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ABSTRACT
This paper introduces an algorithm for the efficient compu-
tation of transient measures of interest in Hybrid Petri nets
in which the stochastic transitions are allowed to fire an ar-
bitrary but finite number of times. Each firing increases the
dimensionality of the underlying discrete/continuous state
space. The algorithm evolves around a partitioning of the
multi-dimensional state-space into regions, making use of
advanced algorithms (and libraries) for computational ge-
ometry. To bound the number of stochastic transition firings
the notion of control tokens is newly introduced. While the
new partitioning algorithm is general, the implementation is
currently limited to only two stochastic firings. The feasi-
bility and usefulness of the new algorithm is illustrated in a
case study of a water refinery plant with cascading failures.
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1. INTRODUCTION
Recently the framework of Hybrid Petri-nets with General
one-shot transitions (HPnG) has been introduced for the
analysis of, e.g., fluid critical infrastructures [13]. Efficient
algorithms have been introduced for investigating, among
others, reachability properties in the presence of a single
stochastic transition firing [12, 11]. Such HPnGs are very
well able to capture the rather deterministic evolution of a
physical process with many continuous variables, as for ex-
ample present in the application area of water management.
In this application field we have conducted a capacity anal-
ysis for a real sewage treatment facility in [10]. However,
other application areas with more intricate failure scenarios,
like, e.g., cascading failures, require the presence of more
stochastic transition firings in the model. In this paper, we
tackle the above limitation of existing HPnG analysis al-
gorithms to one stochastic transition firing and generalise
the state space representation and the analysis algorithm,
cf. [12], to an arbitrary but finite number of stochastic vari-

ables. This is done by introducing the concept of control
tokens, which restrict the total number of firings of general
transitions. Note that each stochastic transition firing intro-
duces a new random variable and corresponds to adding a
new dimension to the underlying discrete/continuous state
space. Hence, dealing with higher dimensions becomes in-
evitable. Moving to higher dimensions increases the com-
plexity of the existing algorithms. More specifically, instead
of dealing with line segments and polygons in two dimen-
sions as done in [12], we have to deal with hyperplanes and
polytopes, respectively, in multiple dimensions. Hence, the
proposed method in this paper highly depends on algorithms
from computational geometry, especially for half space inter-
section [20] and hyperplane arrangement [15]. For both of
these operations feasible solutions from the field of compu-
tational geometry exist. However, to the best of our knowl-
edge, there is no implementation of hyperplane arrangement
for more than two dimensions, which corresponds to the
presence of two stochastic variables in our case. The con-
tribution of this paper, i.e., the formalization of the multi-
dimensional state-space and the presented algorithm for its
partitioning, is applicable to multiple stochastic transition
firings. However, due to the limitations of existing computa-
tional geometry libraries, at the moment the implementation
is limited to only two stochastic firings.

The paper is further organized as follows: Section 2 covers
the basic definition and formalism of HPnGs along with the
extension for support of multiple general transitions. Sec-
tion 3 discusses the main idea for state space representa-
tion. Section 4 proposes the algorithm for generating and
segmenting the state space. Section 5 discusses the method
for computing measures of interests, and finally, Section 6
investigates a working example to show the feasibility of the
proposed method and Section 7 concludes the paper.

2. HYBRID PETRI NETS
In this section we recall, intuitively, the HPnG model. Like
many other Petri-net models also the formalism of HPnGs
is user friendly and close to real life applications. Hence,
this section stresses the graphical representation of HPnGs,
and refers to [13, 10], for a detailed discussion of syntax, se-
mantics, and the modelling formalism. In contrast to earlier
works, this paper allows multiple firings of one or more gen-
eral transitions. In order to formalize a restriction on the
total number of firings, this paper additionally introduces
the concept of control places and control tokens.

2.1 Modelling formalism



An HPnG model is designed to depict real systems contain-
ing both discrete and continuous variables, combined with
stochastic behaviour. It consists of three main sets of com-
ponents: (I) places (discrete and continuous), which model
different modes of the system, (II) transitions, which allow
changes between different modes of the system, and finally
(III) arcs (connecting places and transitions), which deter-
mine how the other two sets are related to each other, i.e,
how a transition between different modes of the system can
take place. Each of these three sets contains different types,
and graphical representations, as illustrated in Figure 1.

Figure 1: Graphical representation of primitives of HPnG.

