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ABSTRACT
Robust estimates for the performance of complicated queue-
ing networks can be obtained by showing that the number of
jobs in the network is stochastically comparable to a simpler,
analytically tractable reference network. Classical coupling
results on stochastic ordering of network populations require
strong monotonicity assumptions which are often violated in
practice. However, in most real-world applications we care
more about what goes through a network than what sits in-
side it. This paper describes a new approach for ordering
flows instead of populations by augmenting network states
with their associated flow counting processes and deriving
Markov couplings of the augmented state–flow processes.
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1. INTRODUCTION
1.1 Stochastic ordering of network flows
Robust estimates for the performance of a complicated queue-
ing network can be obtained by showing that the process X
describing the number of jobs in the network is stochastically
comparable to a simpler, analytically tractable reference net-
work X ′. Classical coupling results on stochastic ordering
of X and X ′ require strong monotonicity assumptions [5, 7,
9, 10, 15] which are often violated in practice. However, in
most real-world applications we care more about what goes
through a network than what sits inside it. This paper de-
scribes a new alternative approach for ordering flows instead

of populations by augmenting the network states X and X ′

with their associated flow-counting processes F and F ′ and
deriving Markov couplings of the augmented state–flow pro-
cesses (X,F ) and (X ′, F ′) in an extended state space.

Earlier methods applicable for ordering of flows are mostly
based on Markov reward comparison techniques (e.g. [1, 3,
12, 13, 14]). While more limited in scope than the general

Markov reward approach, the flow coupling technique pre-
sented here, when applicable, yields stronger ordering results
using simpler analysis. This paper will demonstrate this in
the context of open linear queueing networks with general
state-dependent arrival and service rates.

1.2 Motivating example
Consider a network of two queues in series where queue 1
and queue 2 have buffer capacities s1 and s2, respectively.
Jobs arriving while queue 1 is full are rejected and lost, and
the server of queue 1 halts when queue 2 is full. When all
interarrival times and job sizes are independent and expo-
nentially distributed, the network population can be repre-
sented as a Markov jump process Xorig in the state space
Sorig = {x ∈ Z

2
+ : x1 ≤ s1, x2 ≤ s2} with transitions

x �→

⎧⎪⎨
⎪⎩

x+ e1 at rate β1(x1 < s1),

x− e1 + e2 at rate δ1(x1)1(x2 < s2),

x− e2 at rate δ2(x2),

(1)

where β is the arrival rate of offered jobs, δi(xi) is the service
rate at queue i when queue i has size xi, ei is the i-th unit
vector in Z

2, and 1(A) is the indicator function which returns
one if statement A is true and zero otherwise. For example,
when δi(xi) = cixi, the system corresponds to a multi-server
queue where all servers operate at rate ci. When the sys-
tem is irreducible, the long-run mean loss rate and other
equilibrium statistical characteristics can in in principle be
evaluated by solving a linear equation for the equilibrium
distribution. However, because the system is not reversible,
solving the linear problem analytically or numerically is hard
for large s1, s2.

To obtain a computationally tractable upper bound for the
equilibrium loss rate, van Dijk and van der Wal [13] intro-
duced a modification of the network dynamics so that ar-
rivals are blocked also in states where queue 2 is full, and
the second server halts when queue 1 is full. This so-called
balanced system has a product-form equilibrium distribu-
tion and can be represented as a Markov jump process Xalt

with transitions

x �→

⎧⎪⎨
⎪⎩

x+ e1 at rate β1(x1 < s1, x2 < s2),

x− e1 + e2 at rate δ1(x1)1(x2 < s2),

x− e2 at rate δ2(x2)1(x1 < s1).

(2)

Because the state (s1, s2) is transient for Xalt, it is natural
to define Xalt on the space Salt = Sorig \ {(s1, s2)}.

Earlier methods applicable for ordering of flows are mostly
based on Markov reward comparison techniques (e.g. [1, 3,
12, 13, 14]). While more limited in scope than the general



The balanced service system Xalt employs a stricter admis-
sion policy and provides less service for queue 2. Hence it
is intuitively feasible to assume that the counting processes
F orig
in (t) and F alt

in (t) describing the number of accepted jobs
up to time t are ordered according to

F alt
in (t) ≤ F orig

in (t) (3)

with respect to a suitable stochastic order. However, we are
faced with the following conceptual problem: If Xalt accepts
less jobs, it should have shorter queues, which should imply
that Xalt spends less time in blocking states, and hence Xalt

should accept more jobs. For this reason, a simple sample
path argument cannot be used to prove (3).

