.NT instead of the instance list
to obtain our final results. For example, Figure 10 shows the
operation for the initial rules shown in Figure 7-(a). The Figure
10-(a’) is the results of building StC.OT and StC.NT for each
instance in the instance list of TPerson-Date. We can see that “was”
and “are” are marked as StC.OT since these two words are not in
SFTL(TPerson-Date), while “born in” is marked as StC.NT since it is
in SFTL(TPerson-Date). Then since the StC.NT of the second and
third instances are equal, we merge StC.OT of them and obtain the
rule shown in Figure 10-(a’’). Moreover, since the StC.NT of the
first and fourth instances are equal, we merge StC.OT of them and
obtain the rule shown in Figure 10-(b’’). These two rules are our
final results.

Figure 9. Sensitive frequent term lists.

SFTL(TPerson-Date)

born
is born
born in
is born in

SFTL(TPerson-location)

is in

FTL(TPerson-Date)

is
born
in
is born
born in
is born in

FTL(TPerson-location)

is
in
is in

Figure 8. Frequent term lists of TPerson-Date and TPerson-Location.

Figure 7. Examples of Initiating Extraction Rule Base.

<Person: John> is born in <Date: 1987 >. BiS(John,1987) = “PropertyOf”
<Person: Mary> was born in < Date: 1998>. BiS(Mary,1998) = “PropertyOf”
<Person: My parents> are born in < Date : the 50-th >. BiS(My parents, the 50-th) = “PropertyOf”
<Person: Peter> is born in <Date : 1832>. BiS(Peter, 1832) = “PropertyOf”
<Person: Tom> is in < Location: China >. BiS(Tom, China) = “PropertyOf”

<S1> CPS1-S2 <S2> (b)

SyC.Type:TPerson-Location
UnS(S1) = “Person” UnS(S2) = “Date”
BiS(S1,S2)=”PropertyOf”

is in

<S1> CPS1-S2 <S2> (a)

SyC.Type:TPerson-Date

UnS(S1) = “Person” UnS(S2) = “Date”
BiS(S1,S2)=”PropertyOf”

is born in
was born in
are born in
is born in

<S1> CPS1-S2 <S2> (a’)

SyC.Type:TPerson-Date

UnS(S1) = “Person” UnS(S2) = “Date”
BiS(S1,S2)=”PropertyOf”

StC.NT:is born in
StC.NT:born in. StC.OT:was
StC.NT:born in. StC.OT:are
StC.NT:is born in

<S1> CPS1-S2 <S2> (b’’)
 StC.NT: is born in
 StC.Length : 3
 SyC.Type:TPerson-Date

UnS(S1) = “Person” UnS(S2) = “Date”
BiS(S1,S2)=”PropertyOf”

<S1> CPS1-S2 <S2>
 StC.NT: born in

StC.OT:

StC.Length : 3
SyC.Type:TPerson-Date

UnS(S1) = “Person”
UnS(S2) = “Date”
BiS(S1,S2)=”PropertyOf”

 (a’’)

was
are

Figure 10. Results of pattern generalization and

4. EXPERIMENTS AND RESULTS
After describing our HRL learning algorithm, experiments on a
human labeled training corpus and a test dataset are used to test
the efficacy of our HRL algorithm. Our data source is 200 web
pages including person description chosen from Google. Then we
split the 200 pages into 10 groups and randomly pick one group to
annotate. The annotated group is taken as the training corpus and
the other 9 groups are taken as test corpus.

The Figure 11 shows some annotated examples in our training
corpus. We firstly test the efficiency of our frequent terms
extraction algorithm. H is set to 0.5 to ensure us to extract the
sensitive terms. By varying the value of parameter θ, we extracted
three extraction rule sets at different generalization levels from
training corpus. Then we apply these different extraction rules to
extract the birthday information for a person in the test corpus.
We repeat this experiment for 4 times. The size of the different
extraction rule sets, the precision and recall of the extraction
results are shown in Table 2, in which the precision and recall are
calculated as follows:

r

a

C
precision

C
= (4)

r

ar

C
recall

C
= (5)

where, Ca is the number of all the information pieces we extracted,
Cr is the number of the correct birthday information we extracted,
and Car is the number of all the birthday information in the test
corpus.