The set of places, P, contains two disjoint sets of discrete
(PD) and continuous (PC) places. The former keeps track of
discrete variables of the system, e.g., the the number of spare
parts, and the latter contains the continuous state of the
system, e.g., the amount of fluid in a container. A discrete
place may contain a number of tokens, while a continuous
place is assigned with a real number, representing the level
of fluid residing in it. We later refer to the content of places
as the marking of the system.

Transitions will trigger a change in the state of the sys-
tem, i.e., they may change the content of place(s), provided
that all the required resources are available. In this case
we say that the transition is enabled and may fire. The set
of transitions, T , consists of four disjoint sets. Immediate
(T I), deterministic timed (T D), and general (T G) transi-
tions, all referred to as discrete transitions, are responsible
for changing the discrete part of the system, whereas, con-
tinuous transitions (T C) change the content of continuous
places. An immediate transition will fire at the very mo-
ment it is enabled, and a deterministic transition will fire at
a specific time after it has been enabled. Each deterministic
transition, TDi , is associated with a clock ci, which evolves
with drift dci/dτ = 1, if the transition is enabled. When
a clock reaches its firing time, transition TDi fires, and the
clock is reset to zero. A general transition will fire according
to an arbitrary probability distribution after it has been en-
abled. More specifically, a general transition Tk, associated
with the probability distribution gk(s), fires with probability∫ τ+∆τ

τ
gk(s)ds, in the time interval [τ, τ + ∆τ ]. Note that

the execution policy of the general transitions, i.e., their en-
abling/disabling semantics, is of type race model with age
memory, i.e., the clock of a general transition is preserved
upon disabling and resumed with enabling [2]. The total
a general transition is enabled before it fires is drawn inde-
pendently from its respective probability distribution. There
may be a dependence between the actual time of firings due
to the time transitions have been disabled; which depends

on the structure of the Petri net. Continuous transitions, as
their name suggests, will fire continuously, according to an
assigned rate and change the content of continuous places,
provided that they are enabled. Moreover, a continuous
transition can be static or dynamic, meaning that, it will
either fire with constant nominal rate, or its rate can dy-
namically depend on the rates of other static continuous
transitions. The set of arcs, A, characterizes how transi-
tions and places are related to each other. Discrete arcs,
AD, connect discrete places to transitions, on the follow-
ing way. If a transition fires, it will remove tokens from
places connected to it via input arcs, and add tokens to the
places that are connected via output arcs. The number of to-
kens being removed or added are determined by the weights
assigned to the arcs. Continuous arcs, connect continuous
places and transitions. Therefore, when a continuous tran-
sition fires, it will remove content of its input places and
add to the content of its output places, with a specific rate
assigned to the transition. The set of guard arcs, AG, con-
nects discrete transitions to both discrete and continuous
places. These arcs ensure that a transition is only enabled
in case the number of tokens (in case of a discrete place) or
the amount of fluid (in case of a continuous place) fulfils a
certain condition that is specified on the guard arc.

Figure 2, shows a simple HPnG model, with two general
transitions. The continuous place Pr, models a water reser-
voir with capacity 10. This place is being filled using two
different producer pumps, modelled as continuous transi-
tions T1 and T2, with nominal rates 1 and 2, respectively.
The water in the reservoir is being consumed with the de-
mand pump, Td, at rate 2. We know that after 5 hours,
the demand will stop, i.e., the deterministic transition Ts
will fire at t = 5. Two general transitions G1 and G2, are
modelling the possibility of failure in the production. They
fire according to predefined probability distributions (not
provided here).

Figure 2: A reservoir model with two different production
rates.

Rate adaptation
In the HPnG modelling formalism, we associate with each
continuous place a lower and upper boundary. Conflicts be-
tween continuous transitions occur when a continuous place
reaches one of its boundaries. To prevent overflow, the fluid
input has to be reduced to match the output, and to prevent
underflow the fluid output has to be reduced to match the
input. This means that the rates of inputs/outputs transi-
tions should be adapted. The newly adapted rates of contin-
uous transitions are called actual rates, in contrast to their
preassigned nominal rates. This rate for each transition is
determined based on the priorities and shares assigned to
the arcs, connecting continuous transitions and the place.
This process is called rate adaptation. For further details on
rate adaptation we refer to [4]. For example, if the reservoir
Pr in Figure 2 reaches its upper boundary and we assume
that the arcs connecting transitions T1 and T2, have the



(a) A one-shot general transition (b) A two-shot general transition

Figure 3: Representation of control places and tokens.

same share and priority, then both transition rates will be
adapted to match the output from the place Pr, such that
both together fire at rate 1.

