
An Evolution-Based Cache Scheme for Scalable Mobile
Data Access

Fan Ye1, 2, 3, Qing Li2, 3, and Enhong Chen1, 2
1 Department of Computer Science and Technology,

University of Science & Technology of China, Hefei, China.
2 Joint Research Lab of Excellence,

CityU-USTC Advanced Research Institute, Suzhou, China.
3 Department of Computer Science,

City University of Hong Kong, Hong Kong, China.

yfan@mail.ustc.edu.cn, itqli@cityu.edu.hk, cheneh@ustc.edu.cn

ABSTRACT
Streaming media data access has been a problem for several
years, and the problem becomes tougher in the mobile
environment in which mobile users use mobile devices that are of
rather limited storage space, preventing the clients from having a
large cache. In this paper, we design a novel evolutionary caching
algorithm for base stations to adapt to the user requests, so as to
make the scheme more adaptive to the changing environment
while maintaining good Byte Hit Ratio (BHR) or Number Hit
Ratio (NHR) for the real world requests. We evaluate the
effectiveness of our evolutionary caching algorithm through
simulation studies, the results of which demonstrate that our
scheme can obtain good performance on buffering streaming
media data for user requests as far as the BHR and NHR metrics
are concerned.

Categories and Subject Descriptors
Scalable Mobile Systems

General Terms
Algorithms, Design

Keywords
Stream Media Caching, Hybrid Scalable Caching Scheme,
Evolutionary Algorithm

1. INTRODUCTION
With the continued growth of the Internet and WWW in the last
decade, many interesting applications including multimedia
streaming are flourished. Streaming media (e.g., music or video)
data access has been a research problem over the past few years.

Much work has been done on consolidating the WWW with the
wireless networks [1], [2]. Such an integration is sometimes also
referred to as W4 − World Wide Web for Wireless.
Among the numerous studies for enhancing the mobile Internet
performance, caching popular media data in base stations to
facilitate the usage of the mobile users is emerging as one of the
popular approaches. Indeed, setting up caching mechanisms in
mobile base stations can reduce the connection time between the
mobile hosts and the base stations, and ease the network traffic
between base stations and the back-end media servers [2].
However, it is a challenging task to design a scalable and adaptive
caching scheme suitable for the base stations. While some
previous work has concentrated on such aspects as distributed,
cooperative [2] or proxy [5] cache mechanisms, our focus in this
paper is on devising a scalable caching scheme, In particular, we
advocate an evolution approach which has been widely used in
many fields and obtained many good results. In designing our
evolution algorithm, we consider a number of factors which are
related to caching optimization. Through simulation studies, we
demonstrate that the scalable caching scheme using our evolution
algorithm can get much better result than existing popular
schemes such as least frequently used (LFU) and least recently
used(LRU) in the same environment.
The rest of this paper is organized as follows. In section 2 we
review some existing research work closely related to our
research. We provide our modeling framework in section 3. In
section 4, we present an evolution-based caching scheme, and
describe a number of algorithms employed by the scheme. A
simulation study is conducted in section 5, and the extensibility
issues discussed as well. Section 6 concludes the paper and offers
a number of further research issues.

2. RELATED WORK
Research on data caching has been conducted for many years.
Most of the works have concentrated on the cooperative and
distributed environments. More recently, multimedia data caching
is getting more attentions. A caching and streaming framework
for multimedia has been proposed in [1], where the authors have
considered such factors as the frequency, recentness, and the size
of the media objects in order to decide which objects should be
replaced from the cache. In their study, the authors found that the
cooperative method can get a better Byte Hit Ratio (BHR) or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Infoscale 2007, June 6–8, 2007, Suzhou, Jiangsu, China.
Copyright 2007 ACM 978-1-59593-757-5…$5.00.

fezzardi
Text Box
INFOSCALE 2007, June 6-8, Suzhou, China
Copyright © 2007 ICST 978-1-59593-757-5
DOI 10.4108/infoscale.2007.194

