
DUMAX: A Dual Mode Algebra for XML Queries

Dunren Che and Radiya M. Sojitrawala
Department of Computer Science

Southern Illinois University Carbondale, USA
(01) 618 453 6046

{dche, rsoji}@cs.siu.edu

ABSTRACT
In the paper, we present a new algebra called DUMAX designed
for XML and XML queries. An important feature of this algebra
is its dual mode, which is introduced to help fuse node-based
features and tree-based features (both are essential for XML) and
to achieve accelerated execution of XML queries in large XML
databases or repositories. We also briefly discuss the potentials of
DUMAX for XML query processing and optimization.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – Query processing,
F.4.3 [MATHEMATICAL LOGIC AND FORMAL
LANGUAGES] Formal Languages – Algebraic language theory

General Terms
Theory.

Keywords
Algebra, XML Algebra, Query Algebra, XML database, Query
processing, Query optimization.

1. INTRODUCTION
While the web-published data (in the form of XML data for
example) keeps mounting up, advanced scalable techniques are
especially needed for efficiently querying XML data sources
(typically stored and managed by a DBMS).

The algebraic approach has been proven to be an effective way
for query processing and optimization in a variety of database
systems, including RDBs and OODBs. A related key issue is to
how to design an apposite query algebra for XML. On the one
hand, XQuery [4] has been proposed and accepted as a pre-
standard language for querying XML data; on the other hand,
although numerous algebras have been proposed, no algebra has
been commonly accepted as the query algebra for XML data (this
is in contrast to the situation of relational databases and queries).
In this paper, we report the result of our effort toward developing
a proper algebra to facilitate effective XML query optimization
and evaluation.

Because of the semi-structured nature of XML, XML query
processing heavily depends on dealing with two kinds of trees:
pattern trees and operation trees. A pattern tree specifies a tree-
shaped structure pattern used in an XML query to screen the data
sources. As in traditional database query processing, an operation
tree forms the basic manipulation space for query optimization.
Query optimization typically relies on transforming the operation
trees to identify improved (if not optimal) alternative query plans.
Previous proposals for XML algebra emphasized on either pattern
trees (like TAX [11]) or operation trees (like XAL [9]), but not on
both. An ideal algebra for XML queries shall posses the features
of both types of trees.

In this paper, we first introduce a new algebra, called DUMAX (a
DUal-Mode Algebra for Xml), which is designed to provide
integrated support to both types of trees in a single algebraic
framework. Based on DUMAX, we then develop algebraic
transformation strategies (formatted in the form of query
equivalences using DAMAX expressions) to facilitate XML
query transformation and optimization.

The remainder of this paper is organized as follows: First (in
Section 2), we review related work by drawing a general picture
of the algebras proposed for XML. Second (in Section 3), we
present our initial design of the DUMAX algebra, mainly by
presenting the main operations provided by this algebra. Third (in
Section 4), we use DUMAX as s formalism to address the
algebraic optimization strategies appropriate for XML queries.

2. REVEW OF RELATED WORK
Algebra has been a very important issue for database query
optimization. There appear to be plenty of algebras proposed in
the context of XML. Fernandez et al proposed an algebra [8]
tailored for Quilt. This algebra later on formed the intellectual
basis for the W3C working group’s algebra document [7], which
is centered on providing formal semantics, but not on efficient
implementation of XQuery [4]. Other XML algebras were
proposed with more or less emphasis on the support for XML
query implementation. These algebras can be roughly classified
into three categories: (1) extended relational (or object-relational)
algebras, e.g., YAT [6], Xtasy [3], XAT [19], etc., (2) node-based
algebras, e.g., PAT [1, 17] and XAL [9], and (3) tree-based
algebras, e.g., Aqua [18] and TAX [11]. In the following, we
review several selected algebras proposed for XML. Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

The Aqua project algebra [18] focuses on the identification of
pattern matches and rewriting in the style of grammar production
rules. The YAT algebra [6] is defined as an extension to the
familiar relational and object-oriented algebras so that the
common relational and object-oriented optimization techniques

Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. INFOSCALE 2007, June 6-8, Suzhou, ChinaCopyright © 2007 ICST 978-1-59593-757-5 DOI 10.4108/infoscale.2007.202

can be retained. To fuse the XML data model with relational
model, the algebra introduced two border operators: bind, to
extract XML data to an intermediate structure, and tree, to rebuild
an XML structure from the intermediate structure. That
intermediate structure is named Tab and is essentially a set of
tuples for holding the bindings to specified labeled tree nodes.
The main object of manipulation in this algebra is nodes (tuples).
As pointed out in [11], due to the consequent loss of structure, this
scheme very quickly breaks down when complex analyses are
required. The Xtasy algebra [3] was proposed with the same
spirit, and actually can be considered as a variant of the YAT, but
additionally supports direct evaluation of recursive XPath
patterns. XAT [19] and several other algebras are all extended
relational algebras. In [12] a node-based navigational algebra was
proposed. It treats individual nodes as the basic units of
manipulation. There are three other well-know algebras, Niagara
[10], XAL [9], and TAX [11]. Due to space concern, we are no
going to provide more details of these algebras.

Generally, there are two kinds trees related to an XML query —
one (or more) pattern tree implied by the query and an operation
tree that forms the search space for query optimization. This
observation seems to be widely ignored so far. The focus of this
writhing is to extend the enriched version [2, 1] of the PAT
algebra [17] as adopted in our previous work [2, 1], and
incorporate important ingredients from other influential algebras,
such as XAL and TAX, to form a new algebra that has more
expressive power and can better facilitate XML query processing.

3. DUMAX: THE ALGEBRA
In this section, we present the major operations in the DUMAX
algebra. DUMAX operations can work in two different modes:
shallow mode and deep mode. Shallow mode is a natural feature
of node-based algebra like XAL [9], and deep mode is an
important feature enabled only by tree-based algebra like TAX
[11]. In shallow mode, an operation does not see the levels
beyond the current node, while in deep mode, an operation
perceives the entire tree as referenced, i.e., the details about all
the sub-trees underneath the current node. Each operation
assumes the default mode. Only when it does not work in the
default mode, is the non-default mode explicitly specified in the
form of a superscript parameter.

3.1 Data Model
DUMAX is designed for XML, and we assume a data model that
deals with collections of node-labeled and ordered trees. In the
relational data model, a relation consists of a set of tuples with
identical structure. The counterpart in the DUMAX data model is
a collection of trees, with structures that satisfy a given
DTD/XSD (XML Schema Definition). Trees in the same
collection must satisfy the same DTD/XSD.

In the XML, an element can have children, which are either sub-
elements or attributes. In our data model, elements are represented
as tree nodes, and attributes are always represented as tree leaves
(nodes) because attributes do not have children. Elements and
attributes are both stored as name-value pairs.

In brief, DUMAX assumes a data model which is collection of
labeled and ordered trees. A database is a collection of collections
of such trees, and each collection satisfy the same DTD/XSD.

3.2 Symbols and Grammar
We adopt a number of meta-symbols in our presentation and their
interpretations are given below:

• ‘|’ – or
• etn – an element-type-name
• @atn – an attribute-name
• [...] – the content in the brackets is optional.
• {...}+ – the content in the braces repeats more than one time.
• {...}n – the content in the braces repeats n times for n = 0,1,

…

The syntax of algebraic expressions in DUMAX is summarized
below and explained in the following subsections.
E ::= etn | (E) | I(E) | [] /* access ops */
 π pl (E) | /* projection */
 σtarget, predicate, modifier (E) | /* selection */
 E1⊃E2 | E1⊂E2 | E1⊇E2 | E1⊆E2 | /*containments */
 E1 E2 | E1 ∩ E2 | E1 – E2 | /* set ops */
 Σ

U
base, order(E) | /* sorting ops */

 γ bl, ol(E) | /* group-by */
 E1 ⋈ c E2 | E1 Xc E2 /* structural & unstructural joins*/
 etnμ (E) | /* construction */

 χ(E) | ⊥ (E) | - (E) | & /* miscellaneous */
 E1 + E2 | E1 - E2 | E1 * E2 | E1 / E2 /* arithmetic ops */
 E1 >> E2 | E1 << E2 /* predicates */

DUMAX operations are classified into the following categories:
access operations, projects, selections, containments, set
operations, ordering, joins, and miscellaneous operations. Due to
space limitation, we only present selected operations from each
category below.