2.2 Control places and control tokens
Each possible firing of a general transition will introduce a
new stochastic variable to the system. In order to analyse
HPnGs, we need to be able to count and impose a restric-
tion on the number of stochastic variables. For this purpose
we introduce control tokens and control places. 1 Control
places are isolated discrete places, which can only be con-
nected to one general transition via an input arc. A control
place may contain one or more control tokens. When a gen-
eral transition fires it will consume one control token from
its connected control place. A control place can not be re-
filled with tokens. Note that, for simplicity in this paper,
we assume that there is a one to one relationship between
control places and general transitions, i.e., a control place
can be connected to exactly one general transition and vice
versa. Although it is possible to have several general transi-
tions sharing a control place and its tokens, we reserve this
for future work. Therefore, with the current setting we can
ensure that the number of firings of general transitions is
smaller than or equal to the number of available control to-
kens. Hence, the complexity and the dimension of the state
space, as will be shown later, is determined by the number
of control tokens. Figure 3, illustrates the idea of control
places and tokens. Control places are indicated by dashed
boxes. Formally, control places are a subset of the discrete
places. Figure 3a shows a general one-shot transition, the
case that we previously addressed in [13]. Figure 3b, illus-
trates a general two-shot transition, i.e., a general transition
which can fire two times at most. Also, note the presence of
control places, C1 and C2, in the example of Figure 2, which
allow each general transition to fire at most once.

2.3 State of the system
Markings i.e., the content of places, are collected into two
vectors, the discrete marking m = (m1, . . . ,m|PD|) and the

continuous marking x = (x1, . . . , x|PC |). Note that, since
the control places form a subset of discrete places, m also
includes the control tokens. The initial marking is composed
of a discrete part m0 that describes the initial amount of
tokens in all discrete places and a continuous part x0 that
describes the initial amount of fluid in all continuous places.

The overall state of an HPnG is defined by Γ = (m,x, c,d,g),
where the vector c = (c1, . . . , c|TD|) contains a clock ci for
each deterministic transition that represents the time that
TDi has been enabled. When a transition is disabled the

1 Control tokens and places have the same functionality as
discrete tokens and places, however, we choose to separate
them to underline their different role, and to allow syntactic
checks.

clocks do not evolve, but the clock value is preserved un-
til the transition is enabled again. Clocks are only reset
when the corresponding deterministic transition fires. Vec-
tor d = (d1, . . . , d|PC |+|TD|) indicates the drift of all contin-
uous variables. For continuous places it indicates the change
of fluid per time unit, and for deterministic transitions it is
the clock drift one for enabled and zero for disabled tran-
sitions, respectively. Note that even though the vector d
is determined uniquely by x and m, in combination with
the condition of guard arcs, it is included in the defini-
tion of a state for the ease of analysis. Finally, the vector

g ∈ N|T
G| indicates the number of times that each gen-

eral transition has already fired. Hence, the sum of the ele-
ments of g, is equal to the total number of present stochastic
variables in the system.2 The initial state of the system is

Γ0 = (m0,x0,0
|TD|,d0,0

|T G|), where 0m, is the vector with
m zero elements. A system state can be seen as a snapshot
of the system evolution at a specific time, which given all
stochastic firing times uniquely determines the future evolu-
tion of the system. This is elaborated in more detail in the
next section. For the example given in Figure 2, the initial
state is given by m0 = (1, 1, 1), since there is a token in all
the discrete places. The amount of fluid in the reservoir is
expressed by x0 = (5)), and the drift is d0 = (+1), i.e., the
difference between input and output rates to and from the
reservoir.

3. STATE SPACE REPRESENTATION
The Stochastic Time Diagram (STD) introduced in [12],
provides a genuine way of representing the evolution of a
HPnG for a given initial state. The main reasoning is that,
for a given initial state of an HPnG and given all stochas-
tic firing times, the evolution of the system is determinis-
tic. Let s = (s1, · · · , sn) be the vector of n random vari-
ables, representing the firing time of the general transitions.
If n stochastic variables are present in a system, the STD
will have n + 1 dimensions, n of which are associated with
stochastic variables and the (n + 1)th dimension is associ-
ated with time t. Each point in the STD is associated with
a unique HPnG state, which is denoted by Γ(s, t). Figure 4
illustrates a generic STD with two stochastic variables.

s2

t

s1

(s′1, s
′
2)

evolution of system

Figure 4: Generic
presentation of STD
in 3 dimensions.

