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ABSTRACT
The minimal Markovian representation of PH distributions
is an open research problem, which was actively investigated
during the last two decades. We present a numerical method
for finding small Markovian representation of PH distribu-
tions and investigate the general quality of the method by
comparing the size of the obtained representation with the
size of the representation obtained by alternative methods.
Our numerical method intends to find a small Markovian
representation. We report examples when the obtained rep-
resentation is larger than the minimal Markovian represen-
tation.

Keywords: PH distribution, minimal representation, feed-
back Erlang block, unicyclic block.

1. INTRODUCTION
Phase-type (PH) distributions play an important role in
Markovian modeling by providing a large class of nonneg-
ative distributions (both discrete and continuous) that al-
low for a Markov chain-based stochastic interpretation. A
PH-distribution is defined as the absorption time of a (dis-
crete or continuous time) Markov chain [12, 13], and is thus
characterized by an initial vector and a Markov generator
matrix. In the present paper, we focus on the continuous
time phase-type distributions, but note that many of the
ideas and methods presented may well be applicable to their
discrete-time counterparts.

However, the Markov chain representation of a specific PH
distribution is not unique; there are many equivalent Markov
chain representations for any given PH distribution (even
with different sizes). This non-uniqueness raises a number
of rather involved research issues. The easiest solution for
these technical issues is the use of canonical representation
[6, 9] – a conveniently defined, minimal, unique Markov
chain representation. Unfortunately, canonical representa-
tions are available only for order 2 and order 3 general PH
distributions [9] and some special subclasses of higher order

PH distributions, e.g. acyclic PH distributions [6]. In spite of
the continuous research efforts during the last 2 decades our
knowledge on the convenient Markov chain representation
of higher order general PH distributions is rather limited.
Based on O’Cinneide’s characterization theorem [14] Mo-
canu and Commault proposed a sparse representation, which
is unique, sparse (contains a limited number of transitions),
but not minimal [10]. Their proposed representation is com-
posed by small Markov chain blocks which represent either
one real eigenvalue or a complex conjugate pair of eigenval-
ues of the PH distribution (which are associated with the
poles of the rational Laplace transform of the distribution
function). The non-minimal size of the representation is due
to the fact that each complex conjugate eigenvalue pair is
represented with a Markov chain block of size larger than
2. In this paper we investigate if other compact represen-
tations can be obtained by representing more than a single
complex conjugate eigenvalue pair by a single small Markov
chain block.

1.1 Related works
A very interesting feature of the research effort on the sub-
ject of this paper is that there are two partially indepen-
dently evolving research fields, the theory of Phase type
distributions and the theory of linear systems, which inde-
pendently investigate the same problems with completely
different terminology time to time.

On the field of phase type distribution continuous (time)
models are more commonly considered. After some results
on canonical forms O’Cinneide defined a number of open re-
search problems associated with the minimal Markov chain
representation of general PH distributions [15]. In this paper
he published a conjecture that every PH distribution has a
minimal unicyclic representation. While it was shown by a
counterexample [8] that the conjecture is false, the unicyclic
structure has nice properties for representing PH distribu-
tions in an efficient way. Indeed, the counterexample of He
and Zhang [8] was such that the combination of 2 unicyclic
blocks allowed the minimal representation instead of a single
one.

In this work we practically follow the procedure of Mocanu
and Commault [10], but we replace their building block
(feedback Erlang block) with the more flexible unicyclic
block.

On the field of linear systems a different terminology (system



response to the impulse function, transfer function) describe
similar mathematical concepts in case of single input single
output (SISO) systems. On this field the discrete transfer
functions and their z-transform are more widespread. A non-
negative transfer function of a SISO system is a counterpart
of a distribution and the positive representation of the linear
system is the counterpart of the Markovian representation
[3].

