
Heuristic Learning of Rules for Information Extraction from 
Web Documents 

Dawei Hu1,2,3,  Huan Li1,2,3, Tianyong Hao3,  Enhong Chen1,2,  Liu Wenyin2,3 
1Department of Computer Science and Technology, University of Science & Technology of China, Hefei, China 

2Joint Research Lab of Excellence,  CityU-USTC Advanced Research Institute, Suzhou, China  
3Department of Computer Science, City University of Hong Kong, Hong Kong, China 

dwhu@mail.ustc.edu.cn, huanl@mail.ustc.edu.cn, tianyong@cityu.edu.hk,  ehchen@ustc.edu.cn, 
csliuwy@cityu.edu.hk 

 

 
ABSTRACT 
The efficacy of an information extraction system is mostly 
determined by the quality of the extraction rules. Building these 
extraction rules is time-consuming and difficult to implement by 
hand. Hence, we propose a Heuristic Rule Learning (HRL) 
algorithm which can automatically and efficiently acquire high-
quality extraction rules from a user labeled training corpus. 
Moreover, these extraction rules are maintained at the most 
suitable generalization level to enhance information extraction 
efficacy. In HRL, we use a Dynamic tErm eXtraction Technique 
(DEXT) to construct terms and extraction rules at different 
generalization levels. The conditional entropy model is used to 
evaluate the suitability of these different generalization levels of 
the extraction rules so as to maintain them at a high-quality level. 
Experimental results show the algorithm’s efficacy of acquiring 
extraction rules at different generalization levels and the efficacy 
of these extraction rules in the information extraction tasks.   

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: retrieval models, 
search process.  

General Terms  
Algorithms, Experimentation 

Keywords 
Information Extraction (IE), Conditional Entropy, Extraction Rule 

1. INTRODUCTION 
Over the past years, the explosive growth of information on the 
web makes it necessary to design a system to help people extract 
what they want from the infinite web documents. Many 
researchers in natural language processing started to develop 

information extraction systems which can extract the specific data 
items from text documents. The methodologies of these systems 
are mainly using extraction rules to parse the text documents and 
extracting the matching data out of these documents. As a result, 
the efficacies of these systems are mostly determined by the 
quality of their extraction rules. However, building these 
extraction rules by hand is tedious and error-prone job. Hence, 
automatic learning of these extraction rules becomes an important 
research issue.  

In early years, some systems focused on learning single-slot 
extraction rules which could only extract one information piece of 
interest from a sentence [1, 4, 9, 11]. When processing a 
document, these systems must pre-define the relations of these 
extraction rules; otherwise, they could not organize these 
extracted isolated information pieces. Consequently, these 
systems could only process the formal documents with single 
theme, and when applied to processing the documents on the web, 
they were too domain-specific since the web documents were so 
informal that most of them contain several themes. Therefore, 
some researchers had tried to construct more complicated multi-
slot rules. Based on the multi-slot rules, those systems could 
extract several information pieces from a sentence and correlate 
them automatically [2, 5, 6, 7, 8, 12, 13, 15]. Obviously, 
comparing to with single-slot rules, these multi-slot rules were 
more suitable to extract information from the web. However, 
these researchers did not give a strategy to control the 
generalization level of the rules. As being discussed by Hu et al. 
[3], choosing an appropriate generalization level would greatly 
enhance the rule’s efficacy in extracting knowledge from the 
documents. Hence, in this paper, we propose a Heuristic Rule 
Learning (HRL) algorithm which can efficiently acquire high-
quality extraction rules automatically from a user labeled training 
corpus. Moreover, these extraction rules are maintained at the 
most suitable generalization level to enhance information 
extraction efficacy.  

An extraction rule in HRL is represented as a context-slot 
sequence in which context patterns (CP) and slots (S) appear 
alternatively, in which the slot is referred to the string to be 
extracted and the context pattern is referred to the context 
information of the slots. The formal definition of our extraction 
rule will be given in the rest of our paper. On the basis of these 
rules, we can efficiently locate the information piece 
corresponding to the desired slot through matching its adjacent 
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context patterns with the text in the document. Moreover, since 
the slot number of an extraction rule is variable, we can acquire 
both single- and multi-slot rules using HRL. Additionally, 
semantic information for the slots can be learned and annotated 
on the rules to help analyze the semantic class of each extracted 
information piece and the interrelation of two pieces and organize 
all these information pieces to construct high-quality knowledge.  

