
Modeling Network Coded TCP Throughput:
A Simple Model and its Validation

MinJi Kim
MIT

Cambridge, MA 02139
minjikim@mit.edu

Muriel Médard
MIT

Cambridge, MA 02139
medard@mit.edu

João Barros
University of Porto

Porto, Portugal
jbarros@fe.up.pt

ABSTRACT
We analyze the performance of TCP and TCP with net-
work coding (TCP/NC) in lossy wireless networks. We build
upon the simple framework introduced by Padhye et al.
and characterize the throughput behavior of classical TCP
as well as TCP/NC as a function of erasure rate, round-
trip time, maximum window size, and duration of the con-
nection. Our analytical results show that network coding
masks random erasures from TCP, thus preventing TCP’s
performance degradation in lossy networks (e.g. wireless
networks). It is further seen that TCP/NC has signifi-
cant throughput gains over TCP. Our