There are several results about the minimal positive rep-
resentation of specific subset of linear systems [2, 17, 11,
7]. The subsets of linear systems considered in these works
are not natural in the analysis of PH distributions. For ex-
ample the counterpart of the set of order 3 linear systems
with distinct real eigenvalues [17] is larger than the set of
acyclic PH distribution of order 3 but smaller than the set
of PH distribution of order 3. The different motivations be-
hind the evolution of these two fields, the use of different
methodologies and the different time axes make the trans-
lation of the related results rather difficult. Some of the
results have strong geometric interpretations for the loca-
tion of the eigenvalues, which needs to be translated from
the unit circle (in case of discrete time system) to the half
plane (in case of continuous time system).

We conclude that the minimal positive representation of a
transfer function and the minimal Markov representation
of a PH distribution are rather similar problems which were
investigated in different communities with very little mutual
influence during the last 2 decades, and the roots of the
concepts used in this work are present in both fields.

The rest of the paper is organized as follows. In Section
2, we present the theoretical setup for the work: Subsec-
tion 2.1 includes the basic definitions, Subsection 2.2 gives
a short overview of various representations and transfor-
mations in general, while Subsection 2.3 presents a more
detailed review of the Mocanu–Commault representation.
Subsection 2.4 presents the proposed unicyclic representa-
tions and the necessary theory behind them. Section 3 con-
tains the main contribution of the paper: the experimental
analysis of Markovian representations with unicyclic blocks
in various settings. Section 4 concludes the paper.

2. PRELIMINARIES
2.1 Basic definitions

Definition 1. A pair (α,A), where α is a vector of size
1× n and A is a matrix of size n× n is said to be a vector-
matrix pair of size n.

Definition 2. The vector-matrix pair of size n, (α,A),
is said to be Markovian if α and A have the following prop-
erties: αi ≥ 0, Aii < 0, Aij ≥ 0 for i �= j, A1 ≤ 0, and A
is non-singular. 1 denotes the column vector of ones of the
appropriate size.

PH distributions can be defined as follows.

Definition 3. Let X be a random variable with cumula-
tive distribution function (CDF) FX(x) = Pr(X ≤ x). X

is PH distributed if there is a finite size Markovian vector-
matrix pair, (α,A), for which

FX(x) = Pr(X ≤ x) = 1−αeAx1, (1)

In this case we say that X is phase-type distributed with
representation (α,A), PH(α,A) distributed, for short.

In Definition 3, vector α is referred to as initial row vector
and matrix A as transient generator matrix. In this paper
we assume that α1 = 1, which means that there is no proba-
bility mass at t = 0 and FX(0) = 0. The probability density
function (PDF) and the Laplace transform X are

fX(x) = αeAx(−A)1, (2)

f∗
X(s) = E(e−sX) = α(sI−A)−1(−A)1, (3)

(2) defines the matrix-exponential function associated with
the vector-matrix pair (α,A), both for Markovian and non-
Markovian vector-matrix pairs, whose Laplace transform is
a rational function of s (3). The poles of f∗

X(s) coincide with
the eigenvalues of A with identical multiplicity.

2.2 Different Representations of PH Distribu-
tions

The vector-matrix representation of fX(x) is not unique.
There are different vector-matrix pairs, both with identi-
cal size and different sizes resulting in the same matrix-
exponential function. Also, there might be representations
where the vector-matrix pair does not satisfy the nonneg-
ativity criterions αi ≥ 0, Aij ≥ 0 in Definition 2. Such
representations will be referred to as non-Markovian.

E.g., if (α,A) of size n describes a PH distribution with
density function fX(x) and a non-singular matrix B of size
n × n is such that B1 = 1 then (γ,G) with γ = αB, G =
B−1AB is a different representation of the same distribution
with the same size. Further more, if (α,A) represents a PH
distribution of size n, (γ,G) represents a PH distribution of
size m and there exists a matrix W of cardinality n × m,
such that αW = γ, AW = WG, W1m = 1n then (α,A)
and (γ,G) represent the same distribution [5].

