
Solving Queueing Network Models in Cloud Provisioning
Contexts

Marta Beltran and Francisco Carriedo
Department of Computing, ETSII

Universidad Rey Juan Carlos
28933, Madrid (Spain)

marta.beltran@urjc.es and fcarriedos@gmail.com

ABSTRACT
In recent years the research community and most of cloud
users are trying to propose flexible and general mechanisms
to determine how much virtual resources need to be allo-
cated to each tier of the applications executed on cloud in-
frastructures. The objective of this virtual provisioning is
twofold: minimizing resources consumption and meeting the
service level agreement (SLA). Most of the current cloud
provisioning and scaling solutions are based on analytical
models of applications, trying to automate the provision-
ing decisions making ”what-if” response time predictions.
Queueing network (QN) models have demonstrated to be
a good choice in this kind of contexts. In this work we
compare, performing an exhaustive set of experiments on a
real cloud architecture with a new provisioning mechanism,
exact solutions with approximate solutions estimated from
bounding techniques in order to obtain conclusions about
the most efficient way of solving these models when making
cloud provisioning decisions.

Categories and Subject Descriptors
Mathematics of Computing [Probability and Statistics]:
Queueing theory

General Terms
Experimentation, Performance

Keywords
Balanced Job Bounds, Cloud Provisioning, Mean Value Anal-
ysis, Queueing networks

1. INTRODUCTION
Cloud architectures provide the illusion of infinite com-

puting resources and their elasticity frees developers, de-
signers and in general, end users, from the confinement of
traditional in-house systems. However it also makes these
users responsible for requesting their providers the necessary
amount of resources (depending on the demand at any given
time) to obtain the required performance at minimum cost.
This is why different automatic solutions are being proposed
to help end users in making fast and efficient provisioning
decisions.

These automatic solutions use to rely on application mod-
els that estimate the average response time or the average
throughput of the application in order to make provisioning
decisions, minimizing costs and correcting in the run time
the possible deviations from the SLA. In this paper we dis-
cuss and compare the two main different approaches used to
estimate the average response time of cloud applications in
order to make provisioning decisions (independently on who
is making these decisions: providers, brokers or end users)
when these applications behaviour is modeled with a queue-
ing network: exact and approximate solution techniques.

The main contributions of this work are summarized as
follows (a) We have analyzed the previous work in pre-
dicting the average response time of applications executed
on cloud environments to draw conclusions about the most
widespread QN models and solving techniques (b) Taking
as a basis all these conclusions, two techniques have been
considered for comparison, one exact technique (Mean Value
Analysis or MVA) and one approximate technique (Balanced
Job Bounds or BJB) (c) We have designed and implemented
a new flexible and general provisioning solution to automat-
ically scale the virtual resources needed to execute a n-tier
application executing on a cloud environment (d) We have
compared the two considered techniques with an exhaus-
tive set of experiments performed with a 1-tier scientific
and a multi-tier interactive benchmark executed on a pri-
vate cloud.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the most important related works. Section
3 gives a detailed description of the considered problem and
assumptions. Section 4 describes the proposed provision-
ing mechanism and summarizes the most important results
obtained in all the performed experiments. And finally, Sec-
tion 5 presents the most important conclusions of this work
and some suggestions for future research.



2. RELATED WORK

2.1 On cloud provisioning
Most of the current provisioning and scaling solutions are

based on analytical models of the applications executed on
the cloud infrastructure, automating the decisions and bas-
ing them on response time predictions, releasing the agents
responsible for provisioning (provider, broker or end user,
it depends on the context) of making these decisions based
on their own predictions or on complex static rules. Specif-
ically, many authors have decided to model general n-tier
cloud applications as queueing networks in order to achieve
an appropriate balance between accuracy and cost; separa-
ble queueing networks are the most widely used.

These authors have enumerated and discussed the rela-
tionship between the inputs (basically user description, server
description and service demand) and the outputs (basically
average response time, system throughput and average queue
lengths) of separable queueing network models. Many works
(for example [2], [3], [11] or [13]) rely on exact solution tech-
niques, such as the Mean Value Analysis, or on accurate
solution techniques such as iterative bounds, to predict the
average response time or the average throughput of different
application configurations. And with this exact, or at least
accurate solutions, provisioning decisions are made for the
different tiers.

