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ABSTRACT
Time reversibility plays an important role in the analysis

of continuous and discrete time Markov chains (DTMCs).
Specifically, the computation of the stationary distribution
of a reversible Markov chain has been proved to be very ef-
ficient and does not require the solution of the system of
global balance equations. A DTMC is reversible when the
processes at forward and reversed time are probabilistically
indistinguishable. In this paper we introduce the concept
of ρ-reversibility, i.e., a notion of reversibility modulo a re-
naming of the states, and we contrast it with the previous
definition of dynamic reversibility especially with respect to
the assumptions on the state renaming function. We discuss
the applications of discrete time reversibility in the embed-
ded and uniformized chains of continuous time processes.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques;

D.4.8 [Software]: Performance—Modeling and prediction,
Stochastic analysis

Keywords
Discrete Time Markov Chains, Reversibility

1. INTRODUCTION
Markov chains have been widely used to study the perfor-

mances of computer hardware and telecommunication sys-
tems as well as software architectures. Markov models can
be designed at a very low-level by mapping each state of
the process to a state of the system and then by setting the
transition rates/probabilities. However, this method is often
time consuming and prone to errors due to the complexity
of the considered systems. For these reasons, in the past
decades, several formalisms have been developed to allow
one to specify a stochastic model in a relative compact way
by using important features such as the compositionality

and/or the hierarchical approach [5, 1]. Nevertheless, com-
pact descriptions do not necessary allow for efficient analy-
sis because the stochastic process underlying even a simple
high-level model may have a very high state space cardinal-
ity [14]. If we consider the steady-state analysis, the problem
of deriving the stationary probability distribution requires
to solve a set of |S| linear equations (called global balance
equations, GBE), where S is the state space of the chain.
The analysis of Markov chains can sometimes exploit some

properties of the stochastic process that allow a numerical or
analytical tractability of some performance indices’ compu-
tation. For instance matrix geometrics/analytics methods
take advantage of repeated patterns in the Markov chain
process description [12], while lumping [8, 6] exploits the
similarity in the stochastic behaviour of some states to re-
duce the state space. In this paper we focus on the tech-
niques based on the idea of reversible processes (see, e.g., [7,
15, 4, 10, 11]). A Markov chain X(t) is reversible when it is
stochastically indistinguishable from the stochastic process
at reversed time X(τ − t) for all τ . The computation of the
stationary probabilities of reversible processes is extremely
efficient since the system of GBE needs not to be solved
and an explicit formula for each unnormalized state prob-
ability can be given in terms of the Markov chain’s transi-
tion rates/probabilities. A remarkable example of reversible
model is the set of M/M/1 queues with state dependent
service rate. In this case the ratio between the stationary
probabilities of state n > 0 and state 0 can be derived as the
product of the transitions from 0 to n (λn in case of constant
arrival rate λ) divided by the product of the transition rates
from n to 0 (

∏n
i=1 μ(i), if μ(i) is the service rate in state i).

Contribution. In this paper we consider a notion of re-
versibility according to which a discrete time Markov chain
X(t) and its reversed X(τ − t) are probabilistically indis-
tinguishable modulo an arbitrary renaming ρ of the states
(ρ-reversibility). We show that this class of models enjoys
properties that are very similar to those of the standard re-
versibility [7] and hence the notion of ρ-reversibility allows
for an efficient computation of the stationary distribution.
Similarly to [7, 15] and in contrast to [4], we show that
we can decide this property solely on the analysis of the
forward process without the need to derive X(τ − t). We
discuss the properties of the renaming function ρ with at-
tention to what has been previously done in the literature.
Finally, we discuss the properties of reversibility modulo re-
naming both at continuous and discrete time and prove that
a CTMC is ρ-reversible if and only if every corresponding
uniformized chain is also ρ-reversible. This result does not



hold for the embedded chain. We introduce the notion of al-
most ρ-reversible CTMC as a CTMC whose embedded chain
is ρ-reversible and show that the conditions for almost ρ-
reversibility are weaker than those required by the notion of
ρ-reversibility at continuous time studied in [11].

Related work. In [7] the author deeply discusses the no-
tion of time reversibility both for DTMCs and CTMCs, and
several applications are illustrated. In particular the author
is interested in a sound discussion of the so call product-form
property of the Markov models. In [15, 3] the authors intro-
duce the notion of dynamic reversibility to study physical
systems such as the growth and decrescence of two dimen-
sional crystals. We discuss our contribution with respect to
such work in Section 3.1. In [10] we introduced the definition
of autoreversibility that allows one to exploit the symmetri-
cal structures of a class of CTMCs to derive the steady-state
probabilities in an efficient way. Similarly to what is pro-
posed here, a relation between a state and its inverse is taken
in consideration. The idea of using a general permutation
of states for comparing forward and reversed processes at
continuous time is discussed in [11]. However, notice that
the formulations of ρ-reversibility in continuous and discrete
time differ for some peculiar aspects that we discuss in Sec-
tion 4.