To control the generalization level of the extraction rules, we 
present a frequent term extraction algorithm which can construct 
the terms whose lengths are variable according to the different 
implementation situations. On the basis of these frequent terms, 
we can easily construct the extraction rules at different 
generalization levels. Moreover, as mentioned before, choosing a 
suitable generalization level for the extraction rules is an 
important task to enhance the efficacy of the rules in the 
information extraction task. Hence, after generating these terms, 
we use the conditional entropy model to evaluate the sensitivity of 
each frequent term, and on the basis of this evaluation value, we 
can estimate whether a term is sensitive to distinguish different 
types of context information.  

We have done two experiments to test the efficacy of our learning 
algorithm. In the first experiment, we construct five groups of 
extraction rules based on the terms at different occurrence 
frequency. These extraction rules are used to extract the birthday 
for a person. We then apply these five extraction rule groups to 
extract the birthday for a given person on the test documents from 
the web to test the quality of our extraction rules. In the second 
experiment, we construct five groups of extraction rules based on 
the different sensitive terms and then apply these rules to 
extracting the birthday for a given person. The empirical results 
show that the rules which are constructed by the sensitive terms at 
a more suitable generalization level can perform more accurately.   

The remaining part of the paper is organized as follows. Section 2 
introduces some related works on extraction rule learning. Section 
3 describes our rule representation and the HRL algorithm. We 
present the experimental results in Section 4 and finally, the 
concluding remarks and future work in Section 5.  

2. RELATED WORK 
Efficient learning of the extraction rules is an important issue in 
information extraction area because the information extraction 
systems can locate and identify the specific information pieces of 
the data needed from the documents accurately if a high-quality 
rule base is available.  

Information extraction is coined in the Message Understanding 
Conferences (MUCs). Earlier approaches [1, 9, 10, 11] are mostly 
focused on formal documents and the possible rules they can 
learn are very limited. AutoSlot [9] can only generate single-slot 
rules from those strings which fit the particularly provided 13 
syntax templates. Only syntactic constraints are allowed in their 
rules. In Crystal [11], both single-slot and multi-slot rules can be 
generated. To parse the text more accurately, Soderland et al. 
allow both syntactic and semantic constraints on context patterns 
and slots. In RAPIER [1], only single-slot rules can be learned. 
Moreover, as shown in Figure 1, besides the syntactic and 
semantic constraints, Califf use 1-term list as the constraints to 
construct more adaptive rules. Obviously, AutoSlot and RAPIER 
cannot work efficiently on the web because they use single-slot 

rules which are insufficient to organize the extracted information 
pieces from informal documents with several themes. On the 
other side, all these two systems use 1-term which has no 
structure information to construct their context patterns. These 
approaches loose the restriction of the context patterns and limit 
the precision of processing documents.  

 

 

 
 
 
To extract and organize the information pieces from the informal 
documents on the web, we need build more complicated rules 
which can contain several slots and semantic relations of these 
slots. Therefore, some researchers focus on generating the multi-
slot rules which can be used to extract several correlated 
information simultaneously. In a multi-slot rule, several slots exist 
and a context pattern exists between each two adjacent slots. 
Moreover, the semantic relation of each pair of two slots is 
defined in the rule. On the basis of these multi-slot rules, the 
systems [8, 13] can extract several correlated information pieces 
instead of isolated pieces. Compared   with single-slot rules, these 
multi-slot rules are more efficiently to extract information from 
the informal document with several themes. At the same time, 
how to enable context patterns to supply more strict constraints is 
another important issue. Ravichandran and Zhang used the most 
specific n-term which is a sequence of n words instead of general 
syntactic and semantic class constraints to construct a hard 
context patterns as shown in Figure 2 [8, 13]. These hard context 
patterns enable their systems achieve a high precision but the 
recall decreases dramatically. Meanwhile, Cui used two 
sequential 1-term lists to construct a soft context pattern as shown 
in Figure 3 [2].  

