
Holistically Processing XML Twig Queries with AND, OR,
and NOT Predicates

Dunren Che
Department of Computer Science

Southern Illinois University Carbondale
Carbondale, IL 62901, USA

dche@cs.siu.edu

ABSTRACT
Structural joins are important for XML queries, but suffer
from producing large, unused intermediate result sets. Holis-
tic twig joins claim to solve this problem, but previously pro-
posed algorithms fail to support XML queries involving all
the three types of logical operations predicates: AND, OR,
and NOT, which are however highly desired (such queries
are referred to as All-twigs). Currently, there is no holistic
twig join algorithm designed for All-twigs. In this paper, we
first propose to normalize All-twigs to harness their com-
plexity and then present a holistic join framework based on
normalized All-twigs.

Categories and Subject Descriptors
D.2.8 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Pattern match-
ing

General Terms
Algorithms

Keywords
XML query, query processing, query evaluation, twig pat-
tern matching, holistic twig join

1. INTRODUCTION
Since the advent of the World-Wide-Web, the volumes

of Web published data (particularly in the form of XML)
keeps mounting up. Effective and scalable techniques for
querying very large XML data repositories, typically stored
in a database, become extremely important. Essentially, an
XML database is a tree database — consisting of collections
of trees, called data trees. Accordingly, XML queries specify
tree-shaped search patterns, called twig patterns [2], which
may be accompanied by additional predicates imposed on
the contents or attribute values of the data tree nodes. XML

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
INFOSCALE ’97 Suzhou, Zhejiang China
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

queries are thus called twig queries. Answering a twig query
requests to find all instances in a database that match the
twig pattern and satisfy the specified predicates (if any) in
the query. A naive way of executing a query is to scan the
database (typically for many times) in order to identify all
the matches. A better alternative is to use structural joins
(e.g., [1]) in a bulk way to compute the matches for each
edge of a twig pattern, and then “stitch” the matches found
for the individual edges to form the total matches for the
entire twig query. This approach typically creates large sets
of unused intermediate results, even if the final result set
is pretty small. Yet, a superb alternative, called holistic
twig join, is to compute all the matches in a holistic way
so that irrelevant intermediate results (which are detrimen-
tal to performance) will not be generated. The first holistic
twig join algorithm, TwigStack, was proposed by Bruno et
al [2]) in 2002. Since then the idea of “holistic twig join”
has been widely followed and generalized by numerous re-
searchers such as [3, 4, 5, 6, 8, 7, 9]. Most of these algo-
rithms deal with queries whose sibling edges are (implicitly)
connected by the AND logic only. However, general XML
queries typically contain arbitrarily specified logical opera-
tions, including AND, OR, and NOT (or referred to as AND-
predicate, OR-Predicate, and NOT-predicate, respectively).
For example, query “/dblp/paper[NOT reference]” finds
papers that do not have references, though contains just a
single NOT operation 1. Twig queries that may involve all
the three logical operations are called All-twigs(this is in
contrast to the mere AND/OR-twigs in [5] that contains
AND and OR only). From now on, twigs or twig queries
refer to All-twig queries.

The lack of support for dealing with all the three logical
operations within a query can make even the best holistic
twig join algorithm completely useless if the input query
involves all these logical operations. So far, we see only
paper [5] discussing the issue of OR predicates, and paper
[9] addressing the NOT predicates in a twig query. There is
no integral method proposed that can deal with all the three
logical operations. To the best of our knowledge, there is no
reported work that aims at solving the matching problem
of general twig queries that may involve all the three logical
operations, AND, OR, and NOT. We are thus motivated to
solve this important problem and report our findings in this
paper. We propose a framework and algorithms to solve the

1The NOT logic in XQuery is typically represented via the
empty() function, however, in this paper, to make the NOT
logic more explicit, we directly use the word ‘NOT’ in our
query expressions.

fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. INFOSCALE 2007, June 6-8, Suzhou, ChinaCopyright © 2007 ICST 978-1-59593-757-5 DOI 10.4108/infoscale.2007.201

pattern matching issue of general twigs (or All-twigs). As
a result, we make the following important contributions to
this area of research:

• We proposed an important concept, called normalized
twig queries, which makes it possible to efficiently and
uniformly compute any form of twig patterns holisti-
cally.