Under the natural assumption that δ1(x1) and δ2(x2) are
increasing1 functions, Van Dijk and van der Wal [13] proved
that

EF alt
in (t) ≤ EF orig

in (t) (4)

by uniformizing the Markov processes into a discrete-time
chain and applying inductive Markov reward comparison
techniques. They also argued that a simpler coupling proof
is not possible due to nonmonotone effects caused by the
blocking phenomena.

In this paper it will be shown that although neither of the
above Markov processes is monotone in the strong coordi-
natewise stochastic order, a strong coupling argument for
proving (3) is nevertheless possible. To accomplish this,
this paper will introduce a Markov coupling in an extended
space which carries redundant information about flow count-
ing processes associated with the network population. As
an application we obtain a simple proof of (3) in the strong
stochastic sense which at the same time strengthens (4) and
greatly simplifies its lengthy proof given in [13].

2. NETWORK POPULATION PROCESSES
2.1 Markov dynamics
Consider a network consisting of a finite set of nodes N =
{1, . . . , n} where jobs randomly move across directed links
L ⊂ (N ∪ {0})2, and where node 0 represents the out-
side world. The state of the system is denoted by x =
(x1, . . . , xn) ∈ S where S ⊂ Z

N
+ and Z+ denotes the positive

integers. The network dynamics is modeled as a Markov
jump process X = (X1(t), . . . , Xn(t))t≥0 in state space S
with transitions

x �→ x− ei + ej at rate αi,j(x), (i, j) ∈ L,

where ei denotes the i-th unit vector in Z
n, and e0 stands

as a synonym for zero. Here

• Xi(t) is the number of jobs in node i at time t,

• αi,j(x) for i, j ∈ N is the instantaneous transition rate
of jobs from node i to node j at state x = (x1, . . . , xn),

• α0,i(x) and αi,0(x) are the arrival and departure rates
of jobs for node i at state x = (x1, . . . , xn).

1In this paper the terms ‘positive’, ‘increasing’, and ‘less
than’ are synonyms for ‘nonnegative’, ‘nondecreasing’, and
‘less or equal than’, respectively.

A collection of transition rates αi,j : S → R+ and an initial
state X(0) defines such a Markov jump process in S, when
αi,j(x) = 0 for all x ∈ S such that x−ei+ej �∈ S and satisfy
the standard regularity condition which guarantees that the
Markov jump process is nonexplosive (see e.g. [2]).

2.2 Augmented state–flow process
The state–flow process associated to population process X
generated by transition rates αi,j is a Markov jump process
(X,F ) taking values in S × Z

L
+ and having transitions

(x, f) �→ (x− ei + ej , f + ei,j) at rate αi,j(x), (i, j) ∈ L,

where ei,j denotes the unit vector in Z
L
+ having its (i, j)-

coordinate equal to one and other coordinates zero. Here

• Xi(t) is the number of jobs at node i at time t

• Fi,j(t)−Fi,j(0) is the number of transitions across link
(i, j) during (0, t].

This process is redundant in that the second component of
(X,F ) may be recovered from F (0) and the path of X by
the formula

Fi,j(t)−Fi,j(0) = # {s ∈ (0, t] : X(s)−X(s−) = −ei + ej} ,

where X(s−) denotes the left limit of X at time s. Adding
this redundancy allows to derive useful non-Markov cou-
plings of X in terms of Markov couplings of (X,F ), as we
shall soon see.

2.3 Stochastic ordering and coupling
2.3.1 Strong stochastic order
Let us recall some standard notations and facts about strong
stochastic ordering of random processes. For random vectors
A and B in R

n, we denote A ≤st B and say that A is less
than B in the strong stochastic order if Eφ(A) ≤ Eφ(B)
for all φ : Rn → R which are increasing with respect to the
coordinatewise order on R

n and for which the expectations
are defined. For real-valued random processes (At) and (Bt)
indexed by a time parameter t we denote (At) ≤st (Bt) if
(At1 , . . . , Atn) ≤st (Bt1 , . . . , Btn) for all finite collections of
time parameters (t1, . . . , tn).