 

 
 

 
 
 
 

  
 

Obviously, these learning methods all use the terms in fix length 
to construct the context pattern. The Dynamic tErm eXtraction 
Technique in this paper can extract the terms whose lengths are 
variable to generate the extraction rules in different generalization 
level according to the different implement situations.  

3. THE HRL ALGORITHM 
In the following discussion, we firstly describe the representation 
of our extraction rules and then the Dynamic tErms eXtraction 
Technique (DEXT). Our DEXT has two parts: 1) Frequent terms 
extraction algorithm using which we can extract the terms in 
different lengths and different occurrence frequencies; 2) 

CP1:                S1:              CP2 
word: {located, offices, in}  list: length 1         word : , 

list: length 1        syntactic: nnp         tag : , 

Figure 1. The rule extracted by RAPIER. 

CP1:     S1:        CP2:         S2:         CP3: 
  Φ  <NAME>  was born in  <BIRTHDATE>   Φ    

Figure 2. The rule extracted by Ravichandran. 

CP1 :                  S1 :               CP2 : 
       

NN      0.12   
According 0.03 
Known   0.09 

,   0.11   
to  0.03 
as  0.20 

.    0.4  
BE$  0.2 
 

DT$ 0.2 
VB 0.1 

Figure 3. The rule extracted by Cui. 



Conditional entropy model based evaluation strategy which is 
used to estimate the sensitivity of the generated terms. At last, we 
present our HRL algorithm.  

3.1 Rule Representation 
An extraction rule R is represented by a 3-tuple <T, S, StC>. In 
our extraction rule R,  T={CP-S1, S1, CP S1-S2,…, Sn, CP Sn-} is a 
sequence of rule elements E which are categorized into context 
pattern CP and slot S, in which CP and S appear alternatively. |T| 
is denoted as the length of T and equal to the number of the rule 
elements in T. Si is denoted as the i-th string to be extracted by R 
and CPSi-1-Si is denoted as the context pattern between Si-1 and Si, 
i.e., Si∈T for 1≤i≤n, CPSi-1-Si∈T for Si-1, Si∈T. Additionally, CP-

S1 is referred to the context pattern before S1 and CPSn- is referred 
to the context pattern following Sn. Obviously, each slot is 
embraced by two adjacent context patterns which are applied to 
matching the text so as to locate the position of their median slot 
in the documents.  

S=UnS∪BiS is a set of semantic annotations for the slots of the 
extraction rule R. UnS is denoted to the semantic class of a slot 
and we denote UnS(Si) as the semantic class of Si. We use 
WordNet semantic class set as our semantic class set. BiS is 
denoted as the semantic relation of two slots and we denote BiS(Si, 
Sj) as the semantic relation between Si and Sj. We have defined 34 
types of binary semantic annotations, as shown in Table 1. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
StC represents structure constraints for the context patterns of the 
extraction rule R and we denote StC(CPSi-1-Si) as the structure 
constraints of CPSi-1-Si. In our algorithm, StC is composed of a 
context maximum length StC.Length, a context type StC.Type and 
two disjunctive lists of terms StC.NT and StC.OT. StC.OT is a list 
of the terms in which each term may appear in the context pattern 
while StC.NT is a list of terms in which each term must appear in 
the context pattern. StC.Type whose value is Ti in which the 
subscript i is generated by connecting the semantic class of its two 
adjacent slots. For example, StC.Type(CPSi-1-Si) = TUnS(Si-1)-UnS(Sn).  

Figure 4 shows an example of our extraction rule which is used to 
extract the birthday of some persons. It has five columns, three of 
them are context patterns and two of them are slots. In this rule, 
there are two unary semantic annotations and one binary semantic 
annotation. In which, these two unary semantic annotations are 
“UnS(S1)= Person” which means the extracted information by S1 

belongs to the semantic class “Person” in WordNet [14] and 
“UnS(S2)= Date” which means the extracted information by S2 
belongs to the semantic class “Date” in WordNet. The only one 
binary semantic annotation is “BiS(S1, S2)= PropertyOf” which 
means the information extracted by S2 is a property of the 
information extracted by S1. On the other side, from the structure 
constraints of CPS1-S2, we know that the context pattern between 
S1 and S2 must consist of “born in” and may have “was” or “am”, 
and its length must be no more than 3 words, and its type is 
TPerson-Date. Based on this extraction rule, we can learn from the 
sentence “John was born in 1994 .” that the date “1994” is a 
property of the person “John”. 
 