But one of the main advantages of the QN models is that it
has been demonstrated that it is possible to determine up-
per and lower bounds on the aforementioned performance
measures with a very low cost. In fact, they are so simple
to calculate that they can be estimated even by hand. The
exact or iterative bounding techniques provide accuracy but
require considerably more resources, specially when the re-
sults are needed in real time and the system architectures
are large and complex. Such benefits have made last works
([5], [6], [9] or [12], for example) to favour computational effi-
ciency over solution accuracy using another types of bound-
ing and heuristic techniques.

To the best of our knowledge this evolution from exact
to approximate solutions has not been justified with an ex-
perimental evaluation. The effects that the loss of accuracy
in the model solution may have on provisioning decisions
quality have not been quantified yet. In this work we want
to find to what extent the QN models solution can be ap-
proximated to favour the desired computational efficiency
without leading to over-provisioning or under-provisioning
scenarios.

2.2 On solving QN models
Mean Value Analysis (MVA) [7] is an efficient algorithm

designed to analyze product form queueing networks and to
obtain mean values for queue lengths and response times,
as well as throughputs. However, the computational com-
plexity of this exact solution technique and of the accurate
iterative bounding techniques derived from it made neces-
sary more simple and fast bounding techniques.

There are three kinds of simple bounds for the typical per-
formance figures: asymptotic, balanced jobs and geometric
bounds. These bounding techniques provide non-iterative
lower and upper bounds for the model outputs with a com-
putational cost independent of the population size L (which
is the most important source of complexity in the exact solu-

tion computation). That is the reason why these techniques
are often called single-step techniques.

The asymptotic bounds consider the extreme scenarios of
light and heavy loads (the most optimistic and pessimistic
situations respectively) while the balanced job or balanced
system bounds (BJB) assume balanced systems meaning
this balance that the service demand at every server in one
specific tier is the same [14]. With a few additional cost,
balanced job bounds are more accurate than the asymp-
totic. Finally geometric bounds [4], derived by describing
the queue-lengths with a geometric sequence of terms re-
lated to the resource utilization, obtain similar results than
balanced job bounds in terms of accuracy. This technique
implies similar computation costs than the Balanced Job
Bounds but it does not demand the system balance require-
ment, which can be an important advantage in certain ap-
plication architectures.

Analyzing the previous work in the area of cloud provi-
sioning, two different kinds of techniques are being widely
used to solve the queueing models used to predict the av-
erage response time with different configurations of the ap-
plication tiers: the Mean Value Analysis to obtain exact
solutions and balanced job bounds to obtain approximate
solutions (because many of the mentioned provisioning so-
lutions such as [2], [6] or [9] assume that all the virtual ma-
chines composing an application tier are homogeneous and
perfectly or near perfectly balanced). Therefore, this work
tries to compare the results obtained with these two kinds
of techniques, MVA and BJB.

3. CONSIDERED PROBLEM
The notation used in the rest of this paper is summarized

in table 1. This work considers the following assumptions
regarding cloud providers and end users:

• End users submit requests to an application cloud provider
owning a n-tier application which can be batch or in-
teractive.

• The application cloud provider owns the physical in-
frastructure or depends on a IaaS provider, it is indif-
ferent for our analysis.

• End users and the application cloud provider agree
on a probabilistic application-SLA based on the max-
imum average response time allowed for the applica-
tion.

• The application cloud provider can reject an end user’s
request if the response time for this request is predicted
to fail in meeting the SLA.