From the results, we can see that θ determines the size of
extraction rule sets and the recall of the extraction results mostly.
When we set θ to 0.03, HRL can learn 11 rules. However, in these
rules, any rules are too specific and occur only once in the entire
instance lists. These rules contribute little to extracting correct
information when be applied to another domain since they are too
domain-specific.

Figure 12 shows two examples of the 11 rules. The bottom rule
only occurs once and the top rule occurs 15 times. Obviously, the
bottom rule is too specific and can hardly be applied to extract the

birthday for a new person. The generalization level of the top rule
is more suitable since StC.OT makes the rule more flexible. When
we set θ to 0.09, only 2 rules which occur more frequently are
learned by HRL. The bottom rule in Figure 12 cannot be learned
this time since the terms in StC.NT are not frequent. From the
HRL algorithm, we can easily know these 2 rules are covered by
the above 11 rules. Comparing the recall of these two rule sets,
we can see that these two rules give the more contributions than
the other 9 rules in information extraction task. When we set θ to
0.27, no rule is extracted, since there is no such frequently-used
extraction rule.

After testing the impact of θ, we show the impact of H. By
varying both θ and H, we extracted different extraction rule sets
from the same training corpus. Based on these different rule sets,
we extract the birthday information for a person in the same test
corpus. Because our learning algorithm is focused on extracting
information on the web and there are millions of data to enable us
to obtain some results more or less, we focus on the phenomena
of precision except for recall. The relation of θ, H and precision
of the extraction results is shown in Table 3.

From the results, we can see that H which reflects the sensitivity
of the terms determines the precision of the extraction results.
When we set θ to 0.03 and increase H from 0.5 to 2.5, the
precision decreases dramatically. However, increasing the θ can
counteract some defects by increasing H, since the frequently-
used expression of human language has less ambiguity. It is why
the precision does not decrease along with increasing the H from
1.5 to 2.5, when we set θ to 0.15. Moreover, it is interesting that
when we set θ to 0.27 and increase the H, the precision increases
from 0 to 44.44%. The reason is that when we loose the

<Person: Mao> was born on < Date: December 26, 1893>
 BiS(Mao, December 26, 1893) = PropertyOf
<Person: Zhou Enlai> (<Date: March 5, 1898> – <Date: January 8, 1976>)
 BiS(Zhou Enlai, March 5, 1898) = PropertyOf

BiS(Zhou Enlai, January 8, 1976) = PropertyOf
<Person: Mao Zedong>, Chinese Communist leader, was born in Hsiang-t’an,
China on <Date: December 26, 1893>.

BiS(Mao Zedong, December 26, 1893) = PropertyOf

Figure 11. Examples of annotated information pieces.

 Θ = 0.03 Θ = 0.09 Θ = 0.15 Θ = 0.21 Θ = 0.27

Size 11 2 2 2 0

Precision 86.70% 100% 100% 100% 0%

Recall 29.55% 18.10% 18.10% 18.10% 0%

Table 2. Illustration the relation of size, precision,
recall and θ (H=0.5).

 Θ = 0.03 Θ = 0.09 Θ = 0.15 Θ = 0.21 Θ = 0.27

H = 0.5 86.70% 100% 100% 100% 0%

H = 1.5 73.81% 77.78% 77.78% 77.78% 0%

H = 2.5 45.23% 60.87% 77.78% 77.78% 44.44%

Table 3. Illustration the relation of precision, H and θ.

<S1> CPS1-S2 <S2>
 StC.NT: , Chinese Communist leader, was born in Hsiang-t’an, China on

 StC.Length : 12
 SyC.Type:TPerson-Date

UnS(S1) = “Person” UnS(S2) = “Date”
BiS(S1,S2)=”PropertyOf”

<S1> CPS1-S2 <S2>
 StC.NT: born on

 StC.OT:

StC.Length : 3

 SyC.Type:TPerson-Date

UnS(S1) = “Person” UnS(S2) = “Date”
BiS(S1,S2)=”PropertyOf”

was
am

 Figure 12. Examples of the rules extracted by HRL.

restriction for the sensitivities of the terms, we can learn some
low-quality rules instead of zero high-quality rules. And using
these rules, we can obtain some unsatisfied results instead of no
results.

In conclusion, the θ determines popularity of the extracted rules
while the H determines the quality of the extracted rules. If we
choose a suitable H and θ, the HRL algorithm can be an effective
and we can use it to acquire high-quality extraction rules.