 
 
 
 
 
 
 

 
 
 
 

Using this extraction rule we can efficiently locate the 
information pieces, the semantic class of each piece and the 
relation of two pieces from the text in the documents. After 
describing the representation of our extraction rules, we will then 
provide the Dynamic tErm eXtraction Technique (DEXT). 

3.2 Dynamic tErm eXtraction Technique 
Compared with those systems which use fix-length terms to 
construct the structure constraints [8, 13] and the systems which 
use 1-term lists to construct the structure constraints [1, 2], we use 
the variable-length term lists to build our structure constraints. To 
extract and estimate these variable-length terms, we put forward 
frequent terms extraction algorithms and conditional entropy 
based evaluation strategy.  

3.2.1 Frequent Terms Extraction Algorithm 
Given a context pattern type T and its instance list L, we use span 
methodology to extract variable-length terms which frequently 
occur in L. Using this methodology, we firstly expand the 
frequent i-term to obtain the candidate (i+1)-term. Then, we count 
the candidate (i+1)-term and eliminate those infrequent ones to 
obtain frequent (i+1)-term. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Binary semantic annotation types defined. 

DateOf AntonymOf IsA SubjectOf

HeightOf PropertyOf ShapeOf CnumberOf

ColorOf QualityOf SizeOf DistanceOf

PartOf DefinedAs UsedFor CapableOf

MannerOf SynonymOf TimeOf SubeventOf

LengthOf SubclassOf Nextevent LocationOf

ObjectOf SubPropertyOf WidthOf MadeOf 

TimeCost SubRelationOf PriceOf EffectOf 

ReasonOf UCquantityOf   

CP-S1 :       S1 :       CPS1-S2 :       S2:        CPS3- 
StC.NT: Φ          StC.NT :               StC.NT: Φ 
 
StC.OT:                                  StC.OT: 
                   StC.OT: 
 
StC.Length: 1        StC.Length: 3          StC.Length: 1 
StC.Type:T -Person      StC.Type: TPerson-Date     StC.Type: TDate- 
UnS(S2) = Date  UnS{S1) = Person 
BiS(S1, S2) = PropertyOf 

born in 

was 
am 

. 
) 
( 

. 
) 
( 

 
 Figure 4. The rule extracted by HRL. 

FrequentTermList = Φ      
InstanceList = L 
CurrentFrequentTermList = Φ      
TermList = Initialize (InstanceList) 
While (TermList != Φ) 
{ 
   CurrentFrequentTermList =  

RemoveUnFrequentTerms (TermList, θ*|L|) 
   If (CurrentFrequentTermList != Φ)  

FrequentTermList.Add(CurrentFrequentTermList) 
   TermList = SpanTerms(CurrentFrequentTermList)    
   n ++ 
} 

 
 Figure 5. Frequent terms extraction algorithm. 



 
Figure 5 shows the detail of our frequent terms extraction 
algorithm. In our algorithm, there is one parameter θ which is 
referred to the minimum support that the frequent terms must 
satisfy and θ*|L| means the minimum support count of the 
frequent terms. To initiate the term set, we firstly take every word 
occurred in L as a 1-term and insert them into the term lists. Then 
we count the occurrence time of each 1-term in all the instances in 
L and eliminate the infrequent 1-term whose occurrence time is 
less than the minimum support count. After spanning the frequent 
ones to candidate 2-term through combining the 1-term with the 
word next to it, we update the term list and iterate the above steps 
until there is no longer generate frequent terms.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Using the above algorithm, we can extract the frequent terms 
which occur more than θ*|L| in L. Figure 6 shows how to extract 
frequent terms using our algorithm. In this example, θ is set to 0.5. 
The top figure shows five annotated sentences. The bottom-left 
figure shows two context pattern types and their instance lists. 
The bottom-right figure shows the frequent terms we extracted. 
We can see from the example that, for TPerson-Date, we extract three 
frequent 1-term which are “born”, ”in” and “is”, two frequent 2-
term which are “born in” and “is born” and one frequent 3-term 
which is “is born in” since these six terms reach the minimum 
support count of 0.5 * 4 = 2. While for TPerson-Location, we extract 
two frequent 1-term which are “in” and “is” and one frequent 2-
term which is “is in” since these three terms reach the minimum 
support count of 0.5 * 1 = 0.5.  