Number Hit Ratio (NHR) than other existing schemes. In [2], an
SAA* based search and optimization approach for caching the
media data has been proposed, in which the cache optimization is
turned into a binary-tree search problem. In [3], segmentation
based Multimedia Streams Caching Scheme has been described.
However, little work has concentrated on the scalability issue of
the caching scheme. In fact, a lot of parameters should be
considered if a caching scheme is to become practically useful,
and many of the parameters can only be obtained through trial-
and-error. Also, some traditional caching mechanisms and
algorithms may be too simple to be effective in addressing the
inner complexity of mobile multimedia data. In this paper, based
on an evolution algorithm we devise a scalable caching
mechanism for the base stations, so as to obtain better
performance for user requests as far as the BHR and NHR metrics
are concerned.

3. MODELING FRAMEWORK

Figure 1. Mobile Environment

As in [2], our system exhibits a three-tier hierarchy model which
is depicted in Figure 1. Streaming media servers (denoted as St)
provide multimedia services over the Internet, which may handle
a lot of requests simultaneously. Mobile devices (denoted as Mi)
connect to the Internet through the N base stations, numbered as
Bj（ j= 1, 2… N). A mobile device joins the network to get
services via a base station Bi. A base station can give services in
two ways: if the base station 1 has cached the media object
requested by a mobile client, then it let the mobile client access
the requested media object directly; else the base station has to
broadcast the request to the neighboring base stations which may
have cached the required object or, in case none of the neighbors
has it, send the request to a server

tS to ask for the media object
before sending the requested media object to the mobile client.
Clearly, the second case is much more time consuming as more
traffic on the (mobile) network occurs.
In our model, each base station maintains two types of data,
namely, “cached request list” and “unsatisfied request list”.
“cached request list” denoted as Ci1 ,Ci2 ,…,

iiKC , where each Cip

(1≤p≤Ki) has five field for BHR or NHR calculation: Cid (the id

1 Strictly speaking, each service area should have a proxy responsible for

providing the caching and book keeping services, and each proxy may
correspond to several base stations within the same service area.

of the media object), ReqNum (the number of times the mobile
clients have accessed the block), Count (timer: each new request
will cause the Count of all cached request to be incremented by
one; if the cache block has been accessed, Count is reset to zero),
Size (the size of the media), and Data (real data of the media). As
the second data structure is the “unsatisfied request list”
denoted by Ui1, Ui2…

iiLU , where each Uiq (1≤q≤Li) has two

fields, namely, Uid(the id of the media object which can not be
found from the base station Bi), and UReqNum (the number of
times of the unsatisfied requests).

We employ two widely used metrics: Number Hit Ratio (NHR)
and Byte Hit Ratio (BHR), to evaluate the performance of our
mechanism. NHR is defined by the ratio of total media from
cached objects over the total number of objects requested by all
the clients, and BHR is defined by the ratio of total bytes from
cache over the total bytes of user request. Suppose there are R
mobile clients numbered as M1, M2 ,… ,MR. Formula (1) shows
how to calculate NHR within a time window T=[1t , 2t], and
Formula (2) shows how to calculate BHR within the time
window:

In this paper, we use the two ratios as the most important criteria
to design and to evaluate the performance of our algorithm under
different conditions and situations.

iKN

ip
i 1 p 1

R

j
j 1

C .R eqN um
N H R =(1)

M .R eqN um

= =

=

∑ ∑

∑

i

j

KN

ip ip
i 1 p 1

KR

j i j i
j 1 i 1

C .ReqNum * C .Size
BHR (2)

M .Req .ReqNum * M .Req .Size

= =

= =

=
∑∑

∑∑

4. AN EVOLUTION-BASED CACHING
SCHEME
In this section, we describe a scalable caching scheme based on
an evolution approach. First, some preliminary introduction is
given, followed by a detailed description of our evolution
algorithm which serves as the core of our scalable cache
mechanism.

4.1 Preliminaries
In our approach, an evolution algorithm is used to make our
caching scheme scalable. Table 1 lists most of the parameters
used by our scheme.