Strong stochastic order allows to compare means in the sense
that At ≤st Bt implies EAt ≤ EBt whenever At and Bt are
positive or have finite means. Perhaps more importantly, it
also allows to compare upper tail events in that At ≤st Bt

always implies P(At > s) ≤ P(Bt > s) for all real numbers
s. In fact the latter property is equivalent to At ≤st Bt, see
e.g. [10, 11].

2.3.2 Coupling
For random vectors A and B we denote A =st B if A
and B have the same distribution. This definition is ex-
tended to random processes by denoting (At) =st (Bt) if
(At1 , . . . , Atn) =st (Bt1 , . . . , Btn) for all finite collections of
time parameters (t1, . . . , tn).

A bivariate random process (Ât, B̂t) indexed by time pa-
rameter t is a coupling of random processes (At) and (Bt)

if (Ât) =st (At) and (B̂t) =st (Bt). A simple computation



using the definitions shows that if (At) and (Bt) admit a

coupling which is ordered in the sense that Ât ≤ B̂t for
all t almost surely, then (At) ≤st (Bt). As a consequence
of Strassen’s coupling theorem, the converse implication is
also true whenever the paths of (At) and (Bt) are right-
continuous with left limits (e.g. [7, Thm 4.6]).

2.4 Marching soldiers coupling
2.4.1 Coupling of population processes
Fix a network with nodes N = {1, . . . , n} and directed links
L ⊂ (N ∪{0})2, and consider two population processes X in
S ⊂ Z

N
+ and X ′ in S′ ⊂ Z

N
+ , generated by state-dependent

transition rates αi,j(x) and α′
i,j(x), respectively. In most

applications the state spaces S and S′ are assumed to be
identical, but this restriction is not needed for the results
developed in this paper.

A natural and simple way to couple two Markov population
processes of the above type is to force both processes to
locally take identical steps with as high rate as possible. This
so-called marching soldiers coupling [4] of the Markov jump
processes X and X ′ is defined as a Markov jump process
(X̂, X̂ ′) in S × S′ having the transitions

(x, x′) �→
⎧⎪⎨
⎪⎩

(x− ei + ej , x
′ − ei + ej) at rate αi,j(x) ∧ α′

i,j(x
′),

(x, x′ − ei + ej) at rate (α′
i,j(x

′)− αi,j(x))+,

(x− ei + ej , x
′) at rate (αi,j(x)− α′

i,j(x
′))+,

for (i, j) ∈ L. Here we use the shorthands a∧a′ = min{a, a′}
and a+ = max{a, 0}. By inspecting the marginal transition
rates for each state x ∈ S and x′ ∈ S′, one can check that
the process X̂ (resp. X̂ ′) is a Markov jump process by itself
and has the same transition rates as X (resp. X ′). That is,

(X̂, X̂ ′) is a Markov coupling of X and X ′.

2.4.2 Coupling of state–flow processes
The marching soldiers coupling of state–flow processes (X,F )
and (X ′, F ′) associated to population processes X and X ′ is

defined analogously as a Markov jump process (X̂, F̂ , X̂ ′, F̂ ′)
in the state space (S×Z

L
+)×(S′×Z

L
+) having the transitions

((x, f), (x′, f ′)) �→
⎧⎪⎨
⎪⎩

(Ti,j(x, f), Ti,j(x
′, f ′)) at rate αi,j(x) ∧ α′

i,j(x
′),

((x, f), Ti,j(x
′, f ′)) at rate (α′

i,j(x
′)− αi,j(x))+,

(Ti,j(x, f), (x
′, f ′)) at rate (αi,j(x)− α′

i,j(x
′))+,

for (i, j) ∈ L, where Ti,j(x, f) = (x−ei+ej, f+ei,j) denotes
the extended state obtained from state (x, f) after moving
one job from node i to node j.

2.5 Flow balance
If (X,F ) is the state–flow process associated to a population
process X, then

Xi(t)−Xi(0) =
∑

j:(j,i)∈L

(Fj,i(t)− Fj,i(0))

−
∑

j:(i,j)∈L

(Fi,j(t)− Fi,j(0))

for all t ≥ 0. This flow conservation equality shows that

Xi(t)−
∑

j:(j,i)∈L

Fj,i(t) +
∑

j:(i,j)∈L

Fi,j(t)

remains constant over time for all nodes i. As a consequence,
any coupling (X̂, F̂ , X̂ ′, F̂ ′) of state–flow processes (X,F )
and (X ′, F ′) automatically preserves the relation

xi−
∑

j:(j,i)∈L

fj,i +
∑

j:(i,j)∈L

fi,j = x′
i−

∑
j:(j,i)∈L

f ′
j,i +

∑
j:(i,j)∈L

f ′
i,j , (5)

for all nodes i, in the sense that the set of pairs (x, f) and

(x′, f ′) related according to (5) is absorbing for (X̂, F̂ , X̂ ′, F̂ ′).