Having these terms, we then need an evaluation strategy to 
estimate the quality of these frequent terms, which means we need 
to estimate whether these terms are representative or sensitive for 
its corresponding context pattern type. Hence, we use a 
conditional entropy based evaluation strategy to evaluate it.  

3.2.2 Conditional Entropy based Evaluation Strategy 
In this section, we describe how to use the conditional entropy 
model to evaluate the sensitivity of a term for distinguishing 
different context pattern types. Before we describe our evaluation 
strategy, we would like to give some definitions, Let CPL refer to 
the context pattern list and CPi be the i-th context pattern in CPL, 
so CPL = {CP1, CP2, … , CPn}. CPTL is referred to the context 
pattern type list, and the j-th context pattern type in CPTL is 
denoted as CPTi, so CPTL = {CPT1, CPT2, …, CPTm}. We use 
equation (1) to calculate the sensitivity of a term T for 

distinguishing different context pattern types. In equation (1), 
p(CPi,T) is referred to the probability of CPi and T both occurs 
and p(CPi|Tj) is referred to the probability of CPi given Tj. 
p(CPi,T) and p(CPi|Tj) can be calculated using equation (2) and 
(3), in which N(T) is the occurrence times of T in the entire CPL. 
The larger entropy value H is, the less insensitive the term T is for 
distinguishing different context pattern types.  
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For the example shown in Figure 6, we use the following two 
equations to calculate the entropy of “is” and “born”. Obviously, 
the term “is” has much larger entropy value than “born”, so 
“born” is more sensitive to distinguish the different context 
pattern types than the term “is”.  
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3.3 HRL algorithm 
In this section, we will describe our Heuristic Rule Learning 
algorithm (HRL) for information extraction. The input of our 
algorithm is human labeled training corpus and the output is the 
extraction rules. Our algorithm has four steps: rule base 
initialization, frequent term extraction, sensitivity evaluation, and 
pattern generalization and merging.  

3.3.1 Rule Base Initialization 
In this step, we initialize our extraction rules base on the basis of 
a human labeled training corpus. Firstly, we convert each 
annotated word to an abstract slot and mark the slot with its unary 
semantic class. Secondly, based on the unary semantic class of 

<Person : John> is born in <Date : 1987>. 
<Person : Mary> was born in <Date : 1998>. 
<Person : My parents> are born in <Date : the 90-th>. 
<Person : Peter> is born in <Date : 1832>. 
<Person : Peter> is in <Location : China>. 

TPerson-Date  TPerson-Location 
is born in      is in 

was born in 
are born in 
is born in 

TPerson-Date  TPerson-Location

{born, in, is}   {in, is} 
{born in, is born}  {is in} 

{is born in} 
 

Figure 6. The results of the frequent terms extraction 
algorithm (θ = 0.5). 



two adjacent slots, we dynamically construct the type of their 
median context pattern. Then, we collect the instances for each 
context pattern type and construct its instance list. At last, we 
initialize rules based on the slot semantic annotations and the 
context pattern types.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As shown in Figure 7, for five given training sentences, we firstly 
generalize the annotated words to the abstract token S and 
construct the unary semantic class UnS for each slot. Then on the 
basis of the semantic class of each two adjacent slots, we generate 
two types of context patterns TPerson-Date and TPerson-Location. At last, 
we collect the instances and construct an instance list for each 
type of context pattern. After converting the context instances to 
the context pattern tags, we obtain two initial extraction rules 
Figure 7-(a) and Figure 7-(b).  

3.3.2 Frequent Term Extraction 
In this step, we use frequent terms extraction method to extract 
frequent terms in different lengths and construct a frequent term 
list for each context pattern type in the rule base.  

Figure 8 shows the frequent term lists we constructed for TPerson-

Date and TPerson-Location if the θ is set to 0.5. The left figure shows 
the frequent term list for TPerson-Date, which contains six terms, “is”, 
“born”, “in”, “is born”, “born in” and “is born in”. The right 
figure shows the frequent term list (FTL) for TPerson-Location, which 
has three terms, “is”, “in’ and “is in”. 
 