The main idea behind the
method in [12], is that instead
of dealing with infinitely many
points in the ts-plane, we can
partition it into several regions.
These regions exist, because the
state of the system does not
change until a so-called event oc-
curs. In each system state, three
types of potential events can oc-
cur: (i) a continuous place reach-
ing its lower/upper boundary,
(ii) a continuous place reaches
the weight of the guard arc con-
nected to it, and (iii) an enabled
transition, either deterministic
or general, fires. Event type (i)
imposes a change in the drift of the continuous place, due

2Note that, since in this paper we are not allowing general
transitions sharing a control place, the vector g can be de-
termined from the initial and current marking of the control
places.



to rate adaptation [4], and event type (ii) will enable or dis-
able a transition. In case of an immediate transition, it will
fire and alter the discrete marking immediately, and if it is
a deterministic transition its clock drift will be set to one,
thereby changing a continuous variable. Finally, event type
(iii) alters the discrete marking m, or the general transitions
vector g. In any case, an event may cause a change in the
discrete marking, a change in drift (either for clocks or fluid
levels) or a change in the vector indicating the number of
firings of each general transition. We define a region as a
maximal set of states, that while no event occurs, the sys-
tem remains inside, i.e., discrete marking, drift of continuous
variables and general transitions vector remain unchanged,
within a region. Moreover, at the occurrence of an event the
system enters another region. This leads to the following
definition.

Definition 1. A region R is a maximal connected set of
(s, t) points in a given STD, for which we have:

∀(s1, t1), (s2, t2) ∈ R :

 Γ(s1, t1).m = Γ(s2, t2).m,
Γ(s1, t1).d = Γ(s2, t2).d,
Γ(s1, t1).g = Γ(s2, t2).g,

where Γ(s, t).m refers to the vector of discrete markings, and
Γ(s, t).mP refers to the discrete marking of a specific place
P . A similar notation is used for the continuous marking.
Note that the above definition is different from the definition
in [11], since here, g is a vector containing the number of fir-
ings of each general transition. Note that vector d contains
both drifts of continuous places and clocks for determinis-
tic transitions. The reason for this is that because of guard
arcs, a deterministic transition can be enabled or disabled
for the same discrete marking, due to a change in the contin-
uous marking. This is an event type (ii), hence, represents
a move to another region.

The shape of the regions depends on the structure of the
model at hand. In [12], for the case of one stochastic vari-
able, it is shown that inside a region all continuous variables,
i.e., the amount of fluid and the clock valuations, can be rep-
resented by simple linear equations of s and t. Adding more
stochastic variables, does not influence the linear character-
ization of continuous variables, as will be shown in Proposi-
tion 1. Intuitively, this is because in a region all continuous
places are associated with a constant drift and clocks also
have a constant drift (of one or zero). Using this we infer
that the boundaries between regions, which represent the
occurrence of an event, are characterized by linear functions
of s and t, which represents a hyperplane in n + 1 dimen-
sions. Hence, each region in the STD can be considered as a
polyhedron, in n+ 1 dimensions. Introducing dynamic fluid
transitions does not change this fact, because their nominal
rates depend on the actual rates of other static continuous
transitions, which are constant, within each region. Hence,
we can safely treat dynamic transitions as static transitions,
for that matter.

Even though reachability computations on the STD are al-
ways performed for a given and finite time bound, there is
still the possibility of having an infinite number of regions
in the STD before a finite time bound. This happens when-
ever an infinite sequence of vanishing markings occurs. This
problem is well-known for all Petri net formalisms that allow

immediate transitions. However, if we require that models
have to be bounded, infinite sequences of vanishing markings
can only take place in the form of cycles of vanishing mark-
ings, which can be detected and removed. This ensures that
we can always reach a tangible marking in a finite number of
steps and the number of regions in the STD before a finite
time bound is also finite. Hence, for a bounded model, a
finite number of general transition firings, and a finite time
bound our algorithm will always terminate. In Section 4,
we discuss the proposed algorithms for generating the state
space.