3.3 Access Operations
All access operations are atomic and they form the basic set of
operations in DUMAX.

etn, as a basic access operation, it simply returns all the elements
of the represented type from the database.

(E), as a sub-expression, returns the same result as E. Its main
usage is for composition.

I(E) is an index operation. It uses a specified index to retrieve the
elements decided by the expression E from the database.

E[x] is the array operation. Typically, it retrieves a particular
element from a sequence of elements decided by the expression E.
For example, author[2] retrieves only the second author in the
current context. The array operation’s subscript can be other
meaningful regular expressions, such as +, *, 2+, n, $, and [n1-
n2], which are interpreted in a similar way as with the pattern
match in Perl language.

3.4 Projection
Projection is an operation for discarding unwanted parts (sub-
elements and attributes) from its input.

Syntax: πpl (E) where pl ::= {@atn | etn | etn*}+

This operation always works in deep mode. It eliminates nodes
other than those specified in the projection list pl.

3.5 Selection
A selection operation screens the elements in an input collection
based on a screening predicate.

Syntax: σtarget, predicate, modifier (E)
The target parameter specifies the targets that the predicate
parameter is to be applied to. The grammar of target is: target ::=
e | a |*. When it is e, the predicate applies to the content of the
elements decided by the subexpression E; when is a, the predicate
applies to a named attribute (prefixed by @); when it is *, the
predicate recursively applies to the entire trees in the input
collection.

The predicate parameter specifies the filtering condition of the
selection operation. It can be any meaningful form of predicates.
For example, “@year = 1991”, which limits the year attribute to a
specific value, 1991.

The modifier parameter modifies the implication of the predicate
while applied to the target in a similar way as in Perl pattern
match.

3.6 Containment operations
Containment is a key operation for XML and XML queries. We
differentiate several versions of this operation.

Ea ⊃ Ed describes an ancestor-descendant relationship that must
he held. The operation returns the ancestor elements only.
Accordingly, we have Ed ⊂ Ea, which returns descendants only.
⊇ and ⊆ may be used only for parent-child relationships.

3.7 Set Operations
DUMAX adopts the three standard set operations: union (∪),
intersection (∩), difference (–).

3.8 Sorting
Sorting is an important operation for database access. In
DUMAX, it is denoted by Σbase,order(E), which has a sorting base
and an order parameter.

3.9 Grouping
DUMAX provides its group-by operation in the same flavor as in

relation databases: γ bl, ol(E), which contains a grouping-base list
parameter bl and an output list parameter ol.

3.10 Joins
DUMAX provides two types of joins: structural joins and
nonstructural joins via a single generic operation ⋈ c.

Structural Join (Ei ⋈ c Ej): When the join condition c takes the
form of either ⊃, ⊂, ⊇, or ⊆, the operation is interpreted as a
structural join and the structural relationship must be satisfied.

Nonstructural Join (Ei X c Ej): When the join condition c
specifies a non-structural relationship, the operation is interpreted
as a nonstructural join, which can be used to accomplish any form
of joins, including the joins in relational databases.

3.11 Construction
With XML queries, there is a strong desire for constructing new
of XML elements using the obtained query results as materials. In
DUMAX, the construction operation takes the form: etnμ (E).
This operation wraps around the output of the expression E using
the tag name indicated by the parameter etn.

3.12 Miscellaneous Operations
There are miscellaneous operation such as unorder (χ), flatten (┴),
the unary – (for negation), and a variety of predicates: >>
(follows), << (precedes), =, !=,<, <=, >, >=, AND, OR, and NOT.

3.13 Aggregate Functions
The common aggregation operations used in relational databases,
count, max, min, average are all supported in DUMAX as well.