 
 
 
 
 
 
 
 
 

3.3.3 Sensitivity Evaluation 
In this step, we use conditional entropy model to evaluate the 
sensitivity of each term for distinguishing different context 
pattern types. Then we compare the entropy value with a given 

threshold H and eliminate those non-sensitive frequent terms 
whose entropy values are larger than H. Those terms whose 
entropy values are smaller than H are regarded as sensitive 
enough to distinguish different context pattern types and will be 
kept to construct SyC.NT. The conditional entropy based 
evaluation strategy is mentioned in Section 3.2.2 Figure 9 shows 
the sensitive frequent term list (SFTL) for Tperson-date and TPerson-

Location. In this example, H is set to 0.5. The left graph is the 
sensitive frequent term list of TPerson-Date, and right graph is the 
sensitive frequent term list of TPerson-Location. 
 
 
 
 
 
 
 
 
 
 
 

3.3.4 Pattern Generalization and Merging 
In this step, we generalize the context pattern of the initial rules 
through converting the instance list to two more general term lists 
StC.OT and StC.NT. To achieve this, we firstly use all sensitive 
frequent terms occurred to build StC.NT and use all the other 
words to build StC.OT for each instance in the instance list. Then 
we merge StC.OT of all the instances whose StC.NT are the same 
and use the merging result and StC.NT instead of the instance list 
to obtain our final results. For example, Figure 10 shows the 
operation for the initial rules shown in Figure 7-(a). The Figure 
10-(a’) is the results of building StC.OT and StC.NT for each 
instance in the instance list of TPerson-Date. We can see that “was” 
and “are” are marked as StC.OT since these two words are not in 
SFTL(TPerson-Date), while “born in” is marked as StC.NT since it is 
in SFTL(TPerson-Date). Then since the StC.NT of the second and 
third instances are equal, we merge StC.OT of them and obtain the 
rule shown in Figure 10-(a’’). Moreover, since the StC.NT of the 
first and fourth instances are equal, we merge StC.OT of them and 
obtain the rule shown in Figure 10-(b’’). These two rules are our 
final results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 9. Sensitive frequent term lists. 

SFTL(TPerson-Date) 
 
 
 
 
 

born 
is born 
born in 
is born in 

SFTL(TPerson-location) 

 

 

 

 
     

is in 

FTL(TPerson-Date) 
 
 
 
 
 
 
 

is 
born 
in 
is born 
born in 
is born in 

FTL(TPerson-location) 

 

 

 

 

 

 

 

is 
in 
is in 

Figure 8. Frequent term lists of TPerson-Date and TPerson-Location.

Figure 7. Examples of Initiating Extraction Rule Base.

<Person: John> is born in <Date: 1987 >.           BiS(John,1987) = “PropertyOf” 
<Person: Mary> was born in < Date: 1998>.         BiS(Mary,1998) = “PropertyOf” 
<Person: My parents> are born in < Date : the 50-th >. BiS(My parents, the 50-th) = “PropertyOf” 
<Person: Peter> is born in <Date : 1832>.           BiS(Peter, 1832) = “PropertyOf” 
<Person: Tom> is in < Location: China >.            BiS(Tom, China) = “PropertyOf” 

<S1>       CPS1-S2      <S2>       (b) 
        
 

SyC.Type:TPerson-Location   
UnS(S1) = “Person” UnS(S2) = “Date” 
BiS(S1,S2)=”PropertyOf” 

is in 

<S1>       CPS1-S2       <S2>         (a) 
      

 
 
 
 
SyC.Type:TPerson-Date   

UnS(S1) = “Person” UnS(S2) = “Date” 
BiS(S1,S2)=”PropertyOf” 

is born in 
was born in 
are born in 
is born in 

<S1>          CPS1-S2          <S2>    (a’) 
      

 
 
 
 
SyC.Type:TPerson-Date   

UnS(S1) = “Person” UnS(S2) = “Date”  
BiS(S1,S2)=”PropertyOf” 

StC.NT:is born in 
StC.NT:born in. StC.OT:was 
StC.NT:born in. StC.OT:are 
StC.NT:is born in 