Figure 5, shows the 3-dimensional Stochastic Time Diagram
for the example previously introduced in Figure 2. Each
region is depicted with a different color. Figure 5a, illus-
trates the phase in which no general transition has fired,
yet. As can be seen the formation of regions is independent
of the value of s1 and s2, i.e., they can be characterized by
planes parallel to plane s1s2. Moreover, the planes t = s1

and t = s2, which correspond to the firing of general transi-
tions, are clearly visible. Figure 5b, represents a later phase,
whereas, Figure 5c, depicts the complete STD of the reser-
voir example. From these pictures it is apparent how the
shape of regions above the two planes t = s1 and t = s2

depends on the values of s1 and s2.

(a) No g-trans. fired. (b) A middle phase. (c) Complete STD

Figure 5: STD for the reservoir example.

4. GENERATING THE STATE SPACE
As mentioned in Section 3, to partition the state space into
regions, we need to determine the next events in each stage
in the system evolution. Since events depend on the value
of continuous variables (either clock value of a deterministic
transition or fluid level in a continuous place) in the system,
the first thing is to find the equations that characterise these
continuous variables. As mentioned earlier, a continuous
variable can be represented as a linear combination of the
current time t and the general transition firing times, i.e.,
vector s. Intuitively, this is because in each system state, a
continuous variable evolves with a constant drift.

Proposition 1. At each time point t during the evolu-
tion of the system, the value of the continuous variables and
the occurrence time of the next events can be characterised
as a linear equation of t and s.

Proof. Let x be the value of a continuous variable:

x = an+1t+

n∑
k=1

aksk + a0 = an+1t+ a.s + a0. (1)

Assume the previous event has occurred at time t0 = α.s +
α0, in which α is a vector of n scalars. If no general transition



Figure 6: Demonstration of an event
facet, in 3 dimensions.

Figure 7: Top view of possible intersec-
tion of an event hyperplane with event
facets, and formation of sub-facets.

Figure 8: Formation of a hyper-region
over an event facet.

has fired yet, t0 is a constant. Moreover, t0 = sk corresponds
to the firing time of the k-th general transition. We calculate
the occurrence of the next event due to a continuous place
reaching its boundary (other event types are simpler version
of this one). For this case, the place with x amount of fluid,
which changes with drift d, will reach its upper boundary
B, according to the following equation:

B = x+ ∆t.d = x+ (t− t0)d,

in which ∆t = t − t0 is the relative time to the occurrence
of the event, and t is the absolute occurrence time of the
event. Hence, we have:

t = −(1/d)x+ t0 +B/d,

which is a linear equation of s and t. Now each continuous
variable can be updated based on ∆t and their drift, which
results in a linear equation.

4.1 Facets and regions
Since at each point in the state space the occurrence time
of the next events is a linear function of all stochastic fir-
ing times, each event in the state space can be represented
by a hyperplane, in (n+ 1)-dimensions. These hyperplanes
form the boundaries of regions of the partitioned state space,
as mentioned in Section 3. Therefore, in order to partition
the state space, after the occurrence of each event, we have
to find the equations for all potential next events, and take
the minimum over them. Geometrically, this corresponds to
finding the lower envelope of a set of hyperplanes (visualized
in Figure 8), which results in a set of facets. A facet is a
confined version of a (hyper)plane, i.e., it is limited by its
set of borders. Facets in higher dimensions, correspond to
segments in two dimensions. While a segment is represented
by a line and an interval, a facet is characterized by a hy-
perplane and a set of boundaries. Each event is associated
with an event facet, as shown in Figure 6 for a model with
two stochastic transition firings:

Definition 2. An event facet is defined as the following
structure:

EventFacet:
EventHyperPlane: t =

∑n
k=1 a

′
ksk + a′0

EventBoudarySet: {
∑n
k=0 bksk + b0 ≤ 0}

The EventHyperPlane shows the time t at which the
event corresponding to this facet is happening. The hyper-
volume that contains vector s is EventBoudarySet and

the corresponding event to this facet EventHyperPlane
will happen at time t. These concepts are visualized in Fig-
ure 6 for 3 dimensions (when two general transition firings
are assumed).

We also define a hyper-region as the maximal area surrounded
by a set of neighbouring event facets. The concept of hyper-
regions is the same as regions in two dimensions [12]. This
means that for all points in a hyper-region, the possible val-
ues of a continuous variable can be represented by a linear
equation of time and the firing times of general transitions,
as shown in Equation 1.