Definition 4. X is PH distributed with density function
fX(x). The (α,A) vector-matrix pair of size n is said to be a
minimal representation of X if there is no vector-matrix pair
of smaller size whose associated matrix-exponential function
is fX(x).

Methods finding a minimal (not necessarily Markovian)
vector-matrix pair are available either directly from fX(x)
(e.g. through Proposition 2.3 in [1]) or from any vector-
matrix pair describing the same distribution [5]. Hereafter
we assume that a minimal vector-matrix pair is available.

Definition 5. X is PH distributed with density function
fX(x). The (α,A) Markovian vector-matrix pair of size n is
said to be a minimal Markovian representation of X if there
is no Markovian vector-matrix pair of smaller size whose
associated matrix-exponential function is fX(x).
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Figure 1: FE-diagonal block.
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Figure 2: FE-diagonal representation of a generator
with a real eigenvalue (λ1) and a pair of complex
ones.

As opposed to a minimal vector-matrix pair, a minimal
Markovian vector-matrix pair is not readily available. The
ultimate goal of our research is to find a minimal Marko-
vian (α,A) vector-matrix pair for a PH distribution with
density function fX(x). Towards this ultimate goal, in the
current work we try to improve the procedure by Mocanu
and Commault which computes a Markovian representation
for fX(x).

2.3 The Mocanu and Commault representa-
tion

The procedure for computing the Mocanu and Commault
[10] representation is composed of the following steps:

1. compute the eigenvalues of the PH distribution,

2. represent the eigenvalues with a Markovian matrix us-
ing FE-diagonal blocks,

3. compute the associated initial vector,

4. extend the representation with additional states if the
initial vector contains negative elements.

Step 1 is straightforward.

Step 2. In the Mocanu and Commault representation the
real eigenvalues are represented with a single exponential
transition (see the first block in Fig. 2) and the pairs of
complex eigenvalues by Feedback-Erlang (FE) blocks.

Definition 6. [10] A Feedback-Erlang (FE) block with
parameters (b, λ, z) is a chain of b states with transition rate
λ and one transition from the bth state to the first state, with
rate zλ (c.f. Figure 1). The probability z ∈ [0, 1) is called
the feedback probability.

Feedback-Erlang blocks with length b = 1 or feedback prob-
ability z = 0 are called degenerate FE blocks representing

real eigenvalues. A non-degenerate FE block where b is odd
has a real eigenvalue and (b−1)/2 complex conjugate eigen-
value pairs. A non-degenerate FE block where b is even has
2 real eigenvalues and (b − 2)/2 complex conjugate eigen-
value pairs. In both cases the eigenvalues are located on a
circle in the complex plane whose center is −λ. The domi-
nant eigenvalue (the one with the largest real part) of the FE
block with parameters (b, λ, z) is always real and given by

r = −λ
(
1− z

1
b

)
[10]. Given the eigenvalues σ1, . . . , σn of a

PH distribution whose dominant eigenvalue is σ1, it is possi-
ble to compose FE blocks for representing these eigenvalues
as follows:

• if σj is real, the corresponding FE block is a degenerate
block; thus the parameters are:

λj = −σj , bj = 1, zj = 0, (4)

• if σj = −aj ± icj is a complex conjugate pair, the
parameters are:

bi =

⎡
⎢⎢⎢⎢⎢

2π

π − 2 arctan

(
ci

ai + σ1

)
⎤
⎥⎥⎥⎥⎥ , (5)

λi =
1

2

(
2ai − ci tan

π

bi
+ ci cot

π

bi

)
, (6)

zi =

(
1−

ai − ci tan
π
bi

λi

)bi

, (7)

where �x� denotes the smallest integer strictly greater
than x.