• End users want to meet their SLA minimizing the
number of provisioned virtual machines. The opti-
mization problem to be solved with the application
provisioning can be expressed as:

Minimize

n∑
i=1

vi (1)

with theSLA constraintR < Rmax (2)



Table 1: Summary of notations

Symbol Meaning

n Number of application tiers
V=[vi], ∀iε(1,n) Configuration vector with the num-

ber of virtual machines in each tier
A=[ai], ∀iε(1,n) Configuration vector with the type

of virtual machine in each tier
U=[ui], ∀iε(1,n) Utilization vector with the utiliza-

tion in each tier
D=[di], ∀iε(1,n) Service demand vector with the ser-

vice demand in each tier
γ Number of service types
R Average response time of the appli-

cation
X Average throughput
L Average number of served requests
Y Estimated value for a generic vari-

able Y
Rmax Maximum average response time

(specified by the end user in the
SLA)

Rover Threshold response time for over-
provisioning (specified by the end
user in the SLA)

Runder Threshold response time for under-
provisioning (specified by the end
user in the SLA)

E Scaling epoch (constant)

Note that we have considered a SLA based on a con-
straint to the average response time of the application.
The user will obtain an acceptable service in her per-
ception if this average response time is always kept
under the value specified by Rmax .

The following models can help in understanding the rest
of this work, we have found that these models are repre-
sentative of the most common scenarios and therefore, the
conclusions obtained in the further experimental analysis
can be generalized.

Application and service model.
The application provider owns a n-tier application, each

tier providing a specific functionality to its preceding tier in
the form of a processing pipeline. If the application contains
database tiers, we assume a shared-everything architecture
which can be clustered and replicated on demand. The work-
load of the multi-tier application is typically session-based,
where an end user session consists of a succession of service
requests. At a time, different concurrent service requests
from different end users interact with the multi-tier appli-
cation. In this work we focus on batch and interactive ap-
plications, therefore on closed models in which end users
re-circulate.

We consider an application with γ service types, this means
that an end user request not always implies executing the
same workload on each tier, the path from tier 1 to tier
n can be crossed in several ways and there is not a priori
knowledge about the proportion in which each of these ser-
vice types are requested. Service requests can join and leave

the system at any time and each request at tier i can trigger
zero or multiple requests to tier i+ 1.

Regarding the infrastructure, we assume a fairly normal
scenario: the infrastructure provider offers different types of
virtual machines in the form of predefined virtual appliances
or machine images. There are vi identical virtual machines
in the tier i, but one tier may be composed of virtual ma-
chines of a different type than other.

According to these models, each virtual machine in each
tier can be modeled as a -/G/1/PS queue. This model is rep-
resentative of the considered scenario as it has been in pre-
vious works (for example [6], [9], [10] or [13]). Since we want
to model arbitrary multi-tier applications with an arbitrary
number of tiers, we cannot make assumptions about service
requests arrival rate. Note that the service times of the pro-
visioned virtual machines follow a general distribution and
the only requirement on this service time distribution is that
it must have rational Laplace transform. This includes all
distributions which can be expressed as a network of expo-
nential stages, therefore it is not a strict limitation. And
finally, service requests are forwarded to the running queue
of virtual machines in the different application tiers, which
process these requests following processor sharing strategies
(PS).

Provisioning model.
We assume that virtual machines can be requested and

terminated by end users at any time, and billing is based on
the amount of time that each virtual machine has been used.
For simplicity, the provisioning mechanism is assumed to be
on the provider’s resources, allowing an end user to contract
the automatic provisioning service to the provider. This
mechanism allows one to apply horizontal scaling for each
application tier. This implies adding or releasing virtual
machines in one tier without modifying the type of machine
provisioned for this tier. This kind of scaling changes only
the number of machines in tier i, i.e. vi.

4. EXPERIMENTAL ANALYSIS
In order to compare the two selected techniques, MVA

(exact solution) and BJB (approximate solution), on cloud
provisioning contexts, a private cloud has been deployed and
a new general provisioning mechanism based on horizontal
scaling has been designed and implemented. Specifically,
we are interested in assessing the behaviour of the two QN
models solution techniques with n-tier applications, with one
type of service or multi-class (γ types of services), and con-
sisting of batch or interactive workloads.

4.1 Provisioning solution
The solution designed to perform the experimental evalu-

ation is composed of three different modules: a Controller,
an Informer and a Scaler, this last module responsible for the
response time prediction solving the QN model with MVA
or BJB. A load Balancer is needed in each tier too, but it is
not part of the provisioning solution.

