
TimeNET Optimization Environment

Batch simulation and heuristic optimization of SCPNs with TimeNET 4.2

Christoph Bodenstein
System & Software Engineering, Ilmenau

University of Technology, P.O. Box 100 565
D-98684 Ilmenau

Germany
Christoph.Bodenstein@tu-ilmenau.de

Armin Zimmermann
System & Software Engineering, Ilmenau

University of Technology, P.O. Box 100 565
D-98684 Ilmenau

Germany
Armin.Zimmermann@tu-ilmenau.de

ABSTRACT
In this paper a novel tool for simulation-based optimization
and design-space exploration of Stochastic Colored Petri
nets (SCPN) is introduced. The working title of this tool is
TimeNET Optimization Environment (TOE).

Targeted users of this tool are people modeling complex sys-
tems with SCPNs in TimeNET who want to find parameter
sets that are optimal for a certain performance measure (fit-
ness function). It allows users to create and simulate sets of
SCPNs and to run different optimization algorithms based
on parameter variation.

The development of this tool was motivated by the need
to automate and speed up tests of heuristic optimization
algorithms to be applied for SCPN optimization. A result
caching mechanism is used to avoid recalculations.

Keywords
SCPN, Simulation based optimization, Petri nets

1. INTRODUCTION
Simulation-based optimization is a useful technique when
the shape of the fitness function to be optimized is unknown
or very complex so that gradient-based optimization algo-
rithms cannot be applied [3, 6, 1, 7, 15]. As the modeling of
real-life systems often results in complex models, simulation-
based optimization has become a popular engineering design
method over the last years.

Sim. Output

Parameter set

Optimization 
heuristic

Simulation

Figure 1: Common black-box optimization, see [2]

Carson and Maria [2] published an overview of approaches to
optimize these systems. The common part of most methods
as shown in Figure 1 is a so-called black box optimization.

At the beginning of an optimization, the heuristic algo-
rithm [9] starts with the value range of parameters and their
possible discretization. It generates an input (parameter
set), triggers the simulation combined with input data, and
uses the generated simulation results to calculate the next
input until a stop condition is satisfied.

Stochastic colored Petri nets (SCPNs [12]) are a useful tool
to model complex systems in numerous research areas and
industrial application fields. For editing and simulating these
nets we use TimeNET [13], a software tool developed orig-
inally at TU Berlin and now maintained at TU Ilmenau.
Our focus for optimization are heuristic methods, a subset
of simulation-based optimization methods [2].

The idea of coupling an optimization tool and a simula-
tion tool via defined interfaces is not new, compare for in-
stance [11] and the implementation in the REMO tool. It
was written in SUN Pascal and is running on Sparcstations
with OS 4.1.3 or Solaris 2.5.X. Some of the features and
requirements mentioned therein apply to our use cases and
are adopted, while others were not feasible or useful for our
application. Restrictions in terms of further development,
cross-platform use and required adaptation to TimeNET led
us to the development of a new specialized tool.

TOE should help to discover the design space, esp. the fit-
ness function shapes of parameterizable stochastic Petri nets
and to find better optimization heuristics (or at least better
configurations for existing ones) to be used for simulation
based optimization of SCPNs.

2. AUTOMATED PARAMETER
OPTIMIZATION OF SCPNS

TimeNET is a tool for modeling, simulation and analysis
of Stochastic Colored Petri nets and several other model
classes. One key feature is the parametrization of nets which
means that users can easily change properties of SCPNs by
defining and modifying parameters. These parameters can
be used in timing functions, measurements, and as place
capacities.

 
 

 
 

 



To simulate not only one SCPN but a set while varying
specific parameters can expose interesting dependencies and
improve system understanding. One possibility to do several
simulations is to use the TimeNET-internal scripting engine.
However, this has some disadvantages regarding flexibility,
debugging options and usability. Furthermore, some fea-
tures are not possible to implement with this technique.

From our experiences with TimeNET and the targeted anal-
ysis of simulation-based optimization, we identified some key
requirements as listed below:

• Batch simulation of SCPNs while iterating model pa-
rameters (internal);

• Batch simulation while iterating simulation parame-
ters (external);

• Parsing of simulation results and application of opti-
mization heuristics;

• Modular software architecture to add other heuristics
and simulation types later.

