
A Tracing Toolset for Embedded Linux Flash File Systems

Pierre Olivier*, Jalil Boukhobza*,
Mathieu Soula+, Michelle Le Grand+,

Ismat Chaib Draa+

Univ. Bretagne Occidentale
UMR6285 Lab-STICC
F29200 Brest, France

*firstname.lastname@univ-brest.fr
+firstname.lastname@etudiant.univ-

brest.fr

Eric Senn
Univ. Bretagne Sud

UMR6285 lab-STICC
F56100 Lorient, France

eric.senn@univ-ubs.fr

ABSTRACT
NAND flash memory integration in the traditional I/O soft-
ware stack of Unix-like operating systems (OS) was achieved
without modifying most of the OS layers. In fact, one can
dissociate two categories of flash memory devices: (1) those
which intricacies are abstracted to the OS (e.g. SSDs, USB
sticks), and (2) raw flash memory chips driven by a spe-
cific Flash File System (FFS) such as JFFS2 and UBIFS. In
the latter case, the operating system I/O software stack low
level layers (i.e. file system and driver) were upgraded while
the higher levels (virtual file system and related buffers)
were not. In order to optimize the system behavior in such
a case, one must understand the interactions between the
different I/O software management layers, and the perfor-
mance impact of each layer for a given I/O workload. For
this sake, we developed a tracing toolset allowing to under-
stand the impact of each layer on the I/O request flow, for
instance: caching, overheads, and fragmentation. The de-
veloped framework proved to be precious to apprehend the
interactions between OS flash specific layers and traditional
layers for a better system performance understanding.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—sec-
ondary storage, main memory, storage hierarchies; D.4.3
[Operating Systems]: File Systems Management—access
methods; D.4.8 [Operating Systems]: Performance—mea-
surements, modeling and prediction

Keywords
NAND Flash Memory, Flash File Systems, Monitoring

1. INTRODUCTION
NAND Flash memory is the mainstream storage technol-

ogy for embedded systems and are more and more used in

mass storage systems. It has known a tremendous devel-
opment in recent years thanks to the smart phone market
explosion. Flash memory is seen as a pivot technology for
many data-centric applications such as Cloud computing, In-
ternet of Things, and Wireless Sensors. In fact, there is an
exponentially growing need of data storage and some tight
constraints on both performance and energy. The confluence
of these trends puts more pressure on storage system scien-
tists to design more efficient flash based storage systems.
Flash memory has been integrated into the I/O storage

software stack without many modifications [1]. In fact, one
can find two integration ways according to the OS upgrades
performed to support it: (1) flash memory devices which
intricacies are abstracted to the OS level (e.g. SSDs, USB
sticks), in this case traditional interfaces and most are used
of the OS I/O layers stay unchanged. (2) Raw flash mem-
ory chips managed by specific Flash File Systems (FFS) such
as JFFS [16], UBIFS [14] and YAFFS [8]. In this embed-
ded system specific case, low level layers (file systems and
drivers) are flash-aware, but still the above layers (such as
the VFS) remain unchanged .
Many studies have revealed some very peculiar I/O per-

formance behaviors for flash specific file systems [11, 5].
Those behaviors are due for some part to the FFS intricacies,
but also to the interactions between the different I/O soft-
ware stack layers. In order to optimize such FFS behavior,
one should understand the implications of the integration
of flash-specific layers into the I/O path. As detailed in the
next sections, the main layers crossed by an I/O request in a
Linux OS are: the Virtual File System (VFS) and its caches,
the FFS, and the NAND flash memory driver named the
Memory Technology Device (MTD) (see Figure 1). Each of
these layers has a strong impact on the issued I/O requests
latencies. So, in order to understand the subsequent I/O
performance, one should analyze how the I/O request flow
is modified at each layer. In order to ease this I/O explo-
ration and characterization, we propose a toolset allowing to
analyze and understand the I/O request flow. Indeed there
are many existing powerful tools that allow to understand
the OS internals such as Strace, SystemTap, Oprofile, and
others, but these are not specific to I/O system and the user
is to go through cumbersome installation procedures (when
possible) and/or timely familiarization to get started.
We propose a homogeneous toolset consisting of three

main tools: (1) VFSMon, kernel tool allowing to understand
the impact of the VFS and FFS layers on the I/O request.