4.2 State space generation and partitioning
The algorithm for partitioning the state space is given in
Algorithm 1. The algorithm is called with the initial mark-
ing Γ0, at time t = 0 (the initial event facet). The function
ComputeNextEvents solves a set of linear equations, as
suggested in Proposition 1, and returns a set of hyperplanes,
where, each of its elements corresponds to the occurrence
time of a potential next event. Since we are interested in
finding the next occurring events, which depend on s, we
have to find the minimum over all occurrence times of these
potential events. The function CreateHyperRegions finds
this minimum over the given hyperplane set, which is re-
turned by the function ComputeNextEvents, and then
creates the set of hyper-regions formed above the given event
facet, (we will provide a detailed description of this func-
tion below). Subsequently, we iterate over the sets of facets
forming the hyper-regions and update the system state Γ,
by calling the function update, which updates the values
of all the continuous variables, based on the time difference
of F0 and the new event facet. Moreover, if the new event
facet corresponds to the firing of a general transition, the
vector g is updated. Finally, we recursively call the function
PartitionAboveEventFacet over each new facet, with
the updated system state.

The function CreateHyperRegions embodies the imple-
mentation of the main challenge for handling multiple gen-
eral transitions, which is presented in Algorithm 2. Since the
given hyperplanes may intersect with the underlying event
facet, there is the possibility of having a set of hyper-regions.
This is depicted in Figure 7, for the case of two general
transitions being present in the system. Note that, the in-
tersection of a hyperplane with a facet in three dimensions
is a line. As illustrated in the figure, the facet intersects
with three hyperplanes, and as a result, six sub-facets are
formed. Above each of these sub-facets we have to form a
hyper-region. This formation has been covered in detail in



Algorithm 1 PartitionAboveEventFacet(F0,Γ)

Require: F0, the event facet above which we want to par-
tition the state space, Γ, the current HPnG state, and
RH as the global set in which all the hyper-regions are
saved.

Ensure: Returns set of all hyper-regions above the given
event facet.

1: EH ← ComputeNextEvents(F0,Γ)
2: R ← CreateHyperRegions(F0, E

H)
3: RH ←RH ∪R
4: for all Ri ∈ R do
5: for all fj ∈ Ri do
6: Γnew ← update(F0, fj ,Γ)
7: PartitionAboveEventFacet(fj ,Γnew)
8: return RH

Algorithm 2 CreateHyperRegions(F , EH)

Require: F , the event facet, EH, set of potential event
hyperplane.

Ensure: Creates and returns the set of direct hyper-regions
above the given event facet.

1: Fsub ← CreateSubFacets(F , EH)
2: R ← ∅
3: for all fi ∈ Fsub do
4: R← R∪ FormHyperRegion(fi, E

H)
5: return R

[12], for the case of one general transition. The problem
of forming these sub-facets in two dimensions is known as
arrangement of lines, and in higher dimension as arrange-
ment of hyperplanes [15]. This is an essential problem in
computational geometry, since many other problems can be
reduced to it [5].

After having determined all sub-facets, we have to form the
hyper-regions above each of them. This, basically, is done
by taking the minimum over all the event hyperplanes. This
problem can be interpreted as the intersection of a set of half
spaces. More formally, let F be a sub-facet, with hyperplane
t = a.s+a0, and the set of m boundaries {bi.s+bi0 = 0}m−1

i=0 .

Moreover, let {t = ej .s+ej0}
l−1
j=0 be the set of l potential event

hyperplanes. Then the hyper-region formed above the event
facet F is the intersection of the following half spaces:

t− a.s + a0 > 0
bi.s + bi0 ./ 0, 0 ≤ i < m,

t− ej .s + ej0 < 0, 0 ≤ j < l,

in which, ./∈ {<,>} (depends on the sub-facet). This can
be determined while creating the sub-facets, in the previ-
ous phase. The formation of a hyper-region is visualised in
Figure 8. As can be seen, a hyper-region (the transparent
volume), is formed as the interior space of an event sub-facet,
sub-facet boundaries, and potential event hyperplanes. In-
formally, these can be interpreted as, floor, columns, and
roofs, respectively.