Internal parameters are all system parameters which are de-
fined inside the model. Their influence on the simulation re-
sult is defined by model architecture, formulas, or measure-
ment expressions. On the other hand, external parameters
control the way of simulating a model. These include, among
others, the seed for random number generators, the maxi-
mum simulation steps to compute, maximum CPU time, and
accuracy parameters such as the maximum relative error or
confidence interval of measurements.

The first requirement is obvious and could have been realized
with a script inside TimeNET. It allows to explore the whole
expected design space step by step with a user-defined step
size for discretization of continuous parameters. The result
data needs to be read and plotted to get an overview of the
shape of the fitness function (measurements) from the SCPN
afterward.

Some changes were necessary inside TimeNET itself. As
normal parameters are stored within the SCPN .xml file,
external parameters have to be handed over to TimeNET in
another way.

We decided to exchange external parameters via SCPN file
names. This is not a perfect way for passing information be-
tween processes, but allows easy debugging in case of simu-
lation errors. If any unexpected results occurs during a sim-
ulation, the corresponding log file and simulation file have
the same name (except file extension) including all necessary
simulation control parameters for TimeNET, such that the
problematic behavior can be reproduced.

Since the release of the current version 4.2, TimeNET ac-
cepts and interprets several command-line parameters re-
garding SCPN simulation. One of these is the SCPN file
name to load at startup. Other parameters let TimeNET
automatically start a stationary simulation after the net has
been loaded, and close the main program after simulation to
facilitate scripting and embedding in tool environments.

The proposed tool extension TOE uses TimeNET just as a
command-line tool which is called for every simulation run.
The results are read from the created log files afterward.
This is the third requirement and necessary for implement-
ing optimization heuristics. The tool parses result log files
and stores the measured data as internal objects for later
use, or exports them as a summary .csv file.

Parsing the log files and storing them as internal data struc-
tures allows the integration of optimization heuristics.

Some further requirements of TOE came up during the de-
velopment. One is the ability to plot the simulation results:
The user can create a script for the statistics tool R [10] and
call it from within TOE to create and show simple 2D or
3D scatter-plots of chosen data from any .csv file containing
simulation data.

2.1 Current Implementation Status
By applying agile software development methodology we ex-
tended the functionality of the software over the past year.
At the moment the core features are implemented and sim-
ple experiments can be run, including

• Explore the coarsely discretized design space of an
SCPN;

• Visualize the design space in 2D and 3D scatter plots;

• Test several optimization heuristics online (with real
simulation) and offline (with cached result data);

• Test optimization heuristics with different benchmark
functions to emulate simulation runs.

To save time while testing the optimization heuristics, the
user can load results from former batch simulations and use
them as a result database instead of simulating the real
SCPN again. For simple heuristic-tests this is very useful,
but for a real optimization run this database can also be used
as a cache. That means whenever the optimizer creates a
new set of parameters, which has already been simulated in
a former batch-run, the software will use the results from the
cache. This results in a significant speedup of optimization if
the used design space discretization is similar to the one used
for the loaded result database. Moreover, it makes compar-
ison between different heuristics simpler as the randomness
of the underlying simulation is (at least partially) avoided.
A similar caching mechanism has been implemented to be
used for every single optimization run.

Figure 2 shows the main window of TOE. On the left there is
a table to show all possible parameters including start and
end value, which are taken automatically from the model
file. In combination with the step size, this specifies size and
boundaries of the design space to be explored. External pa-
rameters are marked with a gray background while internal
parameters have a white one. For all parameters start/end
values and discretization (stepping) can be set to determine
the definition space for optimization. After every change of
these table values, the approximate size of definition space
is calculated.



Figure 2: Main window of TOE

2.2 Restrictions and Future Work
Despite the implemented features of TOE there are several
open points to be improved in the future. Optimizers and
simulators have to implement a specific interface to make it
easier to integrate other optimization heuristics or further
simulator tools.

However, besides this interface, developers usually need to
learn a lot about the internal structure before they can inte-
grate other simulators/optimizers. A plugin-based software
architecture for simulation-based tools [8] would be very use-
ful especially for the integration of new heuristics.

The external binding to TimeNET is realized via specific
file name conventions and start parameters at the moment.
An integration of other Petri net types such as extended
deterministic and stochastic Petri nets (eDSPNs [4]) would
thus require some changes in TimeNET itself. On the other
hand, the TOE parser for result log files would need to be
adapted for other kinds of simulations and Petri nets.