3. OPEN LINEAR NETWORKS
3.1 Linear network dynamics
Consider an open linear network of n nodes represented by a
directed graph (N∪{0}, L) with node setN = {1, . . . , n} and
link set L = {(0, 1), (1, 2), . . . , (n−1, n), (n, 0)}, see Figure 1.

1 2 3
λ(x) μ1(x) μ2(x) μ3(x)

Figure 1: Open linear network with n = 3 nodes.

The system state is a vector x = (x1, . . . , xn) with values in
a state space S ⊂ Z

N
+ . We model the network dynamics by

a Markov jump process X(t) ∈ S with transitions

x �→

⎧⎪⎨
⎪⎩

x+ e1 at rate λ(x),

x− ei + ei+1 at rate μi(x), i = 1, ..., n− 1,

x− en at rate μn(x).

(6)

In queueing terminology, λ(x) is the arrival rate of jobs to
node 1, and μi(x) can be thought of as the aggregate service
rate at node i. The fact that λ(x) and μi(x) may depend
on the full network state x = (x1, . . . , xn) allows to model
queueing systems with admission control in front, and block-
ing and interference effects among the servers. We assume
that λ(x) = 0 for all x ∈ S such that x + e1 /∈ S and
μi(x) = 0 for all x ∈ S such that x− ei + ei+1 /∈ S.

The above model is a special instance of a general population
process defined in the previous section, where α0,1(x) = λ(x)
and αi,i+1(x) = μi(x) for i = 1, . . . , n.

3.2 Strong ordering of flows
Consider now two population processes X and X ′ on the
open linear network of n nodes generated by state-dependent
transition rates (λ, μ1, . . . , μn) and (λ′, μ′

1, . . . , μ
′
n), respec-

tively. Here the state spaces S of X and S′ of X ′ are subsets
of ZN

+ which in most applications are identical, but for the
following result this restriction is not needed.

The following is the main result of this paper. It gives a
sufficient condition for the strong stochastic ordering of flow
counting processes associated toX andX ′. For convenience,
we define i+ 1 := 0 for i = n below.

Theorem 1. Assume that the following implications hold



for all x ∈ S and x′ ∈ S and for all i = 1, . . . , n− 1:

x1 ≥ x′
1 =⇒ λ(x) ≤ λ′(x′), (7)

xi ≤ x′
i and xi+1 ≥ x′

i+1 =⇒ μi(x) ≤ μ′
i(x

′), (8)

xn ≤ x′
n =⇒ μn(x) ≤ μ′

n(x
′). (9)

Then the associated flow counting processes initiated at zero

are ordered according to

(Fi,i+1(t))t≥0 ≤st (F ′
i,i+1(t))t≥0 (10)

for all i = 0, 1, . . . , n, whenever X(0) =st X
′(0).

Proof. It is sufficient to construct a coupling of the state–
flow processes (X,F ) and (X ′, F ′) for which (10) holds for
all i and all t ≥ 0 with probability one. Let

(X̂, F̂ , X̂ ′, F̂ ′)

be a marching soldiers coupling of (X,F ) and (X ′, F ′) started
at the (possibly random) initial state

(X(0), F (0), X(0), F (0)),

as defined in Sec. 2.4. By assumption, F (0) = F ′(0) is
the zero vector in Z

L
+. Note that the above vector couples

the initial states of (X,F ) and (X ′, F ′) because X(0) and
X ′(0) have the same distribution. The latter assumption
also implies thatX(0) takes its values in S∩S′ almost surely.

We define a relation between state–flow pairs (x, f) ∈ S×Z
L
+

and (x′, f ′) ∈ S′ × Z
L
+ by denoting (x, f) ∼ (x′, f ′) if

fi,i+1 ≤ f ′
i,i+1 (11)

for all i = 0, 1, . . . , n and if (5) holds for all i = 1, . . . , n. We

note that (X̂(0), F̂ (0)) ∼ (X̂ ′(0), F̂ ′(0)) almost surely. To
finish the proof it suffices to show that the set of state–flow
pairs that are related according to ∼ is an absorbing set
for the marching soldiers coupling. Note that both sides of
(5) are invariant to any possible transition of the processes.
Hence we only need to show that none of the inequalities
(11) can ever be broken by any transition of the coupled
process.