VFSMon traces kernel events and related parameters, such
as VFS levels data read and write requests, page cache hits
/ misses, and Linux read-ahead calls. (2) Flashmon tool
that reveals how the I/O request flow is translated to flash
memory operations at the FFS output. This tool traces I/O
operations at the driver level (close to the hardware). (3)
FuncMon is a generic tool that allows to give quantitative
information about the execution times of kernel functions
on the I/O path. This is of great help when trying to model
the performance behavior of the system. In order to illus-
trate the use of the developed tools, we give a case study on
modeling of I/O read operation performance on the JFFS2
file-system. Indeed, the tools can help in different phases of
the modeling process: exploration, modeling and validation.

The paper is organized as follows: next section gives some
background on NAND flash and its management in embed-
ded Linux. After a section concerning related works, the
proposed framework is presented. Next, a toolset use-case
is given, before concluding in a final section.

2. NAND FLASH MEMORY BASICS

2.1 Background on NAND Flash Memory
NAND flash memory has some constraints caused by its

internal intricacies. Basically, the smallest addressable data
unit in flash memory is a page (2 to 8 KB), and a fixed
set of pages (usually 64) composes a block. Read and write
NAND flash memory operations are executed on pages while
erase operations are executed on blocks. The main con-
straints are: 1) Write/Erase (W/E) asymmetry: writes are
performed on pages whereas erasures are realized on blocks.
2) Erase-before-write limitation: a costly erase operation is
necessary before data can be modified. 3) Limited number
of W/E cycles: the average number is between 5000 and 105

depending on the technology used.
A flash memory specific component (either software or

hardware) is generally used to overcome the aforementioned
limitations: 1) The erase-before-write and the W/E granu-
larity asymmetry constraints imply that data updates should
be performed out-of-place. Hence, a logical-to-physical map-
ping scheme, which is a critical issue, is used to manage these
updates. 2) Out-of-place data updates require the use of a
garbage collector to recycle blocks enclosing invalid pages in
order to recover free space. 3) To minimize the limitation on
the number of W/E cycles, flash memory management sys-
tem try to evenly distribute the wear over the memory cells.
This wear leveling prevents some memory cells wearing out
more quickly than others.

2.2 Flash Chip Management with Linux
Figure 1 illustrates the software / hardware stack involved

in managing the secondary storage with embedded flash
chips in Linux. User space applications (A on Figure 1) ac-
cess files using system calls (C) which can be encapsulated
in some library (B). System calls are received by VFS (D)
in kernel space. VFS role is to abstract the use of multiple
file systems in one operating system, and to maintain some
caching and I/O optimization mechanisms. VFS dispatches
requests to the corresponding file system, which in our case
is a FFS (E). The FFS handles the requests and eventually
performs flash operations on the memory chip (G) through
the NAND driver, named the Memory Technology Device
(MTD) layer (F).

Figure 1: FFS storage management with Linux.

Traditional VFS layer: The VFS layer [2] allows var-
ious file systems operating on multiple storage devices to
coexists in the OS, and to be transparently accessed by the
user. Several OS level optimization mechanisms are imple-
mented by the VFS layer. The Linux page cache is a RAM
data cache buffering read and written file data.
There are two other mechanisms implemented at the VFS