Figure 2 depicts an example of a Markovian generator which
is the unicyclic representation of a generator with a real
eigenvalue (λ1) and a pair of complex conjugate ones in
FE-diagonal form. In this representation there are two FE
blocks, one of length b1 = 1 with rate q1 = λ1, and one of
length b2 = 3 with rate λ2 and feedback probability z2. The
associated generator matrix is

G =

⎛
⎜⎜⎝

−λ1 λ1 0 0
0 −λ2 λ2 0
0 0 −λ2 λ2

0 zλ2 0 −λ2

⎞
⎟⎟⎠ .

Step 3. Starting from an (α,A) minimal non-Markovian
vector-matrix description of the distribution we compute the
unicyclic representation of the matrix A, denoted as matrix
G. Additionally we compute the initial vector associated
with matrix G as follows. Let n and m (n ≤ m) be the size

of A and G, respectively. Compute matrix Ŵ of size n×m
as the unique solution to

AŴ = ŴG, W1 = 1, (8)

and based on Ŵ the initial vector is

γ = α · Ŵ. (9)

Step 4. In case the initial vector contains negative elements,
we add a so-called Erlang-tail to the matrix and recalculate
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Figure 3: General unicyclic block.

the representation [10, 16]. With a suitable choice of param-
eters (transition rate and length of the Erlang-tail) this will
always result in a Markovian representation, albeit possibly
with a large size, depending on the length of the tail. We
do not pursue this direction further in the present paper,
instead focusing on the block structure. That said, in some
cases, the initial vector is already nonnegative before this
step, and this last step is not necessary.

2.4 The representation with unicyclic blocks
The term unicyclic block comes from [15], where it was sup-
posed to be the structure of the whole generator matrix,
not only a block of it. Unicyclic block that we use in this
paper is depicted in Figure 3). It has identical intensities
towards the absorbing state and may have transitions from
the last phase to any previous phase. The main motivation
behind the use of unicyclic blocks (UBs) is to represent more
eigenvalues with a single block. An unicyclic block has more
flexibility than an FE block of the same order, since an FE
block is characterized by 2 parameters (λ, z) for a given or-
der n, and an unicyclic block of order n has n parameters
(λ, α1, . . . , αn−1). These n parameters allow a given flexibil-
ity in representing more than one pair of complex conjugate
eigenvalues with a single unicyclic block, which was not the
case with FE blocks. It worth noting that an FE blocks is
a special UB with α1 = z and α2 = . . . = αn−1 = 0.

In [8], the authors prove that every PH distribution of size
3 has an UB(3) representation and give an analytic method
to calculate the representation. However, to the best of our
knowledge, similar methods (or straightforward descriptions
of any kind) are unavailable for larger UB. In this work we
investigate the flexibility of larger UBs through a numerical
method. The complexity and the numerical instability of the
applied numerical method increases quickly with the block
size, hence we focus on block sizes of 3 (for verifying the
procedure), 4, and 5.

It is reported many times (e.g. in [8]) that the eigenvalues of
an order 3 PH distribution should be in a triangular of angle
π/3 staring from the dominant eigenvalue as it is in Figure
4. An FE block of order 3 can represent complex conjugate
eigenvalue pairs only on the border of this triangular, while
a unicyclic block of order 3 can represent any complex con-
jugate eigenvalue pairs in the triangular. Indeed Figure 4
depicts the feasible region of the complex eigenvalue pairs
computed by our numerical procedure when the dominant
eigenvalue is −1. The figure also demonstrates that the uni-
cyclic block structure is flexible enough to capture the full
flexibility of the complex eigenvalues of order 3 PH distri-
butions.

Our numerical procedure works as follows. We compute the

roots of the characteristic polynomial of matrix⎛
⎜⎜⎜⎜⎝

−λ λ · · · 0

0 −λ
. . . 0

0 0
. . . λ

α1λ α2λ · · · −λ

⎞
⎟⎟⎟⎟⎠

as a function of λ, α1, . . . , αn−1 and set the parameters such
that the roots are the required eigenvalues. Symbolic solu-
tions are available for order 3 and 4, but we use numerical
solver in all cases. In case of UB(3) we set one real and one
conjugate pair, in case of UB(4) we set two reals and one
conjugate pair, and in case of UB(5) we set one real and
two conjugate pairs. If the obtained λ, α1, . . . , αn−1 param-
eters are non-negative the UB is Markovian and exhibits the
required eigenvalues.