Let us first show that (11) cannot be broken for i = 0. Con-
sider a state–flow pair related according to (x, f) ∼ (x′, f ′).
If f0,1 < f ′

0,1, then a single transition cannot break the in-
equality f0,1 ≤ f ′

0,1. Consider next the case where f0,1 =
f ′
0,1. Then the flow conservation equality (5) at node 1 im-
plies that

x1 − x′
1 = f ′

1,2 − f1,2 ≥ 0.

Thus x1 ≥ x′
1 which in light of (7) implies that λ(x) ≤

λ′(x′). This shows that the marching soldiers coupling has
zero transition rate for the transition ((x, f), (x′, f ′)) �→
((x + e1, f + e0,1), (x

′, f ′)). But this is the only transition
which potentially could break (11) for i = 0.

Let us next show that (11) cannot be broken for 1 ≤ i ≤ n−
1. Consider a state–flow pair related according to (x, f) ∼
(x′, f ′). Again, we only need to study the case where fi,i+1 =
f ′
i,i+1. Then the flow conservation equality (5) at node i im-
plies that

x′
i − xi = f ′

i−1,i − fi−1,i ≥ 0,

whereas (5) for node i+ 1 implies that

x′
i+1 − xi+1 = fi+1,i+2 − f ′

i+1,i+2 ≤ 0.

Thus xi ≤ x′
i and xi+1 ≥ x′

i+1 which in light of (8) imply
that μi(x) ≤ μ′

i(x
′). This shows that the marching soldiers

coupling has zero rate for the transition ((x, f), (x′, f ′)) �→
((x − ei + ei+1, f + ei,i+1), (x

′, f ′)). But this is the only
transition which potentially could break (11) for i.

Let us finally show that (11) cannot be broken for i = n.
Consider a state–flow pair related according to (x, f) ∼
(x′, f ′). Again, we only need to consider next that case
where fn,0 = f ′

n,0. Then the flow conservation equality (5)
at node n implies that

x′
n − xn = f ′

n−1,n − fn−1,n ≥ 0.

Thus xn ≤ x′
n which in light of (9) implies that μn(x) ≤

μ′
n(x

′). This shows that the marching soldiers coupling
has zero transition rate for the transition ((x, f), (x′, f ′)) �→
((x + en, f + en,0), (x

′, f ′)). But this is the only transition
which potentially could break (11) for i.

Because the marching soldiers coupling may never exit the
set of ordered state–flow pairs, we conclude that (X̂(t), F̂ (t)) ∼

(X̂ ′(t), F̂ ′(t)) for all t ≥ 0, and especially F̂i,i+1(t) ≤ F̂ ′
i,i+1(t)

for all i and all t ≥ 0 almost surely.

3.3 Strong ordering of populations
To understand how Theorem 1 is structurally different from
more well-known ordering and coupling results for Markov
population processes, let X and X ′ as in the previous sec-
tion. The following result gives a sufficient condition for the
strong stochastic ordering of the population processes X and
X ′ with respect to the coordinatewise order on R

n. For vec-
tors in R

n we write (x1, . . . , xn) ≤ (x′
1, . . . , x

′
n) if xi ≤ x′

i for
all i. For convenience, we define i+ 1 := 0 for i = n below.

Theorem 2. Assume that the following implications hold

for all x ∈ S and x′ ∈ S′ such that x ≤ x′ and for all

i = 2, . . . , n:

x1 = x′
1 =⇒ λ(x) ≤ λ′(x′) and μ1(x) ≥ μ′

1(x
′), (12)

xi = x′
i =⇒ μi−1(x) ≤ μ′

i−1(x
′) and μi(x) ≥ μ′

i(x
′). (13)

Then (X(t)) ≤st (X
′(t)) whenever X(0) ≤st X

′(0).

Proof. Let (X̂(0), X̂ ′(0)) be a coupling ofX(0) andX ′(0)

such that X̂(0) ≤ X̂ ′(0) with probability one. Such a cou-
pling exists by Strassen’s coupling theorem (e.g. [10, 11]).