5. CONCLUSIONS AND FUTURE WORK
We have presented a Heuristic rule learning algorithm named
HRL in this paper. In HRL, a Dynamic tErm eXtraction
Technique is used to construct terms at different generalization
levels. We use the conditional entropy model to evaluate the
quality of these different terms so as to use them construct high-
quality extraction rules at the most suitable generalization level.
Experimental results show its efficacy. That is, it can indeed
acquire extraction rules at different generalization levels based on
frequent term extraction method, and the entropy value can
efficiently estimate the sensitivity of each term. Moreover, we can
construct the high-quality extraction rule set based on these
sensitive terms. We hope that using the HRL algorithm, we can
extract more powerful extraction rule base than those rule bases
used by Ravichandran [8] and Cui [2], because in our experiment,
we obtain a more accurate results based on our extraction rule set.
Compared with the learning algorithm proposed by Zhang [13],
our algorithm can learn the extraction rules at different
generalization levels depending on the different situations. The
extraction rules learned by HRL are more flexible than Zhang’s
specific rules.

However, there are still some problems of our algorithm and more
research works need be done to solve these problems. Firstly, the
efficiency of our algorithm is mostly determined by θ and H and
we do not know how to choose a suitable value for them. In the
future research, we will consider to find a strategy to evaluate θ
and H. Secondly, our training corpus is too small and our
experiments are focused on extracting birthday information for a
person, we plan to use a large training corpus to obtain more
powerful extraction rule base which can extract other interesting
information as well. Lastly, there are no relations between the
terms we learned, so we will use more complex insensitivity
evaluation strategy to estimate these terms more accurately.

6. ACKNOWLEDGMENTS
The work described in this paper was fully supported by a
grant from City University of Hong Kong (Project No.
7002137), the National Grand Fundamental Research 973
Program of China under Grant No.2003CB317002, and the
National Natural Science Foundation of China under Grant
No.60573077.

7. REFERENCES

[1] Califf M. E., and R. J. Mooney. Bottom-up Relational

Learning of Pattern Matching Rules for Information
Extraction. Journal of Machine Learning Research, 2003, pp.
177-210.

[2] Cui H., et al. Generic Soft Pattern Models for Definitional

Question Answering. In Proceedings of SIGIR-05, 2005.

[3] Hu D., et al. SIIPU*S: A Semantic Pattern Learning

Algorithm. In Proceedings of the second international
conference on Semantics, Knowledge and Grid (SKG2006),
2006.

[4] Kim, J., and Moldovan, D. Acquisition of Linguistic Patterns

for Knowledge-based Information Extraction. In IEEE
Transactions on Knowledge and Data Engineering, 1995, pp.
713-724.

[5] Kwok C., et al. Scaling Question Answering to the Web. In

Proceedings of the World Wide Web Conference-10
(WWW’10), 2001, pp. 150-161.

[6] Mark A. G., and Horacio S. A Pattern Based Approach to

Answering Factoid, List and Definition Questions. In
Proceedings of the 7th RIAO Conference (RIAO 2004).
Avignon, France, April 27, 2004.

[7] Moldovan D., et al. LASSO: A Tool for Surfing the Answer

Net. In Proceedings of TREC-8, 1999.

[8] Ravichandran D., and Eduard Hovy. Learning Surface Text

Patterns for a Question Answering System. In Proceedings of
the 40th Annual Meeting of the Association for
Computational Linguistics, 2002, pp. 41–47.

[9] Riloff, E. Automatically Constructing a Dictionary for

Information Extraction Tasks. In Proceedings of the 11th
National Conference on Artificial Intelligence (AAAI-93),
1993.

[10] Soderland, S. Leaning Information Extraction Rules for

Semi-structured and Free Text. Journal of Machine
Learning, 1998.

[11] Soderland S. et al. Crystal: Inducing a Conceptual

Dictionary. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence (IJCAI -95), 1995, pp.
1314 -1319.

[12] Soubbotin M. M., and Soubbotin S. M. Patterns and

Potential Answer Expressions as Clues to the Right Answers.
In Proceedings of TREC-10, 2001.

[13] Zhang D., and Lee W. S. Web based Pattern Mining and

Matching Approach to Question Answering. In Proceedings
of TREC-10, 2001.

[14] WordNet, http://wordnet.princeton.edu/

[15] BuyAns, http://www.buyans.com/