The Controller module has been designed to make admis-
sion control decisions following the ideas presented in [8].
The admission control considers the Acceptable Risk Level
(ARL) to make decisions, defined as the probability of hav-
ing insufficient capacity to satisfy a client’s SLA.

Once a service request is admitted by the Controller mod-
ule it is sent to the load balancer of tier 1. Although this



module is not strictly part of the provisioning solution, each
tier needs a Balancer to optimize the usage of the virtual re-
sources provisioned for a user distributing the workload in a
balanced and even way after accepting new service requests
or after implementing the configuration changes suggested
by the Scaler module. The Balancer module must be de-
signed and/or configured in each tier to obtain the same
utilization degree (or as close as possible) in all the virtual
machines composing the tier. This task is not very com-
plicated due to the homogeneity of these virtual machines
in each tier, although the possible heterogeneity in service
requests has to be considered.

The Informer module gathers in runtime, using the provider’s
network and communication resources and mechanisms, all
the data and information needed to automate the provision-
ing decisions, mainly related to physical resources utiliza-
tion, virtual machines utilization, application configuration
and behaviour and overheads (specifically, load balancing
overheads). To implement this module usual system inter-
faces to access to the operating system performance data
(such as the /proc filesystem) on each system node and
virtual machine can be used. In addition some users and
providers may implement their own kernel modifications to
increase the measurement speed and to decrease the level of
intrusiveness if needed.

The Scaler module periodically evaluates (with the scal-
ing epoch E) the application behaviour to decide whether
a horizontal scaling has to be performed. As it has been
mentioned before, the horizontal scaling (or scaling out) in-
creases or decreases the capacity of a tier by adding or re-
leasing individual virtual machines depending on the appli-
cation response time and on the thresholds defined by the
end user in the SLA.

The Scaler is responsible for computing at each epoch
the number of virtual machines that need to be provisioned
at each tier so that the application response time is main-
tained below the threshold given by Rmax. But it is also re-
sponsible for avoiding unnecessary costs by preventing over-
provisioning scenarios and by minimizing the changes in con-
figurations. As it can be seen in algorithm 1, the Scaler
first checks if the response time of the application is below
the threshold given by the user to identify over-provisioning
scenarios and therefore, to release virtual machines with the
ReleaseVM function. After this, the Scaler checks the op-
posite situation: if the response time is above the threshold
given by the end user to identify under-provisioning situa-
tions (in these scenarios it is very likely that the response
time constraint is not fulfilled), new virtual machines are
needed in the bottleneck tiers. In these cases the CreateVM
function is invoked.

The ReleaseVM function identifies all the tiers which can
be candidates to a scaling down process. After that, the new
configuration is iteratively computed removing one virtual
machine at a time from the most under-utilized tier in each
iteration. Then the RPrediction function (explained later in
this paper) is used to estimate the application response time
after each change and to decide whether or not the scaling
down of the selected tier can be performed.

The CreateVM function is an iterative function too. In
this case, at each iteration the bottleneck tier with the high-
est utilization value must be identified. A single new virtual
machine is added to this tier, and the average response time
of the application is estimated with the RPrediction func-

Algorithm 1 Pseudocode for the Scaler module

Require: E (constant)
Require: Rover, Runder and Rmax (specified by the end

user)
Require: R, X, U and V (from the Informer module)
Ensure: V
1: while (1) do
2: V old=V ;
3: if R < Rover then

4: V=ReleaseVM(R,X,U ,V old);
5: end if

6: if R > Runder then

7: V=CreateVM(R,X,U ,V old);
8: end if

9: if V �= V old then

10: Perform scaling;
11: end if

12: sleep(E);
13: end while

Algorithm 2 Pseudocode for the RPrediction function
based on the BJB technique

Require: L, Dq ∀qε(1, γ) and V
Ensure: R and U
1: qbest= [q | min(

∑n

i=1 d
q
i )] ∀qε(1, γ);

2: qworst= [q | max(
∑n

i=1 d
q
i )] ∀qε(1, γ);

3: dbesttotal=
∑n

i=1 d
qbest

i ;

4: dworst
total =

∑n

i=1 d
qworst

i ;
5: vtotal=

∑n

i=1 vi;