Other optimization heuristics like adaptive optimization [14]
or population-based heuristics [5] are being implemented
and planned to be available within the next months.

A major feature to speed up batch simulation and popula-
tion-based optimization in the future is currently being im-
plemented and already visible in the interface: distributed
simulation of SCPNs. TOE can run on several computers as
a client. It will receive simulation tasks (SCPNs & simula-
tion parameters) from a coordinating simulation server and
return the results via server to one Master instance of the
tool. For a rough sight of design space shapes this is a time
saving feature. This will also help to improve the runtime of
population-based optimization through parallel simulation
of multiple parameter sets.

Besides this, some user interface improvements are planned
to make the tool easier to use and to avoid unexpected be-
havior.



3. TOOL USE
Figure 3 shows the sequence of usual steps with TOE for
batch simulation or optimization. We tried to improve us-
ability and force the user to follow this workflow by de-
activating all unnecessary buttons each time the software
changes its major states. For instance, users cannot start
an optimization while the design space is not defined or too
small.

After starting the software, the last used SCPN is loaded
automatically. If the program was not used before the user
has to choose an SCPN file with ”open SCPN”. TOE will
parse the corresponding .xml file and show all found param-
eters in the table as well as all possible measures which can
be chosen as optimization targets.

Now the design space can be defined by setting the start/end
value and the discretization value (step size). The program
will automatically estimate the corresponding design space
size for changed values in the parameter part. The creation
of all possible parameter combinations for batch simulation
can be started manually (“Generate Design Space”).

Instead of defining the design space it is possible to load
simulation results from a given .csv file (“Load cached sim-
ulation results”). In that case the values for start, stop, and
step will be changed to match the loaded (and then cached)
data. In addition to that, the option to simulate “cache-
only” will be activated. The user can limit the design space
by setting other values for that. If these values extend the
range of the cached data, the cache-only simulation option
will be disabled.

The user can then either start a batch simulation or opti-
mization. For an optimization there is no need to generate
the whole design space first, but the measure to be optimized
and its target value have to be set. The predefined standard
optimization algorithm is hill climbing; other algorithms [9]
such as simulated annealing [6] or several population-based
algorithms [5] are currently being implemented.

Optimization results and some other information are printed
in the log-window and (if activated) saved in the program
log file. To get a quick overview of simulation and opti-
mization results, the user can open the R-plugin, choose the
appropriate .csv file as well as the data-columns to plot, and
start the generation and execution of an R-script to show
the results as a scatter plot (Figure 4 shows an example).

3.1 An Application Example
One typical use case of our current work is to measure the
influence of simulation precision on simulation time and used
CPU time. Simulation precision of SCPNs is mostly deter-
mined by external accuracy parameters. These are maxi-
mum relative error and configured confidence interval. As
an experiment, a simple Petri net is chosen and simulated
approximately 400 times while varying these accuracy pa-
rameters.

Figure 4 shows the results of this experiment. With increas-
ing confidence interval the necessary CPU time per simu-
lation run increases as expected. However, the results also
show that the maximum relative error has a much bigger in-

Define DS

Load SCPN

Load Cache

Limit DS

Batch Simulation Optimization

Plot results

Figure 3: Use of TOE

fluence on the CPU time. Of course these tradeoffs depend
strongly on the specific SCPN model.

These results will guide further development of the tool
and lead to integration of more sophisticated optimization
heuristics. Besides analyzing different optimization heuris-
tics, the accuracy of simulations will be controlled by TOE
in the future, following the ideas described in [14].

3.2 System Requirements
The tool is implemented completely in Java and is exe-
cutable on most standard systems which support Java 1.6
or later. It has been tested successfully on Windows 7, OSX
10.9.4, and Ubuntu 12.2 so far.

As an obvious prerequisite, TimeNET 4.21 [13] has to be
installed to handle command line parameters and execute
simulation requests. TimeNET itself needs some additional
libraries on Unix-like systems and a GNU C compiler (or
MinGW on Windows).

To plot the generated simulation results, the R package2 [10]
needs to be installed including the 3D-plot library3.

At first program start the user should click the buttons for
“Path to R”and“Path to TimeNET”and navigate to the ac-
cording directories. If the chosen directories are correct, the
corresponding user interface buttons turn green and TOE is
fully operational.