The presented algorithm approaches the problem for the
general case of n stochastic variables. However, as men-
tioned earlier, the introduced algorithm depends on two
well-known computational geometry problems, known as half-
space intersection and hyperplane arrangement. The func-
tion FormHyperRegion embodies the former problem, and

the latter is present in the function CreateSubFacets. The
problem of half-space intersection, is dual to the convex-hull
problem, which can be solved in order O(m logm), where m
is the number of half-spaces [20].

However, the complexity of the existing algorithm for hy-
perplane arrangement, is exponential in dimension d, i.e.,
O(md), where m is the number of hyperplanes [6], which
in our case, is equal to the number of stochastic transition
firings plus an extra dimension for time. To the best of
our knowledge, there is no implementation of hyperplane
arrangement, for more than two dimensions. Hence, we are
currently restricted to the case, where only two stochastic
variables are available in the system. For both of the above
problems there are reliable implementations and libraries,
among which we have used Computational Geometry Algo-
rithm Library (CGAL), which provides extensive implemen-
tation for most of the existing algorithms, [18] ,[19], [21].

5. COMPUTING MEASURES
To compute the probability to be in a specific system state
at time τ , it suffices to find all regions intersecting the hor-
izontal hyperplane t = τ . Then we project the intersection
result over the s-plane, and integrate all probability density
functions gi(si) over the resulting area. In order to define
properties we use the same logic as in [12]:

ψ = ¬ψ | ψ ∧ ψ | ni = a | xk ≤ b, (2)

where, np is the number of tokens in the discrete place Pi,
and xk is the fluid level in the continuous place Pk. An
atomic discrete property (ni = a), either holds in the entire
region or not at all. An atomic continuous property (xk ≤ b),
depends on the value of vector s. More specifically, at a given
time τ , the value of continuous variable x is a linear function
of the vector s. Therefore, the validity space of an atomic
continuous property, would be the half space Γ(s, τ).x ≤ b,
i.e., all the (s, τ) points for which their associated system
state Γ(s, τ), satisfies the given property.

Finally, conjunction and negation of atomic properties cor-
respond to boolean operations on half spaces. When two or
three stochastic variables are present, the problem reduces
to boolean operations on polygons or 3D polyhedrons, for
which CGAL [7], [14] provides efficient implementations. Af-
ter obtaining the validity space of a certain property for a
given time τ , we need to integrate the density functions over
the validity space in order to find the probability that a given
property holds. For the case of two stochastic variables the
probability that ψ holds at time τ is given by:

πψ(τ) =

∫
A2

∫
A1

g1(s1)g2(s2)ds1ds2, (3)

Where A1 and A2 encode exactly the time periods in which
at least one general transition is enabled. This together with
the independence of random variables associated with the
firing time of general transitions, ensures that the joint prob-
ability distribution is the product of the individual proba-
bility distributions. The arbitrary nature of the integration
area, requires numerical solutions. Each multiple integration
can recursively be converted to a sequence of single definite
integration, for which reliable and nearly exact algorithms
exist [9].

6. CASE STUDY



This section provides an application example, to illustrate
the feasibility of the proposed method. We investigate the
survivability of a, so-called, GOOD (Given the Occurrence
of Of Disaster) model, where the occurrence of a disaster is
assumed at a certain point in time and the focus is on the
recovery process, after that point in time. Figure 9, depicts
the model of a water cleaning facility, where raw water is
taken in via two entries f1 and f2 with rates 4 and 2, re-
spectively and then cleaned in two separate cleaning streets.
This setup increases the dependability of the system: in case
the upper cleaning street fails, half of its input is rerouted
to the lower cleaning street, which is then able to operate
at a higher speed (modelled via the static fluid transition fe
and the dynamic fluid transition f4, respectively). However,
since transition f4 is handling twice of its normal load while
the system is not repaired, yet, it may fail as well. This is
modelled by the general transition Tf . Note that the guard
arc connecting Tf and D1 ensures that the failure can occur
only if the repair process is not accomplished yet. Also note
that, both of the general transitions can fire only once, which
is guaranteed through control places, D1 and D2. We start
the analysis assuming that the pump f3 has failed, and the
repair process has been initiated (modelled by the general
transition Tr, which is now enabled) and all the tanks are
full initially. While the upper cleaning street is not repaired
yet, there is a token in place D1, transition fe is enabled
and pumps additional water to the lower cleaning street at
rate 2. The rate of the dynamic transition f4 is then equal
to the sum of the rates of fe and f2.