6: mdbestmean=dbesttotal/vtotal;
7: mdworst

mean=dworst
total /vtotal;

8: mdbestmax=max(dqbesti /vi);
9: mdworst

max =max(dqworst

i /vi);
10: R+=dworst

total +(L− 1)mdworst
max ;

11: R−=max(Lmdbestmax, d
best
total + (L− 1)mdbestmean);

12: R = R++R−

2
;

13: X+= min
(

1
mdbest

max

, L

dbest
total

+(L−1)mdbest
mean

)
;

14: X−= L

dworst

total

+ (L− 1)mdworst
max ;

15: X = X++X−

2
16: for i = 1 → n do

17: ui = Xdi;
18: end for

tion. These stages are iterated until the response time is
below the under-provisioning threshold, Runder.

RPrediction function.
Two RPrediction functions have been developed in this

work, the first one based on the MVA technique (exact solu-
tion) and the second, based on the BJB technique (approx-
imate solution).

The RPrediction function based on the Mean Value Anal-
ysis technique has been implemented with a direct trans-
lation of the algorithm provided in [7]. The response time
prediction with this version of the RPrediction function has
a computational complexity O(γnL).

The algorithm 2 shows the RPrediction function based on
the Balanced Job Bounds technique, considering the multi-
class case when there are different types of services. The



application response time and the throughput are estimated
as the average value of the upper and lower bounds provided
by the BSB algorithm described in [14]. In this case, the
computational complexity of the response time prediction is
O(γn), independent of the population L.

Note that, since there are multiple service types, multi-
ple sets of input parameters (one set per type) should be
required. But most current measurement tools and APIs do
not provide sufficient information to determine the input pa-
rameters appropriate to each service class and, furthermore,
we are assuming no a priori knowledge about the propor-
tion of the different kinds of service requests. To overcome
these limitations, the trivial solutions of balanced networks
have been used [14], solving the balanced network using the
best and the worst values considering all the service types
possible in the system.

This RPrediction function is going to be used to obtain
response time estimations for both batch and interactive ap-
plications. For batch workloads, the bounds on average re-
sponse time are straight lines and also the optimistic bounds
on average response time for interactive workloads. How-
ever, the pessimistic bounds on response time for interac-
tive workloads are not linear in L, and thus they should be
computed separately for each value of L taking into account
the value of Z, the think time quantifying the average time
that users use terminals (âĂIJthinkâĂİ) between interac-
tions. To avoid this overhead, only optimistic bounds will be
considered in this work, leading perhaps to a certain degree
of under-provisioning that will have to be correctly man-
aged by the designed provisioning mechanism but choosing
the simplest solution possible.

4.2 Experimental setup
All the experiments have been performed with commod-

ity hardware. Up to 16 machines have been used to build a
private cloud infrastructure with Xen/Linux. The 16 servers
included in the cloud infrastructure are connected by a Gi-
gabit Ethernet network and a different machine is used to
emulate the users and to generate all service requests. A spe-
cific server has run the provisioning solution (Core i7 3820,
3.60 GHz with 32 GB of RAM) while the load balancer in
each tier has been implemented with a distributed approach
based on agents running on each virtual machine. Because
resource provisioning (allocation of VMs to physical servers)
is not the focus of this work, it has been implemented with
a straightforward strategy, with all the servers running all
the time and creating new VMs always on the physical host
with fewer running machines.

For simplicity one VM type has been offered to the end
users with 2 virtual CPUs, 2 GB of memory and 80 GB of
storage capacity. Three different load scenarios have been
considered and evaluated during 30 minutes, the first one
with low levels of workload, the second one with moderate
levels of workload and the third, with large levels (these lev-
els and the correspondent arrival rates have been set attend-
ing to the number of requests per minute of real applications
and benchmarks not detailed here for space restrictions).