level which aim to respectively enhance read and write per-
formance between the page cache and the file system. First,
the page cache read-ahead mechanism mainly targets hard
disk drives. During a file read operation, if the system de-
tects a sequential pattern, it prefetches data sequentially
from the file system. Read-ahead system is based on the
fact that hard disks drives show better sequential pattern
performance reducing time consuming head moves. Read-
ahead, enabled by default, has proven to be ineffective when
working with some FFS [15]. Nevertheless it is still active in
YAFFS2 and JFFS2, but deactivated in UBIFS. The sec-
ond mechanism is the page cache write-back. When en-
abled, pages in the page cache are updated on writes but
not directly synced on the storage media. This is done later
through a kernel thread named pdflush, which actually asyn-
chronously writes groups of dirty pages on the storage media.
The aim of this mechanism is to make profit from temporal
locality and absorb write updates at the page cache level.
The write-back feature is supported by UBIFS (and may be
disabled by hand), not by YAFFS2 and JFFS2. So writes
in these FFS are fully synchronous at the VFS level (some
minor buffering at the FFS level is still performed).

FFS & MTD Flash-specific layers : Below VFS are
the flash specific layers. The FFS handles file I/O requests,
maintains its own metadata, and perform flash operations.
The three main FFS supported by Linux are JFFS2 [16],
YAFFS2 [8] and UBIFS [14]. The way file data and meta-
data are read from / written to flash memory is very specific
to the FFS model considered. Nevertheless, all FFS must
cope with flash memory constraints. They all perform out-
of-place data updates and old data invalidation, leading to
garbage collection (GC). GC is done online with I/O re-
quests when the amount of free space is critically low, and
asynchronously through a kernel thread. FFSs also imple-
ment wear leveling policies in their write strategies and GC
victim block selection algorithms. MTD [10] is a generic
driver for all NAND chips supported by Linux. It allows the
FFS to perform flash operations. One can note that MTD
maintains in RAM a read buffer which has the size of one
underlying flash page. A read flash page is kept in the buffer
until another one is read or written.
One can see that the performance of a FFS storage sys-

tem depends of the interractions between multiple software
layers. Before proposing optimizations, those interractions
must first be understood. This is the aim of the tracing
toolset presented in this paper.

3. RELATED WORKS
Many tools have been developed to help understand Linux

I/O behavior. Blktrace [3] is a reference tool allowing to
trace at a block level. Unfortunately, this tool is not of help
when using raw flash chips based on MTD layer. To our
knowledge, there is currently no software specifically target-
ting the trace of FFS based systems. Many tools exist that
allow to trace and monitor kernel system calls and events,
one can cite SystemTap [4], Oprofile [7], Ftrace [13], etc.
Those tools are very powerful and can help in understanding
the I/O request flow. However, their use is cumbersome and
their installation could be very hard on embedded platforms
due to compiling and dependency issues. The objective of
the presented toolset is: (1) to provide users with very easy
to use and yet powerful tools, (2) to focus on FFS-based
storage systems, (3) to be homogeneous as it is based on the
same light (non intrusive) Kprobe facility, and (4) easy to
install (one just needs to compile the modules against the
kernel code and insert the modules).

4. PROPOSED TOOLSET
The tracing toolset consists of three main tools depicted in

figure 1. VFSMon: a VFS level Monitor. Flashmon: a flash
memory operations monitor that traces events at the MTD
level. Finally, FuncMon traces different function execution
times at all the levels of the I/O software stack.

4.1 Fundamental Design Concepts
The three tools are Linux kernel modules written in C.

Kernel modules are built against a kernel source directory
tree without the need of (re)compiling the whole kernel.
They are loaded and unloaded on demand at runtime. The
three developed modules can run concurrently.

Kprobes: All the tools rely on Kprobes [6]. Kprobe
stands for kernel probe and is a low-overhead functional-
ity provided by Linux kernel to obtain information about
kernel function execution at run-time. Kprobes were used
because of three main reasons : their portability as they are
natively supported by Linux, their simplicity as one does
not need to familiarize with a complex framework to de-
velop/modify them, and their non-intrusivity as they were
reported to infer a very small overhead [6]. Kprobes must be
used in kernel code. In our case each module places Kprobes
on various functions corresponding to the kernel events to
trace. The Jprobe subtype allows the tracer to access the
values of the parameters of the traced function. Jprobes are
used by VFSMon and Flashmon to trace events and the re-
lated parameters. For example a flash block erase operation
is traced as a call to the MTD function nand erase(), which
has a parameter indicating the number of the flash block
erased. Kretprobes subtype allows tracing the entry and re-
turn times of a function. Kretprobes are used by FuncMon
to measure relevant functions execution times.