Structure of the paper. The paper is structured as fol-
lows. Section 2 introduces the notation and the definitions
of reversible and reversed DTMC. Here, we also prove a
new result to characterize reversed DTMCs. In Section 3
we introduce the notion of ρ-reversible DTMC and prove its
properties. We also discuss the differences with the previous
definition of dynamic reversibility. Section 4 discusses the
properties of ρ-reversibility both at continuous and discrete
time and states the relationships between a CTMC and the
corresponding ρ-reversible uniformized and embedded dis-
crete chains. Section 5 concludes the paper.

2. THEORETICAL BACKGROUND
In this section we review some aspects of the theory of

discrete time Markov chains which will be required in the
sequel (see [13] for more details).

Preliminaries. A stochastic process X(t) in discrete time
is a sequence of random variables taking values in a count-
able state space S for t ∈ Z. If (X(t1), X(t2), . . . , X(tn) has
the same distribution as (X(t1+τ), X(t2+τ), . . . , X(tn+τ)
for all t1, t2, . . . , tn, τ ∈ Z then the stochastic process X(t)
is said to be stationary. A Discrete Time Markov Chain
(DTMC) is a stochastic process X(t) in discrete time, i.e.,
with t ∈ Z, such that for all t1 < t2 < · · · tn < tn+1

the joint distribution of (X(t1), X(t2), . . . , X(tn), X(tn+1))
is such that

P(X(tn+1) = in+1 | X(t1) = i1, X(t2) = i2, . . . , X(tn) = in)

= P(X(tn+1) = in+1 | X(tn) = in).

In other words, for a Markov chain its past evolution un-
til the present state does non influence the conditional (on
both past and present states) probability distribution of fu-
ture behaviour. A Markov chain is time homogeneous if the
conditional probability P (X(t+ 1) = j | X(t) = i) does not
depend upon t, and we use the notation

P (X(t+ 1) = j | X(t) = i) = pij

for i, j ∈ S. The value pij denotes the probability that the

chain, whenever in state i, next makes a transition into state
j, and is referred to as one-step transition probability. The
square matrix P = (pij)i,j∈S is called one-step transistion
matrix, and since when leaving state i the chain must move
to one of the states j ∈ S, each row sums to one (e.g., forms
a probability distribution): for each i ∈ S∑

j∈S

pij = 1.

The n-step transition probabilities of the chain are given by

pnij = P (X(t+ n) = j | X(t) = i)

for t, n ∈ Z and i, j ∈ S, denoting the probability that a
process in state i will be in state j after n additional transi-
tions. A state j is said to be accessible from state i if pnij > 0
for some n ≥ 0. Two states i and j accessible to each other
are said to communicate and to belong to the same equiva-
lence class. A Markov chain is said to be irreducible if there
is only one equivalence class, i.e., if all states communicate
with each other. State i is said to have a period d ≥ 1 if d
is the greatest integer such that pnii = 0 if n is not a mul-
tiple of d. A state with period 1 is said to be aperiodic. A
Markov chain is said to be aperiodic if all states are aperi-
odic. The recurrence time Ti of a Markov chain is defined
as Ti = min{n ≥ 1 | Xn = i given X0 = i} (notice that Ti

is a random variable.) A state i is said to be recurrent if
P (Ti < ∞) = 1; otherwise, it is called transient. The mean
recurrence time Mi of state i is defined as Mi = E[Ti]. A
recurrent state i is called positive recurrent if Mi < ∞. A
Markov chain is called positive recurrent if all of its states
are positive recurrent. A time homogeneous DTMC is said
ergodic if it is irreducible, aperiodic and positive recurrent.
Henceforth, we assume the ergodicity of the DTMCs that
we study. A chain satisfying all these assumptions admits a
unique stationary distribution, that is the unique vector π
of positive numbers πi with i ∈ S such that:

π = πP and
∑
i∈S

πi = 1. (1)

Each πi can be interpreted as the average proportion of time
spent by the chain X(t) in state i. A Markov chain with a
stationary distribution is said to be in steady state.

Time reversibility. The analysis of an ergodic DTMC with
stationary distribution can be greatly simplified if it satisfies
the property that when the direction of time is reversed the
behaviour of the chain remains the same.
Consider an ergodic DTMC in steady state, X(t) with

t ∈ Z, defined on a state space S with transition probability
matrix P and stationary distribution π, and suppose that
starting at some time we trace the sequence of states going
backwards in time. We denote byXR(t) the reversed process
of X(t). It turns out that XR(t) is also a stationary CTMC.