With the help of this numerical procedure we can depict
some eigenvalue regions which can be represented by UB(3),
UB(4) and UB(5), such that we fix some eigenvalues and plot
the feasible region of the remaining one (which is a conju-
gate pair in each cases). As already mentioned, the results
for UB(3) are aligned with the theory. Feasible regions of
the eigenvalues of Markovian UB(4) blocks are depicted in
Figure 5. The fixed eigenvalues are depicted with small cir-
cles. The order 4 FE block can represent only the conjugate
pair at the top and bottom right points, −1.5± 0.5i.

Comparing Figure 4 and 5, see Figure 6, we can easily com-
pose an order 4 counterexample of O’Cinneide’s unicyclic
representation conjecture [15] for which [8] presented an or-
der 6 counterexample. E.g., if the eigenvalues of an order
4 PH are −1,−2,−3± 0.5i then one can represent it by an
UB(3) and a single exponential, but cannot represent it as an
UB(4). Indeed the intersection of the regions in Figure 4 and
5 are such that the eigenvalues can be represented by both
an UB(3) with an additional exponential and an UB(4). An
UB(4) block needs only when the complex eigenvalue pair is
in the UB(4)\UB(3) part.

We can interpret this as a qualitative difference between the
order 3 and the higher order UBs. Namely, fixing one eigen-
value of an UB(4) additional to the dominant one makes its
feasible region bounded, while feasible region of UB(3) is
unbounded.

Figures 7 - 11 demonstrate the change of the feasible region
of an UB(5) block, when the dominant eigenvalue is −1 the
real part of the fixed complex conjugate eigenvalue is −1.8
and its imaginary part changes between 0.25 and 0.6. The
numerical errors appearing when the imaginary part is close
to zero cause the white zones inside the continuous regions.
Similar to the UB(4) case fixing the dominant eigenvalue and
a complex conjugate pair limits the remaining eigenvalue
pair to a bounded region.

The results on Figures 7 - 11 can not be related with the
eigenvalues of the order 5 FE blocks, because none of the
considered fixed eigenvalue arrangements is according to the
angle of the regular pentagon, which is the case with order
5 FE blocks.
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Figure 4: UB(3) region
with real eigenvalue −1.
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Figure 5: UB(4) region
with −1,−2.
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Figure 6: Intersection of
UB(3) and UB(4)
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Figure 7: UB(5) region
with −1,−1.8± 0.25i.
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Figure 8: UB(5) region
with −1,−1.8± 0.35i.
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Figure 9: UB(5) region
with −1,−1.8± 0.42i.
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Figure 10: UB(5) region
with −1,−1.8± 0.5i.
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Figure 11: UB(5) region
with −1,−1.8± 0.6i.

The consideration about the unbounded UB(3) and bounded
UB(4) blocks anticipate one of the main points of the present
paper that unicyclic blocks of size 3 are all that are necessary
in the majority of cases. In the next section, we test the
effectiveness of the FE block structure and the UB structure
in different settings.

3. EXPERIMENTAL RESULTS
There are a number of questions to be examined. The most
important one is, of course, how much is to be gained by in-
troducing the unicyclic blocks compared to pure FE blocks.
This can be measured in several ways.

In subsection 3.1, we will focus on obtaining minimal repre-
sentations with unicyclic blocks. To obtain a large sample
of random PH distributions, the function randomPH from the
package BuTools is used [4] under Wolfram Mathematica.