In Table 1, the parameter f can be regarded as the power of
Ci.ReqNum, r is the power of Ci.Count and s is the power of
Ci.Size; f, r and s are all real numbers. In addition, W is the
weight of the cache block, whereas MinW is the minimum weight
of the cache block. ReqNum is the total number of the requests to
the cache block, whereas Count is the number of the client
requests to the block: each new request to the block will cause its
Count to be incremented by one; if the cache block has been

accessed, Count is reset to zero. Using this scheme, we can
update the cache block with a larger Count, since a cache block
may have been not accessed for a long time.

Table 1. The parameters of our scheme

For our scheme, the following three algorithms are devised and
experimentally compared.
1. An Evolution-Based Hybrid Algorithm with probability=1

(EBHA-1): In this scheme, the block which has the minimum
weight MinW should be updated with a probability equal to
1; other media blocks with a larger W will not be changed.

2. An Evolution-Based Hybrid Algorithm with probability p
dependent on T (EBHA-PT): Here the T can be regarded as
the temperature parameter which is denoted as:

∑
= CacheSize

j
j

j

wT

wT
jp

)/exp(

)/exp(
)(

If the temperature is large, a larger W means a small
probability for the cache block to be replaced. If T is small,
the probability for a media block of a larger W will have a
slightly higher probability to be replaced than the previous
case. This scheme is derived from a simulated annealing
algorithm, using which we can get a global optimization of
the Number Hit Ratio and/or Byte Hit Ratio.

3. The third one is called Evolution-Based Hybrid Algorithm
with probability=P (EBHA-P), in which two parameters β and
are χ used as determinant constants to help determine if an
update operation to the cache list should be done or not. In
fact, we use them to compare with the parameter minW which
is calculated as follows:

f
j

r s
j j

(C .R e q N u m)
m i n m i n ()

(C .C o u n t) * (C .S i z e)
W =

(1≤j≤N)

where min() gets the minimum of the function with 1≤j≤N.
EBHA-P works as follows: if minW < β / χ, then we replace
the cache; else we do not replace the cache, but satisfy the
client by sending the request to a server. This is because if
the minW is large (i.e., ≥ β / χ), then the cache block may still
have a high probability to be accessed by the clients in the
near future, so we should not replace it.

4.2 Algorithm Descriptions
When a mobile client Mi enters the service area of a base station
Bj and issues a request, the data structures “Cached request
list“ and “Unsatisfied request list“ are updated, and if
needed, the cache list must be updated by using a cache
replacement algorithm. Figures 2 - 7 give our main caching
scheme, in which Figure 1 illustrates the algorithm for checking if
Mi’s request should be satisfied by allocating a cache block and/or
replacing an existing block, Figures 3 - 5 describe the afore-
mentioned three evolution algorithms respectively, and Figures 6-
7 depict the overall caching scheme based on evolution.

Algorithm_Request_Satisfy (individual ind, int flag)

1. for every block Cp in the cache list do

2. Cp.Count++;

3. end for

4. if (Bj.Cp = = Mi.Req)

5. then Return Bj.Cp to the mobile client

6. and Bj.Cp.ReqNum++,Bj.Cp.Count=0;

7. else if(MAX_CACHE_SIZE – TOTAL_IN_CACHE)＞

 ∑
=

jK

1p
.. LengthCB pj

8. then create a cache block for Mi.

9. else

10. update cache List using by updating

algorithm(EBHA-1,EBHA-P or EBHA-PT)

Figure 2. Deciding the satisfiability of a client request

For our main caching scheme (cf. Figure 6), we use an
evolutionary algorithm to get the parameters f, s, r, and T. We
put these parameters into a list called Individual, and by putting
the Individual list as the parameter to our main caching update
algorithm, we use a random function to first initialize f, s, and r
before running the remaining algorithm. In the evolution
algorithm, Crossover() is the function to get a new individual
from two parents and it has no difference with the common real

Notation Definition (Default values)

Zipf Factor 0.47

Total number 500 media objects

Cache space 10% -30% of the total media

Mean interval 12.5s

GENERATION the era of evolution (10)

POP_SIZE the number of individual (40)

GENELENGTH 3-4

SIMULATION TIME 50000s(about 4000 request)

Media Size Uniform distribution in 1Mb – 10Mb

ReqNum Request times to a cache block

Size The size of the media block

w The weight of the cache block

minW The minimum weight of the cache
block

Count A timer for the LRU algorithm

cid Id of the media object to be updated

f The weight of ReqNum

s The weight of Size

r The weight of Count

T Parameter used for EBHA-PT.