Definition 1 (Reversibility [7]). A DTMC X(t) is
reversible if for all t1, t2, . . . , tn, τ ∈ Z, (X(t1), . . . , X(tn))
has the same distribution as (X(τ − t1), . . . , X(τ − tn)).

A reversible process is stationary. For a stationary Markov
chain there exist simple necessary and sufficient conditions
for reversibility expressed in terms of the equilibrium distri-
bution π and the transition probabilities pij . These condi-
tions are given in Proposition 1 and are called the detailed
balance equations; they should be contrasted with the equi-



librium equations, which are sometimes called the global
balance equations.

Proposition 1 (Detailed balance equations [7]).

A stationary DTMC with state space S and transition prob-
ability matrix P is reversible if and only if there exists a
collection of positive real numbers πi, i ∈ S, summing to
unity that satisfy the detailed balance equations:

πipij = πjpji for all i, j ∈ S. (2)

In that case, πi is the stationary probability of state i.

Equation (2) can be interpreted as stating that, for all
states i and j, the flow from state i to state j is equal to
that from state j to state i. If we can find nonnegative
numbers, summing to 1, which satisfy Equation (2), then it
follows that the Markov chain is reversible and the numbers
represent its stationary probabilities. This is so since if

xipij = xjpji and
∑
i∈S

xi = 1

then summing over i yields∑
i∈S

xipij = xj

∑
i∈S

pji = xj and
∑
i∈S

xi = 1

that are exactly the conditions in (1). Since the stationary
probabilities πi are the unique solution of the above system
of equations, it follows that xi = πi for all i ∈ S.

An important property of reversible DTMCs is the Kol-
mogorov’s criterion which states that the reversibility of a
Markov chain can be established directly from its transition
probabilities.

Proposition 2 (Kolmogorov’s criterion [13]). A
stationary DTMC with state space S and transition proba-
bility matrix P is reversible if and only if starting in state
i, any path back to i has the same probability as the reversed
path, for all i ∈ S, i.e., for every finite sequence of states
i1, i2, . . . in ∈ S,

pi1i2pi2i3 · · · pin−1inpini1 = pi1inpinin−1 · · · pi3i2pi2i1 . (3)

Note that this criterion does not require the knowledge of
the stationary distribution.

Reversed process. The transition probabilities of the re-
versed process XR(t) of a DTMC X(t) can always be defined
in terms of the stationary distribution of the process X(t)
as stated by the following proposition.

Proposition 3 (Reversed probabilities [13]). Gi-
ven a stationary DTMC X(t) with state space S, transition
probability matrix P and stationary distribution π, the re-
versed process XR(t) is an ergodic DTMC with the same
state space S, the same stationary distribution π and tran-
sition probability matrix PR defined by:

pRij =
πj

πi
pji. (4)

Observe that we can replace in Equation (4) any non-trivial
solution of the GBE. Roughly speaking, we can say that the
knowledge of the reversed process’ transition probabilities
allows for an efficient computation of the invariant measure
of the process and vice versa the latter allows for an efficient
definition of the reversed process.

The converse of Proposition 3 also holds.

Proposition 4 (Reversed process’s equations [13]).

Consider a stationary DTMC X(t) with state space S and
transition probability matrix P. If we can find a transition
probability matrix PR and a stationary distribution π such
that

πipij = πjp
R
ji (5)

then PR is the transition probability matrix of the reversed
process XR(t) and π is stationary distribution of both X(t)
and XR(t).

The importance of this proposition is that we can some-
times guess at the nature of the reversed chain and then
use the set of Equations (5) to obtain both the stationary
probabilities and the pRij .
Following the lines of [4] developped for CTMC, we prove

that the Kolmogorov’s criteria can be generalized in order
to encompass non-reversible DTMCs. The Discrete Time
Generalized (DTG) Kolmogorov’s criterion is stated below.

Proposition 5 (DTG-Kolmogorov’s criterion). A
stationary DTMC with state space S and transition proba-
bility matrix P has reversed chain with transition matrix PR

if and only if for every finite sequence i1, i2, . . . in ∈ S,

pi1i2pi2i3 · · · pin−1inpini1 = pRi1inp
R
inin−1

· · · pRi3i2pRi2i1 . (6)

Proof. Consider finite sequence of states i1, i2, . . . in ∈
S. By Proposition 4,

pi1i2pi2i3 · · · pin−1inpini1 =
πi1

πin

pRi1in
πin

πin−1

pRinin−1
· · · πi2

πi1

pRi2i1

that, by simplifying, yields

pi1i2pi2i3 · · · pin−1inpini1 = pRi1inp
R
inin−1

· · · pRi3i2pRi2i1 .
Conversely, observe that, since X(t) is irreducible, for all
j, k ∈ S we can find a chain j = j0 → j1 → · · · → jn−1 →
jn = k (for n ≥ 1) of one-step transitions.