We realize that there is no single best way to generate ran-
dom samples; for a more thorough experimental analysis,
we decided to include a second round of tests. Both FE and
unicyclic block representations are based on the eigenvalues
of matrix A, and the number of complex eigenvalues is a
major factor in the size of the representation obtained. To
that end, in Subsection 3.2 we tested both types of repre-
sentations in a setting where only the set of eigenvalues is
generated, with the ratio of complex eigenvalues from among
all eigenvalues as a scalable parameter. While this only tests
the matrix part of the representation, it still gives a good
idea in how does the size of a unicyclic block structure repre-
sentation compare to the FE block structure representation,

depending on the number of complex eigenvalues.

The two main statistics to be examined is the average size of
representations found and the percentage of the cases where
a minimal representation was found. In Section 3.1, the
average is omitted due to the omission of a tail procedure
(see Step 4 in Section 2.3); without a tail procedure, in some
cases no representation will be found, and thus any form
of average would be inherently distorted. Instead, we rely
on the percentage of minimal representations. This issue is
partly remedied by Section 3.2.

All representations were calculated numerically. Working
precision is 10 decimal digits. We note that the numerical
solver works fine up to block size 5 (which means solving
an equation system of degree 4), but gets unreliable above
that.

3.1 Experiments with PH samples
In the following experiments, a large set of random PH
samples were generated. randomPH is capable of generating
PH distributions along with minimal Markovian represen-
tations. While starting from a minimal Markovian repre-
sentation may seem counterintuitive at first, this has the
advantage that the size of the minimal Markovian represen-
tation is known upfront, making the results easier to evalu-
ate. Also, the random matrices generated by randomPH are
dense, but the canonical representations obtained by either
form of block structure are sparse, making them more effi-
cient for actual Markovian modeling applications.



Then each sample is tested by four algorithms. In all algo-
rithms, the blocks are determined first. algo1 uses the FE
block structure: it represents each real eigenvalue by a block
of size 1 (referred to as a real block from now on) and each
complex eigenvalue by an FE block whose size is determined
by (5). algo2 also searches for UB(3), prioritizing it over
FE and real blocks. When a block is found, the correspond-
ing eigenvalues are removed from the set of all eigenvalues,
and the search continues for the rest of the eigenvalues un-
til all eigenvalues are represented. algo3 works similarly,
but searches for UB(3) and also UB(4), with UB(3) getting
higher priority. The reason behind this choice of priority is
due to the fact that a block of size 4 may be feasible even
when a block of size 3 is not, but a block of size 4 rep-
resents 2 real eigenvalues instead of 1 (in other words, real
eigenvalues may be regarded as “resources” to construct uni-
cyclic blocks, and UB(3) uses less of those resources). algo4
searches for UB(5), UB(3), UB(4), FE and real blocks in this
order (UB(5) represents 2 complex and 1 real eigenvalues,
thus being the most resource-efficient in the above sense).

For each algorithm, once the blocks are determined, they
still need to be arranged in some way to obtain a full rep-
resentation. By this we refer to the order of the blocks.
To limit the complexity of the experiments we assume that
absorption is only possible from the last phase of the last
block.

The initial vector corresponding to the obtained FE or uni-
cyclic representation is uniquely determined by the ordered
blocks. The initial vector needs to be checked for nonnega-
tivity; if it is nonnegative, then the obtained representation
is Markovian. If the initial vector contains at least one nega-
tive element, the obtained representation is not Markovian.
Methods are available to remedy this situation (e.g. by the
addition of an Erlang-tail, see [10, 16]), but they typically
involve the addition of extra phases. We do not pursue this
direction, and as a result, the algorithms may fail to find a
Markovian representation due to the negativity of the initial
vector. As we shall see, this is not a significant issue in our
experiments.

The ordering of the blocks is important in that it greatly
affects whether the initial vector will be Markovian or not.
For acyclic PH distributions (this corresponds to the sub-
class where all blocks are real and of size 1), the right or-
dering is when blocks are in arranged in increasing order of
absolute value [6]. Based on this, we expect that for uni-
cyclic representations, increasing order of the absolute value
of the diagonal element will work well. Nevertheless, we test
the reverse ordering as well.