Internal data structures: Each tool maintains in RAM
an array of traced events or execution times. These arrays
of fixed size are pre-allocated when the modules are inserted
to the kernel. We chose to use pre-allocated arrays instead

of allocating a new entry each time an event is traced. In-
deed, the latter solution would add an additional overhead
corresponding to the allocation during the tracer runtime.
Moreover it would lead to a non-deterministic and poten-
tially large (according to the traced workload) RAM usage
for the tracing toolset, which is not efficient in an embed-
ded environment. Fixed size arrays allow the user to control
the tracing tools’ RAM footprint according to the execution
platform resources. The arrays are circular buffers: in case
of overflow the older events are overwritten with newer ones.
Results retrieval: Each tool creates a virtual file in the

/proc special file system directory. This file can be read to
retrieve the tracing output (built on demand). It can also
be written to send commands to the tools: e.g. pause or
restart the tracing process. Results are available in a easily
usable CSV file. Each event traced corresponds to one line
of the output (a log), with the type of event and the value of
the related parameters. Each line also contains a timestamp
and the name of the process executed on the CPU when
the event was traced. Timing values are obtained through
the ktime get() kernel function, providing an absolute time
(system clock) with a nanosecond granularity. The three
traces can be merged and sorted according to timestamps.

4.2 VFSMon
VFSMon traces VFS related events using Jprobes. VFS

events can be decomposed into three classes: VFS inputs,
VFS internal events, and VFS outputs (which actually are
the FFS inputs). VFS inputs are high level functions cor-
responding to the file system calls entry points at the VFS
level. Functions such as vfs read(), vfs write() or vfs open()
are traced along with the related parameters: file identifier
(inode), offset and size of data read / written, etc. VFS in-
ternal events are related cache mechanisms (page cache read-
ahead and write-back) mentioned earlier. VFSMon traces
page cache hits and misses on read operations. Several
read-ahead related events and parameters are also traced,
allowing mainly to observe the prefetching window size evo-
lution. There is no particular event traced concerning the
page cache write-back mechanism as its behavior can be ob-
served when tracing asynchronous write calls to the FFS,
i.e. FFS inputs. Traced FFS inputs, or VFS outputs, are
the entry points of the FFS level. The three main func-
tions at this level are xxx readpage() (xxx being the name
of the FFS) which is called by VFS to ask the FFS to read
a page of a file from the storage media and places it in the
page cache. This function is called on a page cache miss or
during a read-ahead prefetching pass. xxx write begin() and
xxx write end() are called to write the data of a page on the
storage media, for instance, in case of a write-back dirty page
flush. VFSMon takes as input the partition for which the
user needs to trace file I/Os. This allows to filter file oper-
ations related to other peripherals, partitions, pipes, etc by
tracing a dedicated flash partition. The user can start, stop,
pause, and reset VFSMon very easily through the /proc di-
rectory. A sample of VFSMon output is presented on the
left part of Figure 2. The field on the left is the logged time
(ns). A read() system call ends up in a vfs read() call (line
1) to read the first page of a file. It generates a page cache
miss and triggers a read-ahead pass (lines 2-5), reading the
first four pages of the file through the ffs readpage() func-
tion (lines 6-9). The next call to vfs read() asking the second
page of the file is then a page cache hit (line 10) because the

Figure 2: Sequential file read - output samples for VFSMon (left), Flashmon (center) and FuncMon (right).

page was prefetched.