χβ , Parameter used for EBHA-P

flag Decide the update strategy to use

code crossover operation. Besides, Mutation() is the function to
get a new individual by changing f, s, r, and T to new real
numbers within the range limit of the parameters. We then run the
algorithm by using the individuals (parameters) from the
Individual list for many times, and calculate the average Number
Hit Ratio (NHR) as the fitness of the individuals. After we get the
best individual, we put the individual as the parameter to one of
the hybrid caching replacement algorithms and cache the
appropriate media block.

Evolution_Based_Hybrid_Algorithm_1 (Mi, Bj, Mediak)

1.
s

0
r

0

f
0

)Size.C(*)Count.(C
)ReqNum.(Cmin =W

2. cid = 0;

3. for every media j in Bj’s cache List do

4.)
).().(

)Re.(
)Size.C(*)Count.(C

)ReqNum.(C
(s

1j
r

1j

f
1j

s
j

r
j

f
j

SizeCCountC
qNumC

if <
++

+

5. then
s

1j
r

1j

f
1j

)Size.C(*)Count.(C

)ReqNum.(C
min

++

+=W

6. cid = j+1;

7. end for

8. update the id of cid cache block with Mediak;

Figure 3. The algorithm of EBHA-1

Evolution_Based_Hybrid_Algorithm_PT (Mi, Bj, Mediak)

1. for every media j in Mi’s cache list, do

2.
s

j
r

j

f
j

)Size.C(*)Count.(C
)ReqNum.(C

=jW ;

3. choose (cid=j) with the probability

∑
= CacheSize

j
j

j

wT

wT
jp

)/exp(

)/exp(
)(

4. end for

5. update the cid cache block with Mediak;

Figure 4. The algorithm of EBHA-PT

As listed in Table 1, the parameter GENERATION is the total era of
our evolution-based algorithm, POPSIZE is the total number of
individual of the evolutionary algorithm, and the GENELENGTH is
the number of the real number in the individual. To generate an
individual, we put the needed parameters such as f, s, r, T, β, χ in
the object list; each object in the objects list can be regarded as an
individual.
In the scheme described in Figure 6, the evolution process is very
much like a genetic algorithm. In particular, it gets POP_SIZE
individuals and returns the best one which contains the best
parameters to be used by one of the evolutionary cache
replacement algorithms.

Evolution_Based_Hybrid_Algorithm_P (Mi, Bj, Mediak)

1.
r

0

f
0

)Count.(C
)ReqNum.(C

min =W

2. cid = 0;

3. for every media j in Mi’s cache list

4. if
)

).().(

)Re.(

).()Count.(C

)ReqNum.(C
(

1
r

1j

f
1j

s
j

r
j

f
j

s
j SizeCCountC

qNumC

SizeC
<

++

+

5.
r

1j

f
1j

)Count.(C
)ReqNum.(C

min
+

+=W

6. cid = j+1;

7. end for

8. If minW < β / χ

9. update the cid cache block with Mediak;

Figure 5. The algorithm of EBHA-P

The function evaluate(individuali,flag) uses the parameters in
individuali and decides which evolutionary cache replacement
algorithms to apply based on the value of “flag”. The result
“value” returned by evaluate is the BHR or NHR value obtained
after the chosen cache replacement algorithm is conducted upon
the user request. If the value is big (>bestValue), then we regard
the individuali as a desirable candidate with good parameters (f,
s, r, T, β, χ) to cater for the specific problem.