<S1>          CPS1-S2          <S2>  (b’’) 
           StC.NT: is born in 
     StC.Length : 3 
           SyC.Type:TPerson-Date 

UnS(S1) = “Person” UnS(S2) = “Date” 
BiS(S1,S2)=”PropertyOf” 

<S1>   CPS1-S2   <S2> 
    StC.NT: born in 
                   

StC.OT: 
 

StC.Length : 3 
SyC.Type:TPerson-Date 

UnS(S1) = “Person” 
UnS(S2) = “Date” 
BiS(S1,S2)=”PropertyOf” 
 
         (a’’) 

was 
are 

Figure 10. Results of pattern generalization and 



4. EXPERIMENTS AND RESULTS 
After describing our HRL learning algorithm, experiments on a 
human labeled training corpus and a test dataset are used to test 
the efficacy of our HRL algorithm. Our data source is 200 web 
pages including person description chosen from Google. Then we 
split the 200 pages into 10 groups and randomly pick one group to 
annotate. The annotated group is taken as the training corpus and 
the other 9 groups are taken as test corpus.  

 
 
 
 
 
 
 
 
 
  

The Figure 11 shows some annotated examples in our training 
corpus. We firstly test the efficiency of our frequent terms 
extraction algorithm. H is set to 0.5 to ensure us to extract the 
sensitive terms. By varying the value of parameter θ, we extracted 
three extraction rule sets at different generalization levels from 
training corpus. Then we apply these different extraction rules to 
extract the birthday information for a person in the test corpus. 
We repeat this experiment for 4 times. The size of the different 
extraction rule sets, the precision and recall of the extraction 
results are shown in Table 2, in which the precision and recall are 
calculated as follows:  

r

a

C
precision

C
=                                                    (4) 

r

ar

C
recall

C
=                                                          (5) 

where, Ca is the number of all the information pieces we extracted, 
Cr is the number of the correct birthday information we extracted, 
and Car is the number of all the birthday information in the test 
corpus.  

From the results, we can see that θ determines the size of 
extraction rule sets and the recall of the extraction results mostly. 
When we set θ to 0.03, HRL can learn 11 rules. However, in these 
rules, any rules are too specific and occur only once in the entire 
instance lists. These rules contribute little to extracting correct 
information when be applied to another domain since they are too 
domain-specific.  
 
 
 
 
 
 
 
 
 
Figure 12 shows two examples of the 11 rules. The bottom rule 
only occurs once and the top rule occurs 15 times. Obviously, the 
bottom rule is too specific and can hardly be applied to extract the 

birthday for a new person. The generalization level of the top rule 
is more suitable since StC.OT makes the rule more flexible. When 
we set θ to 0.09, only 2 rules which occur more frequently are 
learned by HRL. The bottom rule in Figure 12 cannot be learned 
this time since the terms in StC.NT are not frequent. From the 
HRL algorithm, we can easily know these 2 rules are covered by 
the above 11 rules. Comparing the recall of these two rule sets, 
we can see that these two rules give the more contributions than 
the other 9 rules in information extraction task. When we set θ to 
0.27, no rule is extracted, since there is no such frequently-used 
extraction rule. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After testing the impact of θ, we show the impact of H. By 
varying both θ and H, we extracted different extraction rule sets 
from the same training corpus. Based on these different rule sets, 
we extract the birthday information for a person in the same test 
corpus. Because our learning algorithm is focused on extracting 
information on the web and there are millions of data to enable us 
to obtain some results more or less, we focus on the phenomena 
of precision except for recall. The relation of θ, H and precision 
of the extraction results is shown in Table 3.  
 

 
 
 
 
 

   
 

From the results, we can see that H which reflects the sensitivity 
of the terms determines the precision of the extraction results. 
When we set θ to 0.03 and increase H from 0.5 to 2.5, the 
precision decreases dramatically. However, increasing the θ can 
counteract some defects by increasing H, since the frequently-
used expression of human language has less ambiguity. It is why 
the precision does not decrease along with increasing the H from 
1.5 to 2.5, when we set θ to 0.15. Moreover, it is interesting that 
when we set θ to 0.27 and increase the H, the precision increases 
from 0 to 44.44%. The reason is that when we loose the 

<Person: Mao> was born on < Date: December 26, 1893> 
   BiS(Mao, December 26, 1893) = PropertyOf 
<Person: Zhou Enlai> (<Date: March 5, 1898> – <Date: January 8, 1976>) 
   BiS(Zhou Enlai, March 5, 1898) = PropertyOf    

BiS(Zhou Enlai, January 8, 1976) = PropertyOf 
<Person: Mao Zedong>, Chinese Communist leader, was born in Hsiang-t’an, 
China on <Date: December 26, 1893>. 