• We developed a method for obtaining the normalized
form of All-twigs queries, which is the first step toward
ultimately solving the All-twig matching problem.

• Based on normalized forms of All-twigs, we developed
an algorithm called AllTwigMerge to efficiently com-
pute the matches for All-twigs.

The remainder of this paper is organized as follows: Sec-
tion 2 sets forth the preliminaries needed for the subsequent
discussion, including twig representation and normalization,
and the auxiliary operations needed by our algorithms. Sec-
tion 3 introduces the important supportive mechanisms needed
by our approach. Our algorithms are summarized in Section
4, and the paper is concluded in 5.

2. PRILIMINARIES
We adopt the general perspective [2] that an XML database

is a forest of rooted, ordered, and labeled trees, each node
representing an element or a value, and the edges represent-
ing (direct) element-subelement relation. The labels of the
tree nodes encode the region information, i.e., the start and
end positions of the corresponding elements in the source
XML document.

2.1 Twig Representation
A twig query is represented as a tree, which consists of

various nodes and edges. We are interested in solving the
problem of the most general twig queries, All-twigs, that
may contain any or all kinds of logical operations: AND,
OR, and NOT. So, we define a twig query as a tree that
may consist of the following types of tree nodes:

• QNode: A location step node stands for one location
step in the original twig query.

• ANode: An AND-logical operation/predicate node, al-
ways takes the text ‘AND’ in the query tree.

• ONode: A OR-logical operation/predicate node, al-
ways takes the text ‘OR’ in the query tree.

• NNode: The NOT-logical operation/predicate, always
takes the text “NOT” in the query tree. NNodes are
commonly combined with the subsequent node to form
composite nodes in a twig query. We have the following
types of composite nodes that accommodate NOT:

– NQNode: combination of NOT with a following
QNode; the interpretation of this type of nodes is
that the parent elements must not contain any of
the sub-elements associated to the QNode.

– NANode: combination of NOT with a following
ANode.

– NONode: combination of NOT with a following
ONode.

With the above types of tree nodes, our All-twig represen-
tation scheme is apparently a superset of that in [5], which
represents AND/OR-twigs only.

Generally, the result of a twig query is a set of output twig
instances. In previous algorithms, an output twig instance
contains elements from all QNodes in the query. When the
twig queries are generalized to include NOT and OR logic,
it is no longer the case that every QNode will contribute
elements to the output instance because a QNode may sim-
ply serve as a filter. Here, we generalize the output model of
[5] as follows: each output twig instance for an All-twig
query comprises of elements from only the QNodes that are
not inside any OR or NOT predicate. The QNodes that
produce output (or contribute to the output instances) are
called output nodes. In our subsequent discussion, the term
“query node” refers to either an QNode or an NQNode or
both.

2.2 Query Normalization
A query tree may contain redundant nodes, which may be

syntactically redundant or semantically redundant (accord-
ing to certain constraint rules). Ideally, the query trees are
simplified and normalized, and our holistic twig join algo-
rithm AllTwigMerge (to be presented) can then be ben-
eficially applied. We define a normalized All-twig query as
the following:

Definition 2.1 (Normalized All-twig query). A nor-
malized All-twig query is a query tree that has only four types
of nodes: QNodes, NQNodes, ONodes, and ANodes, and
satisfy the following conditions: (1) all OR-predicates are
in DNF (disjunctive normal form); (2) NQNodes (if any)
must be leaves; (3) ANodes (if any) can only appear within
an OR-predicate branch.

We developed a procedure for normalizing All-twigs. This
procedure has three steps: (1) NOT-pushdown, (2) AND-
pushdown, and (3) simplification (details omitted due to
space limitation). We can prove that every All-twig has
an equivalent normal form and that can be obtained by the
above normalization procedure (which performs a rule-based
transformation).