Consider an arbitrary state i0 ∈ S as a reference state and
i ∈ S. Let i = in → in−1 → · · · → i1 → i0 be a chain of
one-step transitions in the forward process X(t). We prove:

πi = Ci0

n∏
k=1

pRik−1ik

pikik−1

, (7)

where Ci0 ∈ R
+. We prove that πi is well-defined. Indeed,

if i = jm → jm−1 → · · · → j1 → j0 = i0 (m ≥ 1) is another
chain, we can always find a chain i0 = h0 → h1 → · · · →
hl−1 → hl = i. By hypothesis, we have:

m∏
k=1

pjkjk−1

l∏
k=1

phk−1hk =

l∏
k=1

pRhkhk−1

m∏
k=1

pRjk−1jk .

Moreover, considering the one-step chain i = in → in−1 →
· · · → i1 → i0 = h0 → h1 → · · · → hl−1 → hl = i, we have:

n∏
k=1

pikik−1

l∏
k=1

phk−1hk =
l∏

k=1

pRhkhk−1

n∏
k=1

pRik−1ik .

From the previous two equations we obtain:

m∏
k=1

pRjk−1jk

pjkjk−1

=

n∏
k=1

pRik−1ik

pikik−1

.
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Figure 1: A ρ-reversible discrete time Markov chain

Hence:

πi = Ci0

n∏
k=1

pRik−1ik

pikik−1

,

where Ci0 ∈ R
+, is well-defined.

In order to prove that this is the stationary probability
of state i ∈ S we show that it satisfies the system of global
balance equations for i. Indeed,

πi =
∑
j∈S

πjpji ,

which can be written as:

1 =
∑
j∈S

πj

πi
pji .

By Proposition 4 this is equal to
∑

j∈S pRij = 1 hence the
equation above is an identity.

Now let i, j ∈ S such that pji > 0. Then

πj = Ci0

pRij
pji

n∏
k=1

pRik−1ik

pikik−1

= πi
pRij
pji

.

Hence, by Proposition 4, PR is the transition probability
matrix of XR(t).

3. REVERSIBILITY UNDER STATE PERMU-
TATION

Many stochastic chains are not reversible, however they
may be reversible under some state permutation. In this
section we generalize the notion of reversibility for DTMC
and introduce a novel notion named ρ-reversibility.

Hereafter, a renaming ρ over the state space of a Markov
chain is a bijection on S. For a Markov chain X(t) with
state space S we denote by ρ(X)(t) the same process where
the state names are changed according to ρ. More formally,
let P and π be the transition probability matrix and the
stationary distribution of X(t), P′ and π′ be the transi-
tion probability matrix and the stationary distribution of
ρ(X)(t). It holds that, for all i, j ∈ S,

pij = p′ρ(i)ρ(j) and πi = π′
ρ(i).
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Figure 2: Reversed chain of the DTMC in Figure 1

We introduce the notion of ρ-reversibility.

Definition 2 (ρ-reversibility). Let X(t) be an er-
godic DTMC with state space S and ρ be a renaming on S.
X(t) is said to be ρ-reversible if for all t1, t2, . . . , tn, τ ∈ Z,
(X(t1), . . . , X(tn)) has the same stationary distribution as
(ρ(X)(τ − t1), . . . , ρ(X)(τ − tn)).

Since, X(t) and XR(t) have the same stationary distribution
π, it follows that if X(t) is ρ-reversible then

πi = πρ(i) for all i ∈ S.

Example 1. Consider the DTMC X(t) depicted in Figu-
re 1 and the corresponding reversed chain depicted in Figu-
re 2. It is easy to see that X(t) is ρ-reversible with the
renaming ρ defined by:

ρ(i1) = i2 ρ(i2) = i1 ρ(i3) = i4 ρ(i4) = i3
ρ(j1) = j3 ρ(j2) = j2 ρ(j3) = j1 ρ(j4) = j4.

Indeed, one can easly see that X(t) and ρ(XR)(t) are prob-
abilistically indistinguishable.

Example 2. Consider the DTMC X(t) depicted in Fig-
ure 3. One can easly prove that X(t) is ρ-reversible under
the renaming ρ defined by:

ρ(1) = 3 ρ(3) = 5 ρ(5) = 7 ρ(7) = 1
ρ(2) = 4 ρ(4) = 6 ρ(6) = 8 ρ(8) = 2.

Analogously to Proposition 1 above, we prove necessary
and sufficient conditions for ρ-reversibilty based on the ex-
istence of the solution of the linear system called ρ-detailed
balance equations. The proof follows the lines in [7].

Proposition 6 (ρ-detailed balance equations).