Table 2 summarizes the values of all the parameters used
in the presented experiments. Some of these values, as well
as information about the resources consumption that the
Controller module needs to be configured, have been ob-
tained by performing some initial experiments and tests. For
example, Rover has been fixed as a 70% of Rmax and Runder

Table 2: Parameters used in the experiments

Parameter Scientific RUBiS
ARL 0.05 0.05
Rmax 190 s 1.8 s
Rover 133 s 1.26 s
Runder 171 s 1.62 s
E 120 s 90 s

as a 90% because after a proper tuning of the provisioning
solution, these values have demonstrated to obtain good re-
sults (trade-off between performance and overhead) with the
considered benchmarks. In the same way, the values for the
rest of constants have been determined (ARL and E).

Two applications have been selected for our experiments.
The first, scientific from now, is a scientific workload consist-
ing of submission of requests for execution of computation-
ally intensive tasks (image rendering) on the service provider
infrastructure. Therefore, it is a batch application (its in-
tensity can be specified with the average number of active
jobs or users) with one tier and only one kind of service.

The second is RUBiS [1], a three-tier web benchmark that
represents an auction site similar to eBay comprising of a
web server tier, an application server tier and a database
tier (n = 3). This benchmark allows to simulate the activity
of the auction site implementing three types of user sessions
(selling, browsing and bidding) with 26 interactions that can
be accessed from the client’s web browser. Therefore, it is
an interactive or terminal application (its intensity can be
specified with two parameters, the number of active termi-
nals or users and the average length of time that customers
use terminals or think between interactions).

4.3 Results and discussion
Tables 3, 4, 5 and 6 summarize the results obtained with

our experiments. Each experiment has been conducted five
times to report the average for each output metric. Out-
put metrics collected for each experiment have been: re-
quests arrival rate, average response time of accepted re-
quests, standard deviation of response times among all ac-
cepted requests, provisioning overhead, VM minutes, num-
ber of performed application scalings, percentage of rejected
requests (remember that the Controller module can reject
service requests if the probability of having insufficient ca-
pacity to satisfy the user’s SLA is above certain threshold)
and number of requests served with under-provisioning re-
sulting in a response time above Rmax.

The average overhead introduced by the provisioning so-
lution performing the automatic reconfigurations has been
quantified measuring the total time consumed by the Scaler
module execution and by the tiers reconfiguration (down-
scaling or up-scaling, depending on the situation). It has to
be noted that the time needed to execute one response pre-
diction with the RPrediction function is only a fraction of
a second, being quite small the observed difference between
the MVA and the BJB versions. The total overhead have
been measured instead, because it is the repetitive execution
of this prediction inside the Scaler module (when the Relea-
seVM and CreateVM functions are invoked) that makes the
difference between the two evaluated techniques.

VM minutes is the sum of the wall clock time of each in-
stantiated application, from its creation to its destruction.



Table 3: Time and configuration results obtained with the scientific benchmark

Scenario Min-Max requests/min Average R R std. dev. Overhead
Low workload MVA 5-50 160 s 4 s 15 s
Low workload BJB 5-50 159 s 3 s 12 s
Moderate workload MVA 60-150 162 s 4 s 26 s
Moderate workload BJB 60-150 163 s 4 s 17 s
Large workload MVA 200-500 164 s 5 s 34 s
Large workload BJB 200-500 166 s 6 s 22 s

Table 4: Cost and performance results obtained with the scientific benchmark

Scenario VM minutes Scalings % rejections Under-provisioned req.
Low workload MVA 127 1 0.01 1
Low workload BJB 130 1 0.01 1
Moderate workload MVA 201 3 0.04 1
Moderate workload BJB 206 2 0.05 2
Large workload MVA 553 4 0.06 3
Large workload BJB 566 4 0.09 3

Table 5: Time and configuration results obtained with the RUBiS benchmark

Scenario Min-Max requests/min Average R R std. dev. Overhead
Low workload MVA 50-120 1.52 s 0.08 s 43 s
Low workload BJB 50-120 1.55 s 0.10 s 35 s
Moderate workload MVA 100-300 1.53 s 0.10 s 54 s
Moderate workload BJB 100-300 1.55 s 0.12 s 41 s
Large workload MVA 500-1200 1.56 s 0.11 s 85 s
Large workload BJB 500-1200 1.57 s 0.15 s 58 s

Table 6: Cost and performance results obtained with the RUBiS benchmark

Scenario VM minutes Scalings % rejects Under-provisioned req.
Low workload MVA 408 4 0.06 9
Low workload BJB 422 4 0.07 10
Moderate workload MVA 643 5 0.07 20
Moderate workload BJB 692 6 0.10 23
Large workload MVA 1344 6 0.08 108
Large workload BJB 1486 10 0.12 129

This metric has been used before [3] as a metric for VM
utilization and cost, because it allows to provide a measure-
ment for cost that is independent from billing models applied
by different cloud providers and makes the results easier to
interpret and to compare.