4.3 Flashmon
Flashmon traces flash memory driver level events. As we

are at this level very close to the hardware, Flashmon uses
Jprobes placed on low level driver functions to trace flash
page read / write and block erase operations with the re-
lated parameters, mainly the numbers of flash pages and
blocks accessed. As compared to its previous version [12],
Flashmon has been upgraded to trace cache hits and misses
in the MTD read buffer previously presented. Located in
the generic MTD layer, this tracer is FFS and hardware ag-
nostic. Moreover, Flashmon detects automatically the most
adequate level/function (lowest) to trace according to the
kernel version. Flashmon takes as input (1) the partition
to trace, if not provided, Flashmon traces all the partitions,
(2) it allows to choose whether to trace MTD cache events
or not, (3) the size of the circular buffer which stores the
results, and (4) whether the user needs to log the currently
executed process name during the flash memory operation
(this name can have an impact on the trace size). The user
can start, stop, pause, and reset Flashmon through the /proc
directory. One can also have the possibility to interact with
Flashmon via /proc to isolate I/Os generated from a given
program to make the trace more readable. For instance, one
might develop a program that performs some read opera-
tions, after each read request, the user program can send a
command to Flashmon via /proc in order to insert a marker
allowing to clearly see flash operations generated for each
applicative read operation. Flashmon allows to collect two
types of outputs: a spatial view of the flash memory, and
an event log. The spatial view represents the number of op-
erations (read, write, and erase) sustained by each block of
the flash memory since the module insertion. It allows to
have a clear idea of the distribution of the I/O operations on
the flash memory for a given application and/or partition.
The event log logs the operations with their timestamps.
Figure 2 (center) represents a sample of Flashmon output
when reading a file. It is a sequence of flash page read op-
erations. The third column is the page read index, and the
last index is the process responsible of the operation (a C
program named ”read”).

4.4 FuncMon
FuncMon is a multi-level kernel function execution time

tracer. It works by placing Kretprobes on the (a) entry
and (b) exit points of relevant functions of the I/O software
stack. One Kretprobe is associated to each traced function.
For a given traced function, to each trace point (entry and
exit) is associated a Kretprobe handler which is executed (1)
when the traced function is called and (2) when it returns.
System time is obtained on both the entry and exit handlers,

and the the execution time is then inferred. FuncMon can be
used with any function of the I/O kernel storage stack. The
user can start, stop, and reset FuncMon through the /proc
directory. Figure 2 presents an example of FuncMon out-
put, configured to track the jffs2 readpage() function (read-
ing 4KB of data from the flash media and storing it as a page
in the page cache). The first and second columns represent
the entry and exit times (ns) of the traced function.

5. CASE STUDY: MODELING JFFS2 READ
PERFORMANCE

This section describes a use-case of our tracing toolset
in the context of studying and modeling the read perfor-
mance of JFFS2 on a hardware platform which is the Mistral
Omap3evm embedded board, referred to as the test platform.
It contains an ARM Cortex A8 TI OMAP3530 CPU (520
Mhz), 256 MB of RAM and 256 MB of Micron SLC NAND
flash [9].
Modeling the global read performance Before go-

ing through the details of JFFS2 modeling, we give some
clues on the use of the tools for modeling I/O performance.
One can split up the I/O operation performance into three
phases: VFS phase, FFS phase, driver and flash phases. If
one is interested in I/O response time analysis, the contri-
bution of each above-cited layer to the global response time
request is needed: (1) all the VFS behavior and latencies can
be measured thanks to VFSMon: overheads, cache manage-
ment (hits and misses) and output to the FFS ; (2) the
FuncMon monitor allows to have a precise idea of the FFS
latency for a given request (illustrated in the next sections)
; (3) finally, the driver and flash memory operations are
traced thanks to Flashmon giving accurate measures on the
flash memory operations from qualitative (types of opera-
tions) and quantitative (response time per operation) points
of view, in addition to information about MTD driver and
cache behavior. Consequently with the three developed tools
one can have a precise idea on the latencies induced by each
layer on the I/O software stack. All on a synchronized ho-
mogeneous (from a user point of view) set of tools.
The case of JFFS2 JFFS2 [16] is a mature and widely