The random generator randomPH has one more interesting
feature: the number of restrictions (# restr.) is also a scal-
able parameter. Restrictions in this case are the number
of prescribed 0 elements in either the matrix or the vector.
Several samples with a different number of restrictions will
be tested.

The first test focuses on testing the right ordering; each of
the 4 algorithms with both orderings will be tested on the
same sample set. algo1, algo2, algo3 and algo4 denote
the versions of the algorithms (as defined above) with the

blocks in increasing order and algo1b, algo2b, algo3b and
algo4b denote the same algorithms but with the blocks in
decreasing order.

In the first experiment 1000 random PH distributions were
used; the minimal size is 10 and the number of restrictions
is 0. The results show the number of minimal Markovian
representations (min. size) found by each of the algorithms
out of 1000.

size=10 # min. repr.

algo1b 0
algo2b 0
algo3b 0
algo4b 0
algo1 4
algo2 683
algo3 700
algo4 710

As can be seen from the results, the algorithms using de-
creasing ordering are absolutely inefficient, failing to pro-
duce even one single minimal Markovian representation
(in fact, decreasing ordering versions did not produce any
Markovian representations at all). The increasing ordering,
on the other hand, works quite nicely. algo1 finds represen-
tations that are typically larger than minimal (although it
should be noted that it does find a Markovian representa-
tion of some size most of the time). algo2, algo3 and algo4

find a minimal unicyclic representation at around 70% of the
time. The huge jump is between algo1 and algo2, i.e. most
of the improvement is due to the introduction of UB(3). The
most likely explanation is that UB(3) is capable of repre-
senting a complex eigenvalue and a real eigenvalue with the
minimal number of phases possible, while FE blocks need at
least one extra phase for each complex eigenvalue.

From this point on, all tests are done solely for the increasing
order versions of the algorithms.

In the next experiment, 5000 random PH distributions were
generated with size 10 and the number of restrictions set to
0, 20 and 60 (low/medium/high) respectively. The results
show the number of minimal representations (monocyclic
for algo1, unicyclic for algo2–algo4) found by each of the
algorithms out of 5000.

size=10 # of restrictions
0 20 60

algo1 16 186 450
algo2 3485 4419 3863
algo3 3556 4430 3884
algo4 3640 4426 3875

As can be seen, all of the algorithms improve when the num-
ber of restrictions is set from 0 to 20. This is possibly
due to the number of complex eigenvalues typically being
lower in this case (again, we remark that it is necessary that
all eigenvalues are real in order for algo1 to find a mini-
mal representation). Also, the difference between between



algo2, algo3 and algo4 is very small. algo2–algo4 per-
formed slightly worse when the number of restrictions was
increased to 60. We do not have an intuitive explanation
for this phenomenon. There is one more interesting issue:
in some cases, algo4 performed slightly worse than algo3.
This might be due to the preference settings of algo4; while
UB(5) contains two pairs of complex eigenvalues, and thus
seems generally more desirable, it is possible that a block
of size 5 found in actual examples represents two pairs of
complex eigenvalues with real parts far from the dominant
eigenvalue, plus a real eigenvalue that is either the dominant
or close to it. Instead, two UB(3) or UB(4) blocks with real
eigenvalues farer from the dominant eigenvalue might be a
more optimal choice (we found examples of this case).

In the next experiment, 2000 random PH distributions were
generated with size 20 and the number of restrictions set
to 0 and 100 respectively. The results show the number of
minimal representations (monocyclic for algo1, unicyclic for
algo2–algo3) found by each of the algorithms out of 2000.

size=20 # of restrictions
0 100

algo1 0 0
algo2 471 1821
algo3 474 1821

A minimal representation is much less likely for these larger-
sized PH distributions, but, while algo1 is unable to find a
minimal representation at all, algo2 and algo3 still work
for a portion of the samples. The number of restrictions is
again very important, making algo2 and algo3 much bet-
ter in finding a minimal representation when the number of
restrictions is set to 100.