Let (X̂, X̂ ′) be a marching soldiers coupling of X and X ′ as

described in Sec. 2.4.1, started at the initial state (X̂(0), X̂ ′(0)).
We will show that the marching soldiers coupling never exits
the set of state pairs ordered according to the coordinate-
wise order, that is, the set {(x, x′) ∈ S × S′ : x ≤ x′} is

absorbing for the Markov process (X̂, X̂ ′).

Consider a pair of states such that x ≤ x′, and let us try
to break the ordering x1 ≤ x′

1. This is possible in a single
transition only if x1 = x′

1, in which case (12) implies that
λ(x) ≤ λ′(x′) and μ1(x) ≥ μ′

1(x
′). But then the transitions



(x, x′) �→ (x+e1, x
′) and (x, x′) �→ (x, x′−e1) both have zero

rate for the marching soldiers coupling. These are the only
transitions for the marching coupling which could break the
relation x1 ≤ x′

1.

Consider next a pair of states such that x ≤ x′, and let us
try to break the ordering xi ≤ x′

i for some i ≥ 2. This is
possible in a single transition only if xi = x′

i, in which case
(13) implies that μi−1(x) ≤ μ′

i−1(x
′) and μi(x) ≥ μ′

i(x
′).

But then the transitions (x, x′) �→ (x − ei−1 + ei, x
′) and

(x, x′) �→ (x, x′ − ei + ei+1) both have zero rate for the
marching soldiers coupling. These are the only transitions
for the marching coupling which could break the relation
xi ≤ x′

i.

We conclude that X̂(t) ≤ X̂ ′(t) for all t ≥ 0 almost surely,
and therefore the claim follows.

Note that Theorem 2 can also be proved as a consequence of
a generic relation preservation result in [7, Example 5.7] (see
alternatively [8]), or by applying the transition rate condi-
tions in [9, 15].

4. APPLICATION: THROUGHPUTORDER-
ING IN A TANDEM QUEUE

Let us now revisit the tandem queueing system of Sec. 1.2.
The balanced model described by (2) corresponds to a popu-
lation process X on a 2-node linear network where S = Salt

and

λ(x1, x2) = β1(x1 < s1, x2 < s2),

μ1(x1, x2) = δ1(x1)1(x2 < s2),

μ2(x1, x2) = δ2(x2)1(x1 < s1).

The original model described by (1) corresponds to a similar
population process X ′ where S′ = Sorig and

λ′(x1, x2) = β1(x1 < s1),

μ′
1(x1, x2) = δ1(x1)1(x2 < s2),

μ′
2(x1, x2) = δ2(x2).

In this case Theorem 2 cannot be applied to order popu-
lations according to X(t) ≤st X ′(t) because condition (13)
fails for i = 2 due to μ2(x) < μ′

2(x
′) when x1 = x′

1 = s1 and
0 < x2 = x′

2 < s2. Neither can Theorem 2 cannot be applied
to order populations according to X ′(t) ≤st X(t) because
condition (12) fails due to λ′(x′) > λ(x) when x′

1 = x1 < s1
and x′

2 < x2 = s2.

Nevertheless, the augmented state–flow process can be cou-
pled with the help of Theorem 1. Indeed, the conditions of
Theorem 1 are valid if and only if the service rates δ1(x1)
and δ2(x2) are increasing. When this natural monotonic-
ity condition is satisfied and when both systems are started
at the same initial state and zero flow counters, Theorem 1
implies that all flow counting processes are ordered by

F0,1(t) ≤st F
′
0,1(t),

F1,2(t) ≤st F
′
1,2(t),

F2,0(t) ≤st F
′
2,0(t).

Because F0,1(t) and F ′
0,1(t) are the counting processes of ac-

cepted jobs in the balanced system and the original system,
we obtain (3).

5. CONCLUSIONS
This paper discussed the strong stochastic ordering and cou-
pling of network populations and their flow counting pro-
cesses. Easily verifiable sufficient conditions were given for
the transition rates of population processes on open linear
networks which imply that the associated flow counting pro-
cesses can be ordered using a natural coupling in the aug-
mented space of state–flow processes. Important open prob-
lems include (i) to study into what extent the given sufficient
conditions are also necessary and (ii) to extend the analysis
into networks with two-way flows and more general network
topologies. These problems are subjects of ongoing research.
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