used flash file system, mainlined into Linux sources since
2001. For obvious reasons we cannot describe all the inter-
nals of JFFS2 in this paper. Write operations are packed
by JFFS2 into so-called data nodes which are written on
flash. The data contained in one Linux page from one file
can be scattered into several nodes at various on-flash off-
sets. This potential fragmentation can have a strong impact
on JFFS2 read performance. Fragmentation occurs when
a file is written/updated randomly. This phenomenon is
studied in the next section. In this work JFFS2 compres-
sion feature was disabled as it adds a potentially important

and varying overhead on the performance. In the presented
case-study, we are interested in the jffs2 readpage() kernel
function execution time which reads a 4KB Linux page from
flash memory and places it in the VFS page cache. As we are
at the FFS level, we ignored the page cache and read-ahead
mechanisms. The model is simple and focused on a specific
operation to illustrate the use of the developed tools.

Modeling Methodology The modeling methodology con-
sists of : (A) an exploration phase: the tracing toolset
is used to identify the various parameters impacting JFFS2
read performance ; (B) a modeling phase: based on the
output of the exploration phase, a theoretical model is built
; (C) a validation phase: once again the tracing frame-
work is used to create a performance profile for the tested
hardware / software platform and validate the previously
built model against a given I/O workload.

5.1 Exploration Phase
The objective of the exploration phase is to determine the

major factors having a significant impact on jffs2 readpage()
call execution times. To do so, a series of tests has been
conducted. The tests consist in simple C micro benchmark
programs reading data from a file written on a clean JFFS2
formatted flash memory partition. The page cache was emp-
tied before each test. We mainly varied three parameters:
the access pattern (random and sequential), the inter ar-
rival times, and the file fragmentation. We did not vary
the request size as at the FFS level only 4KB system pages
requests are issued. This behavior can be confirmed using
VFSMon. Measures on the jffs2 readpage() execution times
were achieved thanks to FuncMon.

From the experimentations, three observations can be done:
(1) the main factor influencing the jffs2 readpage() execution
times is the file fragmentation. Figure 3 illustrates the ex-
ecution time (FuncMon output) of each jffs2 readpage call
for sequential read operations on both fragmented and non-
fragmented. Results show that the execution times on the
fragmented file are significantly higher and more scattered
(from ∼500 to ∼4500 μs) than the fragmented ones (∼500
μs). (2) Inter-arrival times do not have any impact at this
level as we are below the VFS containing the read-ahead
mechanism that could interleave I/O reads asynchronously.
(3) Sequentially reading a file was slightly (15%) faster than
in random mode. With Flashmon we monitored the MTD
(driver) read buffer behavior and found that it reduced the
number of flash pages read in sequential access mode.

5.2 Proposed Simple Model
When comparing the previous FuncMon outputs (FFS

level) with the related Flashmon outputs (driver level), one
can conclude that the execution time of a jffs2 readpage()
call is mostly related to the number of flash pages read op-
erations. Then it can be modeled as follows:
Tjffs2 readpagef,p = Nflash pagesf,p∗Tflash page read+Toverhead

Where Tjffs2 readpagef,p is the execution time of a call to
the jffs2 readpage() function on the Linux page of index p
inside a file f . Nflash pagesf,p is the number of flash pages
concerned, Tflash page read is the time to read one flash page
at the driver level (just below the FFS), and finally, Toverhead

is the additional time related to JFFS2 internal operations.
Nflash pagesf,p depends on the on-flash physical location

of the nodes composing the Linux page as each node can
be written in one or many flash pages. Moreover, the MTD

Figure 3: jffs2 readpage() latencies for sequentially
reading a fragmented / non fragmented file.