3.2 Experiments with eigenvalue samples
In this section, a list of eigenvalues is generated randomly.
Initial vectors were not tested; the main point is to introduce
the number of complex eigenvalues as a scalable parameter.
We also tested not just for the number of complex eigenval-
ues, but also for “how” complex they are, i.e. how large are
the imaginary parts of complex eigenvalues.

The samples were generated according to the following:

• the minimal size of each representation is 10 (thus 10
eigenvalues are generated);

• the dominant eigenvalue is −1;

• the rest of the eigenvalues have real part −3 − 5|Nr|,
where Nr is standard normal distributed;

• the number of complex pairs of eigenvalues is 1 to 4;
with imaginary parts |Ni| (smaller) or 5|Ni| (larger),
where Ni is standard normal distributed.

This is a total of 8 experiments, each containing 5000 ran-
domly generated set of 10 eigenvalues. We tested not only
for minimal representation, but also for the average size of a

representation found (which is more informative in certain
cases).

The first table contains the experiments where the imaginary
parts are “small”, and the number of complex eigenvalues
goes from 1 to 4.

size=10 # of complex smaller pairs
1 2

# min. avg. # min. avg.

algo1 0 11.22 0 12.47
algo2 4101 10.40 866 11.34
algo3 4589 10.21 1074 11.22
algo4 4589 10.21 2934 10.80

size=10 # of complex smaller pairs
3 4

# min. avg. # min. avg.

algo1 0 13.69 0 14.91
algo2 43 12.49 0 13.82
algo3 46 12.46 0 13.82
algo4 554 11.61 25 12.74

The first case is where the unicyclic representation really
shines. It reduces the size of the representation consider-
ably compared to the FE representation, and finds a min-
imal representation matrix most of the time. Also, that is
case closest to the actual distribution of eigenvalues result-
ing from randomPH. Also, the difference between algo3 and
algo4 vanishes when the number of complex eigenvalues is
low but becomes more important when the number of com-
plex eigenvalues is higher. In the case of 4 complex pairs of
eigenvalues, practically none of the algorithms were able to
give a minimal representation matrix (except algo4 in very
few cases), but the average size of the representation is still
relevant. While these case of high number of complex pairs
of eigenvalues are less typical for randomPH generated PH
distributions, the unicyclic algorithms still outperform the
FE one.

The next table contains the experiments with larger imagi-
nary parts.

size=10 # of complex larger pairs
1 2

# min. avg. # min. avg.

algo1 0 12.69 0 15.28
algo2 2300 12.23 831 14.40
algo3 2789 12.04 1103 14.12
algo4 2789 12.04 1192 14.10

size=10 # of complex larger pairs
3 4

# min. avg. # min. avg.

algo1 0 18.11 0 20.66
algo2 163 16.93 0 19.41
algo3 186 16.73 0 19.37
algo4 310 16.61 12 19.02

Our findings are somewhat similar to the previous case; the
main conclusion here is that all algorithms perform worse



in the presence of complex eigenvalues with typically larger
imaginary parts.
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4. CONCLUSION
Due to the higher flexibility of the unicyclic blocks with re-
spect to the FE blocks the Markovian representation of PH
distribution based on unicyclic blocks is commonly smaller
than the one based on FE blocks. The benefit depends on
the particular case. Most of the improvement comes with
the introduction of order 3 unicyclic blocks, while the im-
provement coming from the introduction of larger unicyclic
blocks is marginal. Order 3 unicyclic blocks are thus an effi-
cient and computationally tractable alternative to Feedback-
Erlang blocks when searching for a small Markovian repre-
sentation of PH distributions. The minimality of the repre-
sentation is not tackled in this paper. The examples star-
ing from sampled Markovian PH representations indicate
that our procedure does not find a minimal representation
in some of the cases.
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