Let X(t) be an ergodic DTMC with state space S and tran-
sition probability matrix P. Let ρ be a renaming on S. X(t)
is ρ-reversible if and only if there exists a collection of pos-
itive numbers πi, i ∈ S, summing to unity that satisfy the
following system of ρ-detailed balance equations:

πipij = πjpρ(j)ρ(i) for all i, j ∈ S. (8)

If such a solution π exists then it is the stationary distribu-
tion of both X(t) and ρ(XR)(t) and πi = πρ(i) for all i ∈ S.
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Figure 3: A ρ-reversible Markov chain

Proof. Let P′ be the transition probability matrix of
ρ(XR)(t). We prove that if X(t) is ρ-reversible then it satis-
fies the system of ρ-detailed balance equations (8) where π
is the stationary distribution of X(t). Indeed, observe that
by Definition 2 of ρ-reversibility, p′ρ(j)ρ(i) = pRji. Moreover,

since X(t) and ρ(XR)(t) are probabilistically identical we
have p′ρ(j)ρ(i) = pρ(j)ρ(i) and hence, pRji = p′ρ(j)ρ(i) = pρ(j)ρ(i).
Then, by Proposition 3 we obtain the desired result.

Now suppose that there exists a collection of positive num-
bers πi, i ∈ S, summing to unity that satisfy the system of
ρ-detailed balance equations. Then π is the stationary distri-
bution of X(t). This is proved by substituting the definition
if πi given by Equation (8) in the system of global balance
equations of X(t). Hence, we have:

πi =
∑
j∈S

πjpji ,

that divided by πi gives:

1 =
∑
j∈S

πj

πi
pji =

∑
j∈S

p�(i)�(j) .

Since � is a bijection, it this reduces to the identity 1 = 1.
Let us now prove that the ρ-detailed balance equations imply
the fact that X(t) is ρ-reversible. In fact, by Proposition 3

pRρ(i)ρ(j) =
πj

πi
pρ(j)ρ(i) = pij ,

i.e., X(t) and ρ(XR)(t) are probabilistically identical.

Corollary 1. Let X(t) be an ergodic DTMC with state
space S, transition probability matrix P and stationary dis-
tribution π. Let ρ be a renaming on the state space S. If the
transition probabilities of X(t) satisfy the following system
of equations:

πipij = πjpρ(j)ρ(i) for all i, j ∈ S

then X(t) is ρ-reversible.

By applying the Kolmogorov’s criterion we obtain the fol-
lowing characterization of ρ-reversibility.

Proposition 7. Let X(t) be an ergodic DTMC with state
space S and transition probability matrix P, and ρ be a re-

naming on S. X(t) is ρ-reversible if and only if for every
finite sequence i1, i2, . . . in ∈ S,

pi1i2pi2i3 · · · pin−1inpini1 =

pρ(i1)ρ(in)pρ(in)ρ(in−1) · · · pρ(i3)ρ(i2)pρ(i2)ρ(i1). (9)

Proof. Consider finite sequence of states i1, i2, . . . in ∈
S. By Proposition 6,

pi1i2pi2i3 · · · pin−1inpini1 =
πi1

πin

pρ(i1)ρ(in)
πin

πin−1

pρ(in)ρ(in−1) · · ·
πi2

πi1

pρ(i2)ρ(i1)

that, by simplifying, yields

pi1i2pi2i3 · · · pin−1inpini1 =

pρ(i1)ρ(in)pρ(in)ρ(in−1) · · · pρ(i3)ρ(i2)pρ(i2)ρ(i1).
Conversely, observe that, since X(t) is irreducible, for all
j, k ∈ S we can find a chain j = j0 → j1 → · · · → jn−1 →
jn = k (for n ≥ 1) of one-step transitions. From the hypoth-
esis that X(t) and ρ(XR)(t) are probabilistically identical,
there is also a chain ρ(k) = ρ(jn) → ρ(jn−1) → · · · →
ρ(j1) → ρ(j0) = ρ(j).

Consider an arbitrary state i0 ∈ S as a reference state
and i ∈ S. Let i = in → in−1 → · · · → i1 → i0 and
ρ(i0) → ρ(i1) → · · · → ρ(in−1) → ρ(in) = ρ(i) (n ≥ 1) be
two chains of one-step transitions in X(t). We prove that:

πi = Ci0

n∏
k=1

pρ(ik−1)ρ(ik)

pikik−1

, (10)

where Ci0 ∈ R
+. We prove that πi is well-defined. Indeed,

if i = jm → jm−1 → · · · → j1 → j0 = i0 (m ≥ 1) is another
chain, we can always find a chain i0 = h0 → h1 → · · · →
hl−1 → hl = i. By hypothesis, we have:

m∏
k=1

pjkjk−1

l∏
k=1

phk−1hk =

l∏
k=1

pρ(hk)ρ(hk−1)

m∏
k=1

pρ(jk−1)ρ(jk) .