Algorithm_Evolution (Individual list)

1. Randomly generate POP_SIZE individuals;

2. While (Gen<GENERATION)

3. for every individuali in the Individual list

4. value = Evaluate (individuali, flag);

5. individuali.fitness = value

6. if (value>bestValue)

7. then bestValue = value;

8. individualbest = individuali;

9. end for

10. for every individual in the Individual list

11. Crossover();

12. Mutation();

13. end for

14. Gen++;

15. end While

16. Return individualbest;

Figure 6. The main evolution-based caching scheme

Subroutine Evaluate(individuali, flag)

1. for every request in request list

2. Algorithm_Request_Satisfy(individuali,flag);

3. end for

4. return value;

Figure 7. The Evaluate subroutine

5. EMPIRICAL STUDY
In order to evaluate the performance of our scheme vis-à-vis the
other ones, we compare it with the Least Recently Used (LRU)
and Least Frequently Used (LFU) algorithms which are widely
used in mobile data caching. Also, we give a comparison with the
FSR scheme proposed in [1], in which the weight is defined as:

w =FfSsRr
where F is the number of times the block is accessed (i.e., the
frequency), S is the size of the block (size) and R is the times
since the last access for the block (i.e., the recentness). The three
exponents f, r and s are chosen by trial-and-error, and in our
experiment we adopt f=2, r=0, and s=-1.5 as suggested by the
authors. A comparison study among all these schemes against our
three hybrid cache algorithms is conducted with respect to the
BHR and NHR ratios.

5.1 Simulation Model
In our simulation, each media object is randomly assigned with a
value representing its popularity, and mobile clients choose media
objects randomly based on such values. The larger the value is,
the more possible that mobile clients may access that object.
Formula (3) defines the relationship between the ranking and the
popularity of a media object, where α is assumed to be around
0.5(or more precisely, 0.47).

1 (1).......(3)ipopular rank mediaNumber
rankα= ≤ ≤

Every mobile client is independent to each other. If the cache of a
base station Bj can not satisfy a request of its mobile client in Bj’s
service area, Bj will get the requested media object from a media
server which is the nearest to it. For the program to generate a
reliable result, we keep the cache size to be much smaller than
that of the actual requests in our experiment.

5.2 Simulation Result
In the first study, we compare the performance of our Evolution-
Based Hybrid Algorithms with LFU, LRU and FSR from the
perspectives of NHR, our media size obey the uniform
distribution (it is also the default distribution of our simulation).
Totally 500 media objects are involved, with the cache space
being about 10% to 30% of the total media data space, and an
average arrival time of new request being 12.5 seconds (cf. Table
1). Figure 8 illustrates the result of our study, in which it is shown
that our three EBHA algorithms have a better Number Hit Ratio
than that of LFU (Least Frequently Used), LRU (Least Recently
Used) and FSR. In fact, our three evolutionary hybrid cache
algorithms perform very similarly to each other, whereas the FSR
performance is better than LRU and LFU but poorer than ours.

0

0.1

0.2

0.3

0.4

0.5

2
00

2
20

2
40

2
60

2
80

3
00

3
20

3
40

3
60

3
80

4
00

Cache Size(Mb)

Nu
m
be

r
 H

i
t

Ra
t
io LFU

LRU

FSR

EBHA-1

EBHA-P

EBHA-PT

Figure 8. Comparison of NHR against Cache Size

0

0.1

0.2

0.3

0.4

0.5

2
0
0

2
3
0

2
6
0

2
9
0

3
2
0

3
5
0

3
8
0

Cache Size(Mb)

B
y
t
e

H
i
t

R
a
t
i
o

LFU

LRU

FSR

EBHA-1

Figure 9. Comparison of BHR against Cache Size

Our second study compares, from the perspectives of BHR
against cache size, the performance of our Evolution-Based
Hybrid Algorithms with LFU, LRU, and FSR. As shown in
Figure 9, the EBHA-1 is of only a slightly better BHR in
comparison with LRU and FSR (EBHA-P and EBHA-PT get
quite similar results with EBHA-1 here). For the size of the media

0

0.05

0.1

0.15

0.2

0.25

20
0

23
0

26
0

29
0

32
0

35
0

38
0

Cache Size(Mb)