Figure 9: HPnG model of a water treatment facility with
two parallel cleaning streets.

Table 1: Different parameters
of probability distributions.

Repair Failure
folded normal gamma

(a) µ = 2, σ = 1 k = 3, θ = 2
(b) µ = 5, σ = 1 k = 2, θ = 1
(c) µ = 3, σ = 1 k = 2, θ = 2

Since we want to ensure
that customers can reli-
ably be served also in the
presence of a failure in the
system, we will compute
the probability of having
at least a certain amount
of fluid in place Ps, which
models a cleaned water
storage, i.e., xPs ≥ b, for
varying values of b. Fig-
ure 10, shows the transient probability that the above prop-
erty holds at different times, τ , and for fluid levels, b, and
different probability distribution for failure and repair, as
provided in Table 1. The horizontal axis depicts the time
of operation (τ), while the vertical axis is the probability
of having more water in the reservoir (xPs) than the given
value, b (color coded, see the legend), and each curve corre-
sponds to a specific fluid level (b). In Figure 10a the repair
process will take place earlier than the failure with a high
probability. In contrast, Figure 10b, shows the results for
a situation where a failure of the second cleaning street is

likely to occur before the system is repaired. Finally, in Fig-
ure 10c the expected time of occurrence for repair and failure
are almost at the same time, namely 3 and 4, respectively.

(a) Early repair.

(b) Late repair.

(c) When failure is likely to happen slightly after repair.

Figure 10: Probability of having more than a given water
level for a certain time.

These figures show that the ability of the system to recover
from the former disaster highly depends on the chosen prob-
ability distributions. In case (a) the system is highly sur-
vivable, since it quickly refills the water storage. However,
the setting in case (b) cannot be considered survivable, as
it reaches a predefined storage level only with a probability
of approximately 0.1. In case (c), where the failure is likely
to happen slightly after the repair, the system recovers to a
certain degree however, a positive probability of keeping an
empty final storage remains. These experiments show how
the analysis of Hybrid Petri nets with two general one-shot
transitions helps to obtain insight in the recovery process of
a system with stochastic failure and repair processes. Our
analysis shows how important the maintenance of the pump
with the additional load is. Since as can be seen, if the fail-
ure of this pump is likely to happen before the repair, there
is no possibility of recovery from the first failure. The STD
for this model has 85 regions, and its generation takes less
than half a second. Each diagram in Figure 10, consists of
6 curves, each consists of 25 points. For each point a sepa-
rate probability computation and integration needs to take
place. In total, the generation of each curve has taken less
than 5 seconds. All computations have been performed on
a machine with a Core i7 processor and 4GB of memory.



7. CONCLUSIONS AND RELATED WORK
This paper strives to tackle the main constraint of Hybrid
Petri-nets with general one-shot transitions, by developing
an algorithm for the analysis of HPnGs with multiple general
transition. To do so, we extended the concept of HPnGs by
adding control tokens that restrict the overall number of
stochastic transition firings. Adding more of such firings
adds extra dimensions to the underlying state-space and the
developed algorithm makes heavy use of existing algorithms
for two well-known problems from computational geometry.

Although the approach presented in this paper is general and
could be applied for an arbitrary but finite number of firings
of general transitions, the presented implementation is cur-
rently restricted to two firings of general transitions. This is
because, to the best of our knowledge, no implementation of
the hyperplane arrangement problem exists for more than
two dimensions, which corresponds to two firings of general
transitions in our setting. The contribution of this paper lies
in the efficient combination and integration of involved com-
putational geometry algorithms into the evaluation frame-
work for HPnGs. Given the lack of analytical methods for
such models, having an exact state-space representation for
models with two firings of general transitions and the very
efficient and precise numerical integration procedure is al-
ready very useful in the application domain.

Most related analysis methods for Stochastic Hybrid Mod-
els compute an over- or under approximation of the desired
probability [1, 22]. In contrast, we provide exact validity
intervals for given properties, and only the integration step
requires numerical solutions. The problem of finding a state-
space representation that allows for an efficient computation
of e.g., reachability probabilities is well known in the area
of Hybrid models [16], and several libraries exist that sup-
port the basic computations for polyhedra [3]. Tools like
Hytech [17] and PHAVer [8] support hybrid automata with
linear differential equations, using linear abstraction meth-
ods. However, note that we partition according to time and
the support of the general transitions instead of the values
of the continuous variables.
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