2.3 Auxiliary Operations
Given a query tree Q, we will use q (and its variants such

as qi and q0) to denote a QNode (occasionally an NQNode
as well) in Q or the subtree rooted at q when there is no
ambiguity, and use n (and its variants such as ni and n0)
to refer to a node of any type in Q. We define a series of
operations on an All-twig and its tree nodes that are either
necessary or helpful for our subsequent discussion.

children(n) returns all child nodes of n; parent(n) re-
turns the parent node of n; Qchildren(n) stands for the set
of QNodes in subtree n that are reachable from n without
traversing other QNodes; NQchildren(n) stands for the set
of NQNodes in subtree n that are reachable from n without
traversing other tree nodes; Qparent(n) returns the nearest
ancestor QNode of n; Qsibling(q) returns all sibling QN-
odes of q (not including q itself); subtreeQNodes(q) returns
all QNodes in subtree q (q is inclusive); isLeaf(n) tests
whether node n is a leaf; isRoot(n) tests whether node n
is the root; isQNode(n) tests whether node n is a QN-
ode; isNQNode(n) tests whether node n is a NQNode;

isONode(n) tests whether node n is an ONode; isANode(n)
tests whether node n is an ANode.

Furthermore, we assume each QNode or NQNode q in
an All-twig is associated with a stream, named Tq. Each
stream maintains a list of elements that satisfy the node
test and any additional predicate (if any). The elements in
the streams are sorted by their regional code (start, end,

and level) (here level is the nesting level). Each stream
Tq is associated with a cursor, named Cq, for accessing the
elements in the stream. We define the following operations
regarding a stream and its cursor: end(Cq) tests whether the
cursor Cq has reached the end of the stream; Cq→advance
advances the cursor along forward by one position; Cq →
reset resets the cursor to the beginning of the stream.

Each QNode q in an All-twig Q is assigned a stack, named
Sq . As specified in the “classic” paper [2], each element in a
stack consists of a pair: (its region code, a pointer to

a matching parent element in Sparent(q)). The common
stack operations, pop(), push(), and top(), are assumed.

The stacks must have the following properties[2]: (i) the
nodes in stack Sq (from bottom to top) are guaranteed to
lie on a root-to-leaf path in the XML database, and (ii)
the set of stacks contain a compact encoding of partial and
total answers to the twig pattern query, which represents
in linear space a potentially exponential (in the number of
query nodes) number of answers to the twig pattern query.

3. SUPPORTING MACHANISMS
Our interest is in solving the pattern matching of All-

twigs, and we only need to care about normalized twigs be-
cause every twig can be normalized. Normalized All-twigs
many only contain 4 different types of nodes: QNode, NQN-
ode, ONode, and ANode. We will define the mechanisms for
satisfying the conditions induced by each type of nodes that
may appear in a normalized All-twig.

A QNode is trivially satisfied if the element associated to
it is a descendant or child depending on the specific type of
the QNode. The edgeTest function introduced by Jiang et
al [5] can still be used for this purpose. NQNode is unique
to All-twigs and introduces a new dimension of challenge
in twig matching. We will introduce a new function, called
nEdgeTest, to help solving this problem. As for the evalu-
ation of an ONode in an All-twig, the case is more compli-
cated due to the introduction of NQNodes (compared with
that in [5].

We use the following convention for ease of presentation:
each QNode qi (or ni) is associated with an element node
ei (by changing ‘q’ or ‘n’ to ‘e’) such that tag(ei) = tag(qi).
The following definition for the edgeTest function is adapted
from [5]:

Definition 3.1. Let q be a QNode in an All-twig and q0
be Qparent(q), and e and e0 be the associated elements of
q and q0, respectively. Boolean function edgeTest(e0, e) or
edgeTest(e0 ,q) evaluates true if element e0 is an ancestor
(respectively, the parent) of element e if q is an ancestor-
descendant (respectively, a parent-child) QNode.

Definition 3.2. Let q be a NQNode in an All-twig and
q0 be Qparent(q), and e0 be the associated element of q0.
Boolean function nEdgeTest(e0 , q) evaluates true if for all

elements ei (if any) that can be associated to the QNode
corresponding q, edgeTest(e0, ei) returns false.

Definition 3.3. Let ONode n be the root of an OR-predicate
subtree, and q is QParent(n) associated with element e. Boolean
function ONodeTest(e,n) evaluates true if e satisfies the
OR-predicate associated to the ONode n.