B
y
t
e

H
i
t

R
a
t
i
o

LFU

FSR

EBHA-P

EBHA-PT

Figure 10. Comparison of BHR against Cache Size

objects uniformly distributed within 1Mb - 10Mb, the size
distribution has no big impact on caching, so our scheme’s
performance has little difference with that of LFU in this case.
Next, we compare our three algorithms with LFU, LRU and FSR
based on NHR against request number, with the cache size being

300Mb and media data size obeying the uniform distribution. As
shown in Figure 11, we can see that EBHA-1, EBHA-P, and
EBHA-PT perform similarly, having the best NHR than other
three algorithms; in addition, FSR outperforms LFU and LRU,
with LRU being the worst.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

10
00

13
00

16
00

19
00

22
00

25
00

28
00

Request Number

N
u
m
b
e
r

H
i
t

R
a
t
i
o LFU

LRU

FSR

EBHA-1

EBHA-P

EBHA-PT

Figure 11. Comparison of NHR against Request Number

From the above simulation studies, we see that our caching
scheme can always get the best result in all the cases, whereas
LRU does not perform well in most cases and FSR or LFU may
get a good result in some case but not in all the cases. Also, from
Figure 11, we can see that the user request pattern have a big
impact on the performance of the cache scheme. As the
fluctuations of the curves appear to be similar, we can also
conjecture that the cache schemes share some inner similarity.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0
0.
2

0.
4

0.
6

0.
8 1

Alpha

N
u
m
b
e
r

H
i
t

R
a
t
i
o

LFU

LRU

FSR

EBHA-1

EBHA-P

EBHA-PT

Figure 12. Comparison of NHR against ALPHA (α)

In Figure 12, we compare the algorithms of LFU, LRU, FSR and
EBHA against α with uniform distribution of media size; here
we keep the cache size as 300Mb. We can see that α of formula
(3) also has an impact on the performance: when α is small (i.e.
in reasonable value range), the algorithms exhibit quite different
results, whereas when α is large, the algorithms perform closer
to each other. The reason is that if some media object has a too
high popularity, the algorithms based on popularity can always
keep it in the cache, so all algorithms such as LFU, LRU, FSR
and our EBHA get a good result. However, in most real cases α
is of a medium value (e.g., around 0.5), in which case our EBHA
based algorithms always have the best NHR values, reflecting
therefore the desired scalability and adapting.

0

0.05

0.1

0.15

0.2

20
0

23
0

26
0

29
0

32
0

35
0

38
0

Cache Size

B
y
t
e

H
i
t

R
a
t
i
o

EBHA-1

EBHA-P

EBHA-PT

Figure 13. Comparison of BHR against Cache Size

As our last study, we compare the difference among our three
algorithms so as to illustrate their different scalability in terms of
cache size. In particular, we compare the three algorithms under
the situation that the user requests are not very regular. As in the
real-world situations, some media objects may suddenly become
popular whereas some others quickly become unpopular during a
particular period of time. As in the previous studies, we assume
that user requests for the media objects follow the Zipf
distribution. From Figure 13, we can see that our three algorithms
perform quite differently against the Byte Hit Ratio (BHR):
EBHA-PT has the best result; EBHA-P takes the second place,
whereas EBHA-1 is the worst among the three.

5.3 Extensibility of our work
Though our work has been primarily conducted within the mobile
environment, our approach of devising a scalable cache scheme
can be applied, with simple adaptation, to different environments
including for example the traditional multimedia databases and
document caching. As media objects may have different sizes and
popularity, the scalability of the caching scheme is very important
in coping with the changing patterns of different popularity and
different cache conditions. Our proposed caching scheme can be
adapted to various dynamic environments in which scalability is
the must.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented an evolution-based hybrid cache
scheme for mobile media data access. The evolutionary aspect of
our scheme can be perceived as a process of learning the pattern
of the user requests, the interest of the mobile clients, and the
characteristics of the cache environment. As user interests may
keep changing, the popularity of the media data may change with
time and location. The problem is further complicated when the
media objects may have different sizes and request patterns. All
of these factors make it unpractical to design the cache scheme
based on a fixed approach by simply adopting the traditional
algorithms such as LFU or LRU. Based on the learning capability,
our evolution-based hybrid cache scheme is able to adjust to
different conditions and different criteria. Simulation studies
suggest that our cache scheme is also scalable in that it can be
enlarged to a large number of clients and base stations, and
applied to predict the user request patterns.