Moreover, considering the one-step chain i = in → in−1 →
· · · → i1 → i0 = h0 → h1 → · · · → hl−1 → hl = i, we have:

n∏
k=1

pikik−1

l∏
k=1

phk−1hk =
l∏

k=1

pρ(hk)ρ(hk−1)

n∏
k=1

pρ(ik−1)ρ(ik) .

From the previous two equations we obtain:

m∏
k=1

pρ(jk−1)ρ(jk)

pjkjk−1

=

n∏
k=1

pρ(ik−1)ρ(ik)

pikik−1

.

Hence:

πi = Ci0

n∏
k=1

pρ(ik−1)ρ(ik)

pikik−1

,

where Ci0 ∈ R
+, is well-defined.

In order to prove that this is the stationary probability
of state i ∈ S we show that it satisfies the system of global
balance equations for i. Indeed,

πi =
∑
j∈S

πjpji ,
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Figure 4: A ρ-reversible DTMC

which can be written as:

1 =
∑
j∈S

πj

πi
pji .

By Proposition 6 we have:

1 =
∑
j∈S

pρ(i)ρ(j)
pji

pji =
∑
j∈S

pρ(i)ρ(j) = 1

that is an identity.
Now let i, j ∈ S such that pji > 0. Then

πj = Ci0

pρ(i)ρ(j)
pji

n∏
k=1

pρ(ik−1)ρ(ik)

pikik−1

= πi
pρ(i)ρ(j)

pji
.

Hence, by Proposition 6, X(t) is ρ-reversible.

The stationary probability distribution of a ρ-reversible
DTMC can be computed as follows.

Proposition 8. Let X(t) be an ergodic DTMC with state
space S and transition probability matrix P, ρ be a renaming
on S, and i0, i1, i2, . . . in = i ∈ S be a finite sequence of
states. If X(t) is ρ-reversible then for all i ∈ S,

πi = Ci0

n∏
k=1

pρ(ik−1)ρ(ik)

pikik−1

(11)

where i0 ∈ S is an arbitrary reference state and Ci0 ∈ R
+.

Proof. See the proof of Proposition 7.

3.1 On the properties of function ρ

In this section we discuss some properties of the renaming
function ρ for ρ-reversible DTMCs. In particular we show
that a DTMC may be reversible modulo more than a single
state renaming ρ. Recall that a permutation ρ on a set S
admits a unique decomposition into cycles of different states:

(i, ρ(i), ρ(ρ(i)), . . . , ρn(i) ≡ i) .

Cycles of length one are called fixed points and those of
length two transpositions. If ρ only consists of transpositions
and fixed points then it is called involution, i.e., for all i ∈ S
we have ρ(ρ(i)) = i.
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Figure 5: Reversed chain of the DTMC in Figure 4

If a DTMC is ρ-reversible then it allows for a very efficient
derivation of its stationary state probabilities. It is impor-
tant to note that the existence of a bijection ρ with respect
to which the process is ρ-reversible does not imply that ρ
is unique. In case of multiple candidates for ρ the choice is
arbitrary although it may be desirable to use the one whose
cycles are longest in order to reduce the number of states
to analyse (since all the states belonging to the same cy-
cle share the same stationary probability) as shown by the
following example.

Example 3. Let us consider the DTMC depicted in Fig-
ure 1 and notice that the renaming under which X(t) and
ρ(XR)(t) are probabilistically identical is not unique. In this
example X(t) is also ρ′-reversible where ρ′ is defined by:

ρ′(i1) = i2 ρ′(i2) = i3 ρ′(i3) = i4 ρ′(i4) = i1
ρ′(j1) = j2 ρ′(j2) = j3 ρ′(j3) = j4 ρ′(j4) = j1.

The renaming ρ given in Example 1 in an involution, while
ρ′ has longer cycles in its definition and thus shows immedi-
ately that the stationary distributions of states ik (resp. jk)
are identical for k = 1, . . . , 4.

In [15, 3] the authors use the idea of dynamic reversibility
to study physical systems by Markov chains. In these cases,
the authors consider only involutions for the state renaming
in the mapping between the forward and the reversed chain.
So we think that understanding if using permutations in-
stead of involutions effectively extends the class of tractable
Markov chains is an intriguing problem. In many cases (see
e.g., Examples 1 and 3), although a permutation of states
may be found there exists also an involution and hence the
benefit of using ρ with longer cycle are only computational.
In Example 4 we present a ρ-reversible DTMC for which
does not exist any involution ρ′ such that ρ′(XR(t)) = X(t).
As a consequence we show that using general permutations
instead of simple involutions enlarges the class of models
which are analysable with the theory of reversibility modulo
state renaming.