Definition 3.3 will be become more solid after we present
Definition 3.6 that explains how to satisfy an OR-predicate.

Definition 3.4. Let Q be a query tree with N nodes n1,
n2, nN , where n1 is the root QNode. By convention, ei

is the associated element of ni if ni is a QNode. We say
element e1 has a match for an All-twit n1 if the follow-
ing holds for each child subtree nki

of n1: (1) if nki
is an

ONode, then ONodeTest(e1, nki
) evaluates true; (2) if nki

is an NQNode, then nEdgeTest(e1, nki
) evaluates true; (3)

otherwise (i.e., nki
is a QNode) edgeTest(e1, nki

) evaluates
true and element eki

has a match for the subtree rooted at
nki

in case nki
is not a leaf node.

Definition 3.4 implies that, in order to identify a match in-
stance for an All-twig, we need to call upon three functions:
ONodeTest, nEdgeTest, and edgeTest. Their implementa-
tion becomes a key issue that is addressed next.

Solving edgeTest and nEdgeTest (per their definitions)
is relatively easy, and solving ONodeTest is a little more
tricky. In paper [5], Jiang et al introduced the concept
of OR-block to help solving simple OR-predicates (with-
out embedded NOT logic). We found this concept is still
useful, but needs essential extension to cover more general
OR-predicates (with embedded NOT logic). In the follow-
ing, we first extend the OR-block concept, and then develop
correspondingly a more sophisticated evaluation strategy for
general OR-predicates.

Definition 3.5 (OR-block). Given a twig query Q,
an OR-block is a tree t embedded in Q such that the root of t
is an ONode n, parent(n) is a QNode, and the leaf nodes of
t are Qchildren(n) or NQchildren(n). In addition, a logical
formula, denoted as P (n), is recorded in the root structure
of the OR-block.

In an OR-block, all ANodes are “fused” into the recorded
logical formula P (n). So there are no explicit ANodes any
more. Notice that, as we work with normalized All-twigs,
our OR-block is different from that in [5]: (1) our OR-blocks
are single blocks — no embedded OR-blocks; (2) our OR-
blocks may contain both QNodes and NQNodes, and NQN-
odes must be leaves if there are any.

After all OR-predicate branches being replaced by corre-
sponding OR-blocks, a normalized All-twig is represented
by using only QNodes, NQNodes, and OR-blocks.

For an All-twig query, the evaluation has to enforce the
semantics of the NOT logic implied by the NQNodes. We
introduce the following definition for evaluating the OR-
predicates that may involve the NOT logic:

Definition 3.6 (OR-predicate evaluation). Let ON-
ode n be the root of an OR-predicate connected to QNode q,
whose associated element is e. We say element e satisfies
OR-predicate n or ONodeTest(e,n) is true if P(n) is true by
replacing each QNode or NQNode ni in P(n) with a Boolean
function as follows: if ni is a leaf QNode or a leaf NQNode,
replace ni with edgeTest(e,ni) or nEdgeTest(e,ni) accord-
ingly; otherwise (i.e., ni is a non-leaf QNode), replace ni

with the Boolean value (edgeTest(e,ni) AND ei has a match
for subtree ni).

The above definition embodies our strategy for imple-
menting the ONodeTest function, which is critical to All-
twig evaluation and in turn calls the other two supportive
functions, edgeTest and nEdgeTest. The implementation
of these three functions are given in Figure 1 and 2, respec-
tively. All together, they form the basic supporting mecha-
nisms in our holistic twig join algorithm.

ALGORITHM nEdgeTest(e,n)
1: while not end(Cn) do
2: if edgeTest(e,Cn) == TRUE then
3: return FALSE
4: Cn→advance()
5: end while
6: Cn→reset()
7: return TRUE
FUNCTION edgeTest(e,q)
/* assume ancestor-descendant edge only */
1: if e.start < Cq→start and e.end > Cq→end then
2: return TRUE
4: else
5: return FALSE

Figure 1: The nEdgeTest Algorithm

ALGORITHM ONodeTest(e,n)
1: for each ni in P (n) do
2: if isLeaf(ni) and isQNode(ni)
3: replace ni by edgeTest(e,ni)
4: else if isLeaf(ni) and isNQNode(ni)
5: replace ni by nEdgeTest(e,ni)
6: else /* ni is a non-leaf QNode */
7: replace ni by (edgeTest(e,ni) and hasExtension(ni))
8: end for
9: evalutate P (n) and return the result