BiS(Mao Zedong, December 26, 1893) = PropertyOf 

Figure 11. Examples of annotated information pieces. 

 

 Θ = 0.03 Θ = 0.09 Θ = 0.15 Θ = 0.21 Θ = 0.27

Size 11 2 2 2 0 

Precision 86.70% 100% 100% 100% 0% 

Recall 29.55% 18.10% 18.10% 18.10% 0% 

Table 2. Illustration the relation of size, precision, 
recall and θ (H=0.5). 

 

 Θ = 0.03 Θ = 0.09 Θ = 0.15 Θ = 0.21 Θ = 0.27

H = 0.5 86.70% 100% 100% 100% 0% 

H = 1.5 73.81% 77.78% 77.78% 77.78% 0% 

H = 2.5 45.23% 60.87% 77.78% 77.78% 44.44%

   

Table 3. Illustration the relation of precision, H and θ.    

<S1>                          CPS1-S2                         <S2> 
     StC.NT: , Chinese Communist leader, was born in Hsiang-t’an, China on  

   StC.Length : 12 
     SyC.Type:TPerson-Date 

UnS(S1) = “Person” UnS(S2) = “Date” 
BiS(S1,S2)=”PropertyOf” 

<S1>        CPS1-S2          <S2> 
         StC.NT: born on  

       
 StC.OT: 
 
StC.Length : 3 

         SyC.Type:TPerson-Date 

UnS(S1) = “Person” UnS(S2) = “Date” 
BiS(S1,S2)=”PropertyOf” 

was 
am 

 Figure 12. Examples of the rules extracted by HRL.    



restriction for the sensitivities of the terms, we can learn some 
low-quality rules instead of zero high-quality rules. And using 
these rules, we can obtain some unsatisfied results instead of no 
results.  

In conclusion, the θ determines popularity of the extracted rules 
while the H determines the quality of the extracted rules. If we 
choose a suitable H and θ, the HRL algorithm can be an effective 
and we can use it to acquire high-quality extraction rules.  

5. CONCLUSIONS AND FUTURE WORK  
We have presented a Heuristic rule learning algorithm named 
HRL in this paper. In HRL, a Dynamic tErm eXtraction 
Technique is used to construct terms at different generalization 
levels. We use the conditional entropy model to evaluate the 
quality of these different terms so as to use them construct high-
quality extraction rules at the most suitable generalization level. 
Experimental results show its efficacy. That is, it can indeed 
acquire extraction rules at different generalization levels based on 
frequent term extraction method, and the entropy value can 
efficiently estimate the sensitivity of each term. Moreover, we can 
construct the high-quality extraction rule set based on these 
sensitive terms. We hope that using the HRL algorithm, we can 
extract more powerful extraction rule base than those rule bases 
used by Ravichandran [8] and Cui [2], because in our experiment, 
we obtain a more accurate results based on our extraction rule set. 
Compared with the learning algorithm proposed by Zhang [13], 
our algorithm can learn the extraction rules at different 
generalization levels depending on the different situations. The 
extraction rules learned by HRL are more flexible than Zhang’s 
specific rules.  

However, there are still some problems of our algorithm and more 
research works need be done to solve these problems. Firstly, the 
efficiency of our algorithm is mostly determined by θ and H and 
we do not know how to choose a suitable value for them. In the 
future research, we will consider to find a strategy to evaluate θ 
and H. Secondly, our training corpus is too small and our 
experiments are focused on extracting birthday information for a 
person, we plan to use a large training corpus to obtain more 
powerful extraction rule base which can extract other interesting 
information as well. Lastly, there are no relations between the 
terms we learned, so we will use more complex insensitivity 
evaluation strategy to estimate these terms more accurately.  
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