First of all, the behaviour of the provisioning mechanism
designed to perform the experiments can be verified. The
proposed automatic solution is able to dynamically increase
the number of virtual machines allocated to each applica-
tion tier during workload spikes and to reduce it in off-peak
moments in the three evaluated scenarios with both, MVA
and BJB based response time prediction and for the two
very different selected benchmarks. The number of virtual
machines active in each tier has suffered important varia-
tions maintaining an optimum average response time with
an acceptable standard deviation, insignificant rejection and
under-provisioning rates and always meting the SLA. These
points validate the use of the -/G/1/PS queue model in the
context of the considered problem and demonstrate its scal-
ability. By scalability we mean the capacity of the solution
to reasonably maintain its performance (average response

time observed by the user, overhead, etc.) when the number
of received requests per minute increases.

The results obtained with the scientific application are
very similar with the two versions of the RPrediction func-
tion. The BJB technique obtains only marginally worse re-
sults in terms of cost and performance than the MVA tech-
nique because it is a one-tier batch application with only
one kind of service, and therefore the approximate solu-
tion obtained from the estimated bounds for R are accu-
rate enough to make good provisioning decisions. Besides,
the MVA technique introduces more overhead than the BJB
technique, specially in the large workload scenario (remem-
ber that the computational complexity of this technique de-
pends on the L value), and all this means that the RPredic-
tion function based on the BJB technique would be always
the best option to solve the QN application model.

In contrast, the results obtained with the RUBis bench-
mark show important differences between the two evaluated
techniques. Note that this scenario is much more challeng-
ing than the first: a multi-tier interactive application with
different types of services. In fact, the proposed provisioning
solution has been able to keep almost the same average re-



sponse time in all the experiments, but always a little worse
when using the BJB technique. Another interesting trend
that our experiments show is that this difference is also ob-
served when comparing VM minutes, the number of scal-
ing, the percentage of rejections and the number of under-
provisioned requests. Summarizing, in these experiments
the decisions made with the MVA technique lead always to
better provisioning scenarios in terms of cost and perfor-
mance. For example, if such an important difference can be
observed in the VM minutes during a 30 minutes execution,
the difference in costs that in a real scenario would involve
the use of the BJB technique instead of the MVA technique
could be critical.

With the BJB technique our solution keeps the response
time observed by the user always near to Runder, being then
most likely the up-scalings than the down-scalings. This is
because the bound used to predict the multi-tier application
response time is always the optimistic one, and this leads to
large virtual machines utilization values (ui values above
80% have been measured in all the performed experiments)
but suffering greater risk of observing under-provisioning sit-
uations. This is the reason why in all the experiments the
scalings (specifically, up-scalings) have happened more fre-
quently. And as it was to be expected, as the workload of
the experiment scenario increases, the number of the needed
scalings increases too.

The inconvenient in the case of the MVA-based solution
is that it introduces more overhead than the BJB technique,
even performing less tier reconfigurations, due to the larger
computational complexity of this exact technique and there-
fore to the larger time consumed in executing the RPredic-
tion function. Again this has been specially important in
the large workload scenario (large values of L). With the
BJB version, on the other hand, the average overhead has
been kept always under the minute although this overhead
has slightly increased in the most loaded scenarios.

5. CONCLUSIONS AND FUTURE WORK
Although the utilization of single-step bounding techniques

to solve QN application models in provisioning environments
for n-tier cloud applications has several benefits, there are
still challenges that need to be faced. Our experiments with
two different kinds of applications performed on a Xen/Linux-
based private cloud demonstrate the suitability of the BJB
technique to solve QN models of cloud applications in pro-
visioning scenarios where these applications are batch and
a nearly perfect system balance can be ensured. But in the
case of more complex scenarios (specifically, multi-tier in-
teractive applications with different types of services) the

approximations made âĂŃâĂŃwith this type of technique
lead to provisioning decisions not accurate enough for many
users and contexts. As the computational cost of the MVA
technique can become excessive in these same scenarios, it
will be necessary to evaluate other approximate/bounding
solutions for such situations.