3.14 Example
In the following, we select a few queries from the XMark
benchmark [91] (which assumes an online auction database) to
illustrate DUMAX as a powerful algebraic query language.

Q4.1 Return the name of the item with ID ‘item20748’
registered in North America.
name ⊂ ((σnatural_order = ‘item20748’(item)) ⊂ namerica)

Q4.2 Return the initial increases of all open auctions.
increase ⊂ (bidder[1] ⊂ open_auction)

Q4.3 How many sold items cost more than 40?
COUNT (closed_auction ⊃ (40>σ (price)))

Q4.4 List all persons according to their interest.

γ [(interest, @category)], person (person)

Q4.5 For each person, list the number of items currently on
sale whose price does not exceed 0.02% of the person’s income.

 γ [(person, name)], COUNT(*)(person Xprofile@income > 5000*initial (open_auction)

Q4.6 Print the keywords in emphasis in annotations of closed
auctions.
keyword ⊂ (emph ⊂ (annotation ⊆ closed_auction))

Q4.7 Confer Q15. Return the IDs of the sellers of those
auctions that have one or more keywords in emphasis.
π @person (σ (seller//emph/keyword) (seller ⊂ closed_auction)

Q4.8 Which persons don’t have a homepage?
- (person ⊇ homepage)

Q4.9 Give an alphabetically ordered list of all items along with
their location.
Σasc(item ⋈ ⊂ region)

4. XML Query Optimization

In an algebraic optimization approach, XML queries are
represented as algebraic expressions, and transformations are then
performed on the query expressions according to algebraic
equivalences. The best alternative query expression is ultimately
decided from usually a very large pool of candidates enumerated
based on cost analysis or optimization heuristics. Candidate
enumeration relies on equivalent query transformation. Our work
emphasizes heuristic-based optimization strategies due to the
multiple sources of heuristic knowledge as recognized in [1] that
can be used to quickly reach a “sufficiently good” alternative
query plan without resort to exhaustive plan enumeration. In the
following we briefly outlook DUMAX’s possible application in
XML query optimization.

4.1 Optimization through Mode Switching
Maintaining the deep mode for DUMAX operations during query
evaluation is obviously costly. So, switching from deep to shallow
mode is an important aspect of query optimization. In the course
of query evaluation, mode analysis must be performed in order to
identify the opportunities so that beneficial mode switching can
be made. A general heuristics with regard to mode-centered
optimization is “push down shallow mode operations to the
bottom and pull up deep mode operations to the top in the query’s
operation tree” (in this way data tree materialization is postponed
to the last). We are currently developing a runtime evaluation
optimization procedure that uses the dual mode feature offered by
DUMAX to obtain acceleration of XML query execution.

4.2 Query Equivalences
As a rather expressive algebra, DUMAX is capable to
accommodate the common equivalences that can be used for
query optimization, including De Morgan’s Laws, projection
decomposition, selection cascading, and the communativity law
of various operations. Due to space limitation, we refer interested
readers to a previous paper [1], where we presented a large set of
equivalences and deterministic transformation rules based on a
rather simpler algebra PAT [17]. Our work is continuing – we are
adapting the equivalences and transformations rules to DUMAX.

5. SUMMARY
In the paper, we presented a newly designed algebra called
DUMAX for XML queries. An important feature of this algebra is
its dual mode, which is introduced to fuse node-based features
and tree-based features and can be used to achieve runtime
evaluation optimization for XML queries, in addition to query
plan optimization. We hope our work will inspire more interests
in the research community toward a more suitable XML algebra.

6. REFERENCES
[1] D. Che, K. Aberer, and M. T. Özsu. Query Optimization in

XML Structured-Document Databases. VLDB Journal,
15(3): 263-289, September 2006.

[2] D. Che. Efficiently Processing XML Queries with Support
for Negated Containments. International Journal of
Computer & Information Science, 6(2): 109-120, June 2005

[3] C. Sartiani, A. Albano. Yet Another Query Algebra for XML
Data. In Proc. of IDEAS 2002, Edmonton, Canada, July
2002.