Operation Latency (μs) Standard deviation
Page read 182.66 8.89e-7
Page write 413.55 4.59e-3
Block erase 532.88 2.15e-2

Table 1: Traced driver level flash latencies.

read buffer presence implies that the same flash page read
consecutively many times would trigger only one flash page
read operation. We define the term fragmentation map as
being the ordered sequence of physical flash page numbers
needed to be read in order to retrieve all the FFS nodes
composing a Linux page. For example, if a Linux page p of
a file f is composed of two 2 KB sized nodes, with the first
one physically located on flash pages 12 and 13, the second
on flash pages 13 and 14, and the fragmentation map for
the Linux page in the file is Fragf,p = {12, 13, 13, 14}. So
Nflash pages is equal to the size of the fragmentation map
minus the number of potential MTD cache hits in case a
flash page is accessed two or more times repeatedly.
Nflash pagesf,p = |Fragf,p| −Nread cache hitsf,p

Here |Fragf,p| is the size of the fragmentation map of
the page p in file f . Nread cache hitsf,p is the number of
cache hits in the MTD read cache. In our example with
Fragf,p = {12, 13, 13, 14} this value is 1 because flash page
13 is read twice in a row.

5.3 Estimator and Model Validation
An estimator implementing the model was developed and

used to analyze the model accuracy. This program estimates
the time taken to read a JFFS2 file in a given hardware /
software environment. It takes as input an I/O trace a trace
describing the order in which the Linux pages of the file
are read, and a description of the environment in terms of:
(A) the Tflash page read and Toverhead values for the model
parameters, and (B) the fragmentation map for each Linux
page of the file being read.

5.3.1 Parameters Extraction
We used both FuncMon and Flashmon to retrieve the tim-

ing values (Tflash page read and overhead) for a given plat-
form and the fragmentation map for a given file.
Timing Parameters FuncMon was used to monitor the

execution time of a flash page read operation at the driver
level. For information purpose we also monitored the page
write and block erase driver level execution times.

jffs2 readpage() Mean Standard
execution times set overhead (μs) deviation

Seq. read non-frag. file 41.73 9.34e-3
Sequentially read frag.file 48.40 1.50e-2

Mean the two sets 45.06 1.23e-2

Table 2: jffs2 readpage overhead results.

Mean exec. time (μs) StDev.
Access File Mea- Estimated Mea- Estimated
pattern frag. sured (error) sured (error)

Seq. No 411 423 (3%) 2.1e3 2.2e3 (5%)
Seq. Yes 2353 2426 (3%) 1.5e6 1.6e6 (5%)
Ran. No 474 489 (3%) 8.5e3 8.9e3 (5%)
Ran. Yes 2387 2459 (3%) 1.5e6 1.6e6 (5%)

Table 3: Validation results: measured vs estimated.

Toverhead is found by reversing the preceding equation :
Toverhead = Tjffs2 readpage −Nflash pages ∗ Tflash page read

We measured with FuncMon the execution times of multi-
ple calls to jffs2 readpage(). Nflash pages was obtained from
Flashmon and Tflash page read from previous measures (with
FuncMon, see Table 1). The overhead was estimated based
on two sets of jffs2 readpage() execution times obtained with
FuncMon while sequentially reading (A) the non-fragmented
and (B) the fragmented file. Results are presented in Table2.

Fragmentation Map To build the fragmentation map
for a given file, we relied on two software tools. The first is
jffs2dump developed by JFFS2 contributors. Given the raw
(binary) content of a jffs2 flash partition, it outputs the list
of nodes and details about its location and state. We built
a second tool that takes the output of jffs2dump and builds
the fragmentation map for each Linux page of each file.

5.3.2 Estimator Proposal and Model Validation
Validation Process The estimator gives the execution

times of a series of calls to jffs2 readpage() on a given file.
It takes as input: the fragmentation map, the timing values
Tflash page read and Toverhead previously presented, and an
input I/O trace file obtained thanks to VFSMon and Flash-
mon running with a test programs performing read() calls
on a JFFS2 file on our test platform. Alongside, correspond-
ing test programs were launched on the test platform and
FuncMon was used to measure execution times. Real mea-
sures and estimated values were then compared to check the
model validity and determine its accuracy.