Example 4. Let us consider the DTMC depicted by Fig-
ure 4 whose reversed is shown in Figure 5. Observe that
the forward and the reversed processes are identical with ρ



defined by the cycles (1, 2, 3, 4); (5, 6, 7, 8); (9); (10). Let us
prove that there cannot exist ρ′ such that ρ′ is formed by cy-
cles of length 1 or 2. Observe state 10, and notice that if ρ′

exists then ρ′(10) = 10 since the residence time in the for-
ward and reversed chain must be distributed identically and
the self-loop with probability 5/6 characterises only state 10.
Observe the transition 10 → 5 in the forward DTMC. This
implies two cases: either 1) ρ′(5) = 6 ∧ ρ′(6) = 5 or 2)
ρ′(5) = 8 and ρ′(8) = 5. Assume case 1). Then we should
find a node (which mimics node 1) in the forward process
that has an incoming arc from 6 with probability 1/6 and
from 5 with probability 1/3. It is easy to see that such a node
does not exist. Assume case 2). Then, we should be able to
find a node (which mimics node 4) that has an outgoing tran-
sition to 8 with probability 2/3 and to 5 with probability 1/3.
It is easy to see that also this case is impossible.

4. FROM CTMC TO DTMC
In the previous section we have considered stochastic pro-

cesses that are discrete in both time and space, and that
satisfy the Markov property. Here, we consider Continuous
Time Markov Chains (CTMCs) and study the relation be-
tween the notion of ρ-reversibility defined in this setting [11]
and the one presented above for DTMCs. We recall that the
two main approaches to transform a CTMC into a DTMC
are the uniformisation and the definition of the embedded
chain (see, e.g., [14]). A CTMC is fully characterised by its
infinitesimal generator matrix Q where qij is the transition
rate from state i to j for i �= j while the diagonal elements
qii = −qi are defined as the negative sum of the non-diagonal
elements of each row. For ergodic chains, the steady-state
distribution π∗ is the unique vector of positive numbers π∗

i

with i ∈ S, summing to unit and satisfying system of the
global balance equations:

π∗Q = 0.

In [10, 11] we have introduced the counterparts of Propo-
sitions 6 and 7 for CTMCs which are stated below (noting
that further conditions on the residence times are required
with respect to the discrete case).

Proposition 9. Let X(t) be an ergodic CTMC and ρ be
a renaming on its state space S. Then X(t) is ρ-reversible if
and only if there exists a collection of positive real number πi

summing to unity such that πiqij = πjqρ(j)ρ(i) and qi = qρ(i)
for every state i. If such a collection πi exists, then it is the
stationary distribution of X(t).

Proposition 10. Let X(t) be an ergodic CTMC and ρ
be a bijection on its state space S. Then X(t) is ρ-reversible
if and only if for every finite sequence i1, i2, . . . , in ∈ S,

qi1i2qi2i3 · · · qin−1inqini1 =

qρ(i1)ρ(in)qρ(in)ρ(in−1) · · · qρ(i2)ρ(i1) ,
and qi = qρ(i) for every state i ∈ S.

Let X(t) be a CTMC such that there exists a positive
real number φ for which qi ≤ φ for all i ∈ S. We define
the DTMC XU (t) with the same state space of X(t) by
uniformisation, i.e., we consider ν = max{qi, i ∈ S} and
define the transition probabilities of XU (t) as follows:

pij =

{
qij
ν

if i �= j

1− qi
ν

if i = j .

The steady-state distribution of XU (t) and X(t) are the
same and sometimes it may be more convenient to study
the uniformised chain rather then that at continuous time.
From the prospective of ρ-reversibility, the following result
holds:

Proposition 11. Let X(t) be an ergodic CTMC and let
XU (t) be a DTMC obtained by uniformisation. Then X(t)
is ρ-reversible if and only if XU (t) is ρ-reversible.

Proof. ⇒) If X(t) is ρ-reversible then its stationary so-
lution satisfies the detailed balance equation according to
Proposition 9 for all state i �= j. By definition of uniformi-
sation, also the DTMC satisfies the corresponding equations
for i �= j. However, in the DTMC we have introduced new
transitions, namely the self-loops, and we have to check that
for each state we have: πipii = πipρ(i)ρ(i), which is true if
and only if pρ(i)ρ(i) = pii. This is true since, by Proposi-
tion 9, i and ρ(i) have the same residence time distribution.
⇐) If XU (t) is ρ-reversible then the detailed balance equa-
tions of Proposition 6 hold for all the state transitions i → j.
If i �= j, clearly the detailed balance equations hold also for
the CTMC. It remains to prove that the residence time dis-
tribution for state i and ρ(i) are the same. Indeed, let us take
the transition i → i in the DTMC and observe that the cor-
responding detailed balance equation implies pii = pρ(i)ρ(i)
that, by the definition of uniformisation, implies qi = qρ(i)
in X(t).