Figure 2: The ONodeTest Algorithm

4. ALLTWIGMERGE: THE ALGORITHMS
We adopted the same general framework as that in [5].

With normalized All-twigs, the OR-block may contain NN-
odes (or NOT-predicates). This difference (compared with
the OR-block in [5]) raises a major challenge. However,
with the redefined/generalized supporting mechanisms in-
troduced in the last section, the handling of the challenge
is completely retained within these supporting mechanisms
(and algorithms). So, at the high (or main algorithm) level,
our AllTwigMerge looks the same as GTwigMerge (refer to
[5]).

The most important sub-algorithm in AllTwigMerge is
GetQNode that wraps up all the lower level supporting al-
gorithms and provides the backbone support for AllTwig-
Merge. Due to space limitation, we cannot present this al-
gorithm in this short paper, but the readers may use their
wildest imagination to foresee the major steps in this algo-
rithm referring to the GetQNode sub-algorithm in [5] (read-
ers are also welcome to contact the author for the full version
of this paper).

Analysis indicates that our AllTwigMerge has the follow-
ing I/O and CUP cost:

I/O cost = |QNodes|·|list|+|NQNodes|·|list|2 +|output|

CPU cost = |input| · |Q|+ |NQNodes| · |input|2

|Q|2
+ |output|

For CPU cost, the worst case is when all query nodes (ex-
cept the root) are NQNodes. When there are no NQNodes,
our CPU cost converges with that of GTwigMerge [5].

5. SUMMARY
Holistic twig joins are critical operations for XML tree

queries. All the three types of logical operations, AND, OR,
and NOT, are equally important to general XML queries.
However, existing holistic twig join algorithms fail to inte-
grate the mechanisms needed for all these logical operations
into a single algorithmic framework, resulting in unsolvable
XML queries when all three types of logical operations are
involved. In this paper, we introduced the concept of nor-
malized All-twig queries and the procedure for obtaining All-
twig normalization. We summarized the first approach and
algorithms for solving the All-twig pattern matching prob-
lems holistically, based on the normalized form of All-twigs.
We are currently developing alternative solutions for All-
twig pattern matching, and doing systematic experiment
study.

Due to space limitation, this paper is highly compacted.
Interested readers are welcome to contact us for a full ver-
sion, while we are in the process of preparing for a more
formal, full-version publication of this work (with experi-
mental results included).

6. REFERENCES
[1] S. Al-Khalifa and et al. Structural joins: A primitive

for efficient xml query pattern matching. In ICDE02
Conference Proceedings, pages 141–152, 2002.

[2] N. Bruno and et al. Holistic twig joins: Optimal xml
pattern matching. In SIGMOD02 Conference
Proceedings, pages 310–321, June 2002.

[3] T. Chen, J. Lu, and T. W. Ling. On boosting holism in
xml twig pattern matching using structural indexing
techniques. In SIGMOD05 Conference Proceedings,
pages 455–466, June 2005.

[4] H. Jiang and et al. Holistic twig joins on indexed xml
documents. In VLDB03 Conference Proceedings, pages
273–284, 2003.

[5] H. Jiang and et al. Efficient processing of twig queries
with or-predicates. In SIGMOD04 Conference
Proceedings, pages 59–70, 2004.

[6] J. Lu and et al. Efficient processing of xml twig
patterns with parent child edges: A look-ahead
approach. In CIKM04 Conference Proceedings, pages
533–542, November 2004.

[7] J. Lu and et al. Efficient processing of ordered xml twig
pattern. In DEXA05 Conference Proceedings, 2005.

[8] J. Lu and et al. From region encoding to extended
dewey: On efficient processing of xml twig pattern
matching. In VLDB05 Conference Proceedings, pages
193–204, August 2005.

[9] T. Yu and et al. twigstacklist¬: A holistic twig join
algorithm for twig query with not-predicates on xml
data. In DASFAA06 Conference Proceedings, pages
249–263, 2006.