Currently we are working in considering the heterogeneous
case (different types of virtual machines in the same tier), in
extending our experiments to larger and more complex ar-
chitectures (using the simulation framework CloudSim) and
in evaluating the geometric bounds technique, likely more
suitable for complex scenarios and when the system balance
assumption cannot be made.

6. ACKNOWLEDGMENTS
This research has been partially supported by the Gov-

ernment of Spain (Grant Ref. TIN2011-28151).

7. REFERENCES
[1] RUBiS: Rice University Bidding System.

http://rubis.ow2.org/.

[2] J. Bi, Z. Zhu, R. Tian, and Q. Wang. Dynamic
provisioning modeling for virtualized multi-tier
applications in cloud data center. In Proceedings of the
IEEE 3rd International Conference on Cloud
Computing, pages 370–377, 2010.

[3] R. N. Calheiros, R. Ranjan, and R. Buyya. Virtual
machine provisioning based on analytical performance
and QoS in cloud computing environments. In
Proceedings of the 2011 International Conference on
Parallel Processing, pages 295–304, 2011.

[4] G. Casale, R. Muntz, and G. Serazzi. Geometric
bounds: A noniterative analysis technique for closed
queueing networks. IEEE Transactions on Computers,
57(6):780–794, 2008.

[5] E. Casalicchio, D. A. Menascé, and A. Aldhalaan.
Autonomic resource provisioning in cloud systems
with availability goals. In Proceedings of the 2013
ACM Cloud and Autonomic Computing Conference,
pages 1:1–1:10, 2013.

[6] M. Marzolla, S. Ferretti, and G. D’Angelo. Dynamic
resource provisioning for cloud-based gaming
infrastructures. Computers in Entertainment,
10(3):4:1–4:20, 2012.

[7] M. Reiser and S. S. Lavenberg. Mean-value analysis of
closed multichain queuing networks. Journal of the
ACM, 27(2):313–322, 1980.

[8] B. Rochwerger, D. Breitgand, E. Levy, A. Galis,
K. Nagin, I. M. Llorente, R. Montero, Y. Wolfsthal,
E. Elmroth, J. Cáceres, M. Ben-Yehuda,
W. Emmerich, and F. Galán. The reservoir model and
architecture for open federated cloud computing. IBM
Journal of Research and Development, 53(4):535–545,
2009.

[9] U. Sharma, P. Shenoy, and D. F. Towsley.
Provisioning multi-tier cloud applications using
statistical bounds on sojourn time. In Proceedings of
the 9th International Conference on Autonomic
Computing, pages 43–52, 2012.

[10] L. Siew Huei and S. Ya-Yunn. CloudGuide: Helping
users estimate cloud deployment cost and performance
for legacyweb applications. In Proceedings of the IEEE
4th International Conference on Cloud Computing
Technology and Science, pages 90–98, 2012.

[11] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and
T. Wood. Agile dynamic provisioning of multi-tier
internet applications. ACM Transactions on
Autonomous and Adaptive Systems, 3(1):1:1–1:39,
2008.

[12] Y. Wei and C.-Z. Xu. Dynamic balanced configuration
of multi-resources in virtualized clusters. In IEEE 21st
International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication
Systems, pages 60–69, 2013.

[13] P. Xiong, Z. Wang, S. Malkowski, Q. Wang,
D. Jayasinghe, and C. Pu. Economical and robust



provisioning of n-tier cloud workloads: A multi-level
control approach. In Proceedings of the 31st
International Conference on Distributed Computing
Systems, pages 571–580, 2011.

[14] J. Zahorjan, K. C. Sevcik, D. L. Eager, and B. Galler.
Balanced job bound analysis of queueing networks.
Communications ACM, 25(2):134–141, 1982.