[4] S. Boag, D. Chamberlin, M. F. Fernndez, D. Florescu, J.
Robie, J. Simon. XQuery 1.0: An XML Query Language.
W3C Working Draft 04, April 2005
(http://www.w3.org/TR/xquery).

[5] Z. Chen, H.V. Jagadish, L. V.S. Lakshmanan and S.
Paparizos. From Tree Patterns to Generalized Tree Patterns:
On Efficient Evaluation of XQuery. In Proc. of VLDB’03,
Berlin, Germany, September 2003.

[6] V. Christophides, S. Cluet, and J. Simeon. On wrapping
query languages and efficient XML integration. In Proc. of
SIGMOD, pages 141-152, May 2000.

[7] D. Draper, P. Fankhauser, M. Fernndez, et al. XQuery 1.0
and XPath 2.0 Formal Semantics. W3C Working Draft 3,
June 2005 (http://www.w3.org/TR/query-semantics/).

[8] M. Fernandez, J. Simeon, P. Wadler. An Algebra for XML
Query. In Proc. of FST TCS, Delhi, December 2000.

[9] F. Frasincar, G.-J. Houben, C. Pau. XAL: an algebra for
XML query optimization. In Proc. of the13th Australasian
Conference on Database technologies, January 2002.

[10] L. Galanis, E. Viglas, D.J. DeWitt, J.F. Naughton and D.
Maier. Following the Paths of XML Data: An Algebraic
Framework for XML Query Evaluation. 2001
(http://www.cs.wisc.edu/niagara/papers/algebra.pdf).

[11] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava and K.
Thompson. TAX: A Tree Algebra for XML. In Proc. of
DBPL Conf., Rome, Italy, September 2001.

[12] B. Ludascher, Y. Papakonstantinou, and P. Velikhov.
Navigation-driven evaluation of virtual mediated views. In
Proc. of EDBT, pages 150-165, 2000.

[13] University of Michigan. The TIMBER system
(http://www.eecs.umich.edu/db/timber/).

[14] S. Paparizos, S. Al-Khalifa, H.V.Jagadish, A. Nierman and
Y. Wu. A Physical Algebra for XML. Technical report
(http://www.eecs.umich.edu/db/timber/).

[15] S. Paparizos, Y. Wu, V.S. Lakshmanan and H.V. Jagadish.
Tree Logical Classes for Efficient Evaluation of XQuery. In
Proc. of SIGMOD Conf., Paris, France, June 2004.

[16] S. Paparizos and H.V. Jagadish. Pattern tree algebras: sets or
sequences? In Proc. of VLDB Conf., Trondheim, Norway,
September. 2005.

[17] A. Salminen and F. W. Tompa. PAT Expressions: an
Algebra for Text Search. Acta Linguistica Hungarica. 41(1):
277-306, 1994.

[18] B. Subramanian, T. W. Leung, S. L. Vandenberg, S. B.
Zdonik. The AQUA approach to Querying Lists and Trees in
Object-Oriented Databases”. In Proc. of ICDE, 1995.

[19] X. Zhang, B. Pielech, E. A. Rundesnteiner. Honey, I shrunk
the XQuery!: an XML algebra optimization approach. In
Proc. of the 4th Intl. Workshop on Web Information and
Data Management, pp15-22. McLean, Virginia, USA, 2002.

	1. INTRODUCTION
	2. REVEW OF RELATED WORK
	3. DUMAX: THE ALGEBRA
	3.1 Data Model
	3.2 Symbols and Grammar
	3.3 Access Operations
	3.4 Projection
	3.5 Selection
	3.6 Containment operations
	3.7 Set Operations
	3.8 Sorting
	3.9 Grouping
	3.10 Joins
	3.11 Construction
	3.12 Miscellaneous Operations
	3.13 Aggregate Functions
	3.14 Example

	4. XML Query Optimization
	4.1 Optimization through Mode Switching
	4.2 Query Equivalences

	5. SUMMARY
	6. REFERENCES