Another possible way of analyzing a CTMC X(t) is through-
out the corresponding embedded Markov chain XE(t). If
we consider the Markov process only at the moments upon
which the state of the system changes, and we number these
instances 0, 1, 2, etc., then we get a DTMC. This Markov
chain has the transition probabilities pij for i, j ∈ S as:

pij =
qij∑
k �=i qik

for j �= i (12)

and pii = 0. If π is the steady-state distribution of the
DTMC one may derive the distribution π∗ of the corre-
sponding CTMC as:

π∗
i =

πiq
−1
i∑

i∈S πiq
−1
i

. (13)

In some cases, although the CTMC X(t) is not ρ-reversible,
its embedded chain XE(t) is. In this case we say that X(t)
is almost ρ-reversible. We can decide if X(t) is almost ρ-
reversible using the following proposition.

Proposition 12. An ergodic CTMC X(t) is almost ρ-
reversible if and only if for every finite sequence of states it
holds that:

qi1i2
qi1

qi2i3
qi2

· · · qin−1in

qin−1

qini1

qin
=

qρ(i1)ρ(in)

qρ(i1)

qρ(in)ρ(in−1)

qρ(in)

· · · qρ(i2)ρ(i1)
qρ(i2)

.

Proof. The proof is trivial and follows from the defini-
tion of embedded DTMC and Proposition 7.

Notice that if a CTMC is ρ-reversible then it is also almost
ρ-reversible but the opposite is not true as shown by Exam-
ple 5. The stationary distribution π∗ of X(t) satisfies the
following set of detailed balance equations:

π∗
i qij = π∗

j qρ(j)ρ(i)
qj

qρ(j)
.
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Figure 6: Infinite state space CTMC.

Example 5. Let us consider the CTMC depicted by Fig-
ure 6 and prove that it is ρ-reversible under the assumption
γ = λ+ μ and according to the permutation � defined as:

ρ(s) =

⎧⎪⎨
⎪⎩
0 if s = 0

n2 if s = n1, n ≥ 1

n1 if s = n2, n ≥ 1.

Note that, under the assumption γ = λ + μ, for all the
states s it holds qs = q�(s) and, by exploiting the regularity
of the process, we have to check the following cycles:

• 0
λ−→ 11

γ−→ 12
μ−→ 0 whose inverse is itself and hence

the conditions of Proposition 10 are satisfied.

• n1
γ−→ n2

λ−→ (n+1)1
γ−→ (n+1)2

μ−→ n1 whose inverse is

n2
λ−→ (n+ 1)1

γ−→ (n+ 1)2
μ−→ n1

γ−→ n2 whose product
of the rates satisfies the conditions of Proposition 10.

Therefore, the CTMC is ρ-reversible and we have πn1 = πn2

for all n ≥ 1. However, notice that the CTMC is almost ρ-
reversible without requiring the condition γ = λ+μ. We can
therefore apply the detailed balance equations for almost ρ-
reversible CTMCs to straightforwardly derive the invariant
measure of the process (see e.g. for π12 and π11):

π12q12,0 = π0q0,11
q0
q0

⇒ π12 = π0
λ

μ

π11q11,12 = π12q11,12
q12
q11

⇒ π11 = π0
λ(λ+ μ)

μγ
.

Therefore, the closed form expression of the unnormalized
steady-state distribution can be readily derived for n > 0:

πn1 = π0

(
λ

μ

)n
λ+ μ

γ
, πn2 = π0

(
λ

μ

)n

.

5. CONCLUSION
In this paper we have proposed a theory of reversibility

modulo a renaming of states for discrete time Markov chains.
We have shown that the class of ρ-reversible DTMCs enjoys
a high numerical tractability since the unnormalized steady-
state distribution can be derived as product of transition
probabilities instead as solution of the system of linear equa-
tions GBEs. We have shown that in contrast to [15, 3, 10]
the state renaming needs not to be an involution and more-
over that assuming general bijections allows us to efficiently
study models that cannot be analysed by involutions. Fi-
nally, we have used the results of ρ-reversibility for DTMC
to give the definition of almost ρ-reversibility for CTMCs
that allows us to enlarge the class of CTMCs that we are
able to solve without computing the solution of the GBEs
with respect to the previous class [11].

We leave as future work the investigation of the relations
among ρ-reversibility and product-forms. In fact, if a CTMC

is ρ-reversible then its steady-state distribution can be ex-
pressed as a ratio between two products of rates (see Propo-
sition 8) and this clearly simplifies the task of obtaining a
product-form solution for the model. Nevertheless, coher-
ently with the product-form theory developed in the litera-
ture (see, e.g., [7, 4, 2, 9]), the formulation of conditions on
the isolated components is desirable so that one has not to
construct the whole joint process. In other words, we are
interested in finding sufficient conditions under which the
composition of high level stochastic models (e.g., Markovian
process algebra components) originates a joint model which
is ρ-reversible for some renaming ρ.
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