1http://www.tu-ilmenau.de/timenet
2http://www.r-project.org/
3http://cran.r-project.org/web/packages/plot3D



co
nf.

 in
ter

va
l(8

5-9
9) 

in 
%

max rel. error(1-10) in %

C
PU

-tim
e

++

+

+

+ +

+

+
+

+

+
+ +++

+

+
+ +

+

+
+

++

+

+
+

+
+

++++++

+

+
+

+
+

+

+

++

+

++ +

+

++

+

++
+

+

+

++

+

++
+

++

+

++

+

++
++++

+++++

+

++

+

++ ++

+

++

+

++ ++ ++

+

++ ++
++

++ ++
++

++ ++ ++ +++ ++ ++ ++ ++ ++ ++ + ++ ++ + + ++ + + ++ + ++ +
+

Figure 4: Maximum relative error and confidence
interval in relation to used CPU time

4. CONCLUSIONS
The paper presents an extension tool for TimeNET support-
ing optimization heuristics and design space exploration.
The tool allows to test implemented algorithms based on
newly computed or cached simulation results, mixes of both,
as well as benchmark function results.

The tool is written completely in Java with an extendable
architecture. The current version allows basic analysis of
SCPN design spaces and optimization. Other features such
as distributed simulation, more heuristics and other Petri
net types will be available with the next major releases. It is
planned to be available via the TimeNET download website
at www.tu-ilmenau.de/timenet by the end of 2014.

One of the final goals of this development is to implement
accuracy-adaptive optimization heuristics.

5. REFERENCES
[1] J. Biel, E. Macias, and M. Perez de la Parte.

Simulation-based optimization for the design of
discrete event systems modeled by parametric Petri
nets. In Computer Modeling and Simulation (EMS),
2011 Fifth UKSim European Symposium on, pages
150–155, 2011.

[2] Y. Carson and A. Maria. Simulation optimization:
Methods and applications. In Proceedings of the 29th
Conference on Winter Simulation, WSC ’97, pages
118–126, 1997.

[3] M. C. Fu. A tutorial overview of optimization via
discrete-event simulation. In G. Cohen and J.-P.
Quadrat, editors, 11th Int. Conf. on Analysis and
Optimization of Systems, volume 199 of Lecture Notes
in Control and Information Sciences, pages 409–418,
Sophia-Antipolis, 1994. Springer-Verlag.

[4] R. German. Performance Analysis of Communication
Systems, Modeling with Non-Markovian Stochastic
Petri Nets. John Wiley and Sons, 2000.

[5] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley,
1989.

[6] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi.
Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

[7] S. Künzli. Efficient Design Space Exploration for
Embedded Systems. Phd thesis, ETH Zurich, Apr.
2006.

[8] R. Maschotta, S. Jager, T. Jungebloud, and
A. Zimmermann. A framework for agile development
of simulation-based system design tools. In Systems
Conference (SysCon), 2013 IEEE Int., pages 861–866,
April 2013.

[9] C. L. Reeves. Modern Heuristic techniques for
Combinatorial Problems. Wiley, 1993.

[10] S. Stowell. Using R for Statistics. Apress, 2014.

[11] M. Syrjakow, E. Syrjakow, and H. Szczerbicka. Tool
support for performance modeling and optimization.
International Journal of Enterprise Information
Systems, 2005.

[12] A. Zimmermann. Stochastic Discrete Event Systems.
Modeling, Evaluation, Applications. Springer-Verlag
New York Incorporated, Nov. 2007.

[13] A. Zimmermann. Modeling and evaluation of
stochastic Petri nets with TimeNET 4.1. In
Performance Evaluation Methodologies and Tools
(VALUETOOLS), 2012 6th Int. Conf. on, pages
54–63, Oct 2012.

[14] A. Zimmermann and C. Bodenstein. Towards
accuracy-adaptive simulation for efficient design-space
optimization. In Systems, Man, and Cybernetics
(SMC), 2011 IEEE International Conference on,
pages 1230 –1237, Oct. 2011.

[15] A. Zimmermann, D. Rodriguez, and M. Silva. A
two-phase optimisation method for Petri net models of
manufacturing systems. Journal of Intelligent
Manufacturing, 12(5/6):409–420, Oct. 2001. Special
issue ”Global Optimization Meta-Heuristics for
Industrial Systems Design and Management”.