Our future work will investigate the impact of such different
conditions as “cooperative” vs. “selfish” caching among of the
mobile clients and base stations. In combination with our
evolution-based hybrid algorithm, we also plan to incorporate
other machine learning techniques into the cache mechanism, so
as to be able to predict the user request pattern and environmental
characteristics, thereby optimizing the cache performance and
providing better quality of service.

7. ACKNOWLEDGEMENTS
The work described here is supported by the National Basic
Research Fund of China (“973” Program) under Grant
No.2003CB317006 and Program for New Century Excellent
Talents in University under Grant No.60573077. The research has
been benefited from various discussions among the group
members of the Joint Research Lab between CityU (Hong Kong)
and USTC (China) in their advanced research institute in Suzhou,
China.

8. REFERENCES
[1] S. Paknikar, M. Kankanhalli, K.R. Ramakrishnan,

S.H.Srinivasan, L.H. Ngoh, “A Caching and Streaming
Framework for Multimedia”, ACM Multimedia 2000, Los
Angeles, USA.

[2] J. Zhai, X.Li, and Q. Li, ”Statistical Buffering for Streaming
Media Data Access in a Mobile Environment”, ACM
SAC’06.

[3] K. Wu, P. S. Yu, J. L. Wolf, “Segmentation of Multimedia
Streams for Porxy Caching”, IEEE TRANSACTIONS ON
MULTIMEDIA. VOL. 6, NO. 5, OCTOBER 2004.

[4] Daniel Barbara, ”Mobile Computing and Database – A
survey”, IEEE TKDE 11(1), 1999.

[5] B. Wang, S. Sen, M. Adler, and D. Towsley, “Optimal Proxy
Cache Allocation for Efficient Streaming Media
Distribution”, Proceedings of INFOCOM conference, 2002.

[6] D.L. Lee, J. Xu, B. Zheng and W.-C. Lee, “Data Manage in
Location-Dependent Information Services”, IEEE Pervasive
Computing 1(3), 2002.

[7] X. Tang, F. Zhang, and S.T. Chanson, “Streaming Media
Caching Algorithms for Transcoding Proxies”, Proceedings
of the international Conference on Parallel Processing
(ICPP’02).

[8] M. Chesire, A. Wolman, G. M. Voelkert, and H.M. Levy,
“Measurement and Analysis of a Streaming-Media
Workload”, The USENIX Symp. Internet Technologies and
Systems, Boston, Massachusetts, 2001.

[9] Y. Huang, P. Sistla, and O Wolfson, “Data Replication for
Mobile Computer”, ACM-SIGMOD’94, Minneapolis,
Minnesota, May 1994.

[10] S. Jin, A. Bestavros, and A. Iyengar, “Accelerating Internet
Streaming Media Delivery using Network-Aware Partial
Caching”, IEEE ICDCS’02.

[11] X. Li and Q. Li,”User Pattern Analysis in Cellular System”,
Proc. the 7th International Conference on Mobile Data
Management (MDM’06).

[12] U. Bodenhofer, “Genetic Algorithms: Theory and
Applications”, Lecture Notes (3rd edition), Johannes Kepler
University Linz, Winter 2003/2004.

[13] X. Zhu, Y. Huang and J. Doyle, “Genetic algorithms and
simulated annealing for robustness analysis”, Proceedings of
American Control Conference, 1997.

[14] L. Davis, “Job shop Scheduling with Genetic Algorithms”,
Proceedings of the 1st International Conference on Genetic
Algorithms, pp 136-140, Hillsdale, NJ, Lawrence Erlbaum
Associates, 1985.