Validation scenarios and metrics We validated the
model against four scenarios representing reading operations
on fragmented / non-fragmented 10 MB file, with a random
/ sequential pattern.

Results Table 3 presents, for each scenario, the mean and
standard deviation values for the measured versus estimated
jffs2 readpage() execution times. As one can see the model
gives accurate results, the maximum error being 5.38%. The
fragmentation impact on performance is visible on real and
estimated values: execution times while reading fragmented
files are significantly longer (more than five times) as com-
pared to reading a non-fragmented file. The MTD cache
effect is also visible on the non-fragmented measures with
around 15% better execution times for sequential pattern.

6. CONCLUSION
This paper presents a set of tools helping users to un-

derstand embedded FFS-based storage system performance
behaviors. Each tool focuses on the understanding of some
specific layers crossed by the I/O requests flow. VFSMon
traces events at the VFS layer and FFS input, including the
page cache read-ahead and write back mechanisms. Flash-
mon traces events at the driver layer (FFS output). Func-
Mon measures execution times of kernel functions on the
I/O path. The tools are synchronized on the same kernel
clock making them complementary in the I/O behavior un-
derstanding. We also present a case study, using the tools to
extract information on the fragmentation impact on JFFS2
and the storage system performance. The tools are FFS ag-
nostic and can be used with all FFS built above the MTD
layer, which is the case of most FFSs. All the developed
tools will be available online with an open source license.

7. REFERENCES
[1] M. Bjørling, P. Bonnet, L. Bouganim, and N. Dayan.

The necessary death of the block device interface. In
Conference on Innovative Data Systems Research
(CIDR), Asilomar, USA, 2013.

[2] D. P. Bovet and M. Cesati. Understanding the Linux
kernel. O’Reilly Media, 2005.

[3] A. D. Brunelle. Blktrace user guide, 2007.

[4] F. C. Eigler, V. Prasad, W. Cohen, H. Nguyen,
M. Hunt, J. Keniston, and B. Chen. Architecture of
systemtap: a Linux trace/probe tool. 2005.

[5] T. Homma. Evaluation of flash file systems for large
NAND flash memory. Embedded Linux Conference,
San Francisco, USA, 2009.

[6] J. Keniston, P. S. Panchamukhi, and M. Hiramatsu.
Linux kernel probes documentation, 2014.

[7] J. Levon. OProfile manual, 2004.

[8] C. Manning. How YAFFS works, 2010.

[9] Micron Inc. NAND flash and mobile LPDDR 168-ball
package-on-package (PoP) MCP combination memory
(TI OMAP) datasheet, 2009.

[10] MTD Contributors. Memory technology device
general documentation, 2008. http:
//www.linux-mtd.infradead.org/doc/general.html.
Online, accessed 2009/23/09.

[11] P. Olivier, J. Boukhobza, and E. Senn.
Micro-benchmarking flash memory file system wear
leveling and garbage collection: A focus on initial
state impact. In Computational Science and
Engineering (CSE), 2012 IEEE 15th International
Conference on, pages 437–444, Paphos, Cyprus, 2012.

[12] P. Olivier, J. Boukhobza, and E. Senn. Flashmon v2:
Monitoring raw NAND flash memory i/o requests on
embedded linux. SIGBED Rev., 11(1):38–43, 2014.

[13] S. Rostedt. Ftrace documentation, 2008.

[14] A. Schierl, G. Schellhorn, D. Haneberg, and W. Reif.
Abstract specification of the UBIFS file system for
flash memory. In FM 2009: Formal Methods, pages
190–206. Springer, 2009.

[15] UBIFS Contributors. Readahead - UBIFS
documentation, 2008. http:
//www.linux-mtd.infradead.org/doc/ubifs.html

Online, accessed 2014/09/23.

[16] D. Woodhouse. JFFS2: The journalling flash file
system version 2. In Ottawa Linux Symposium,
Ottawa, Canada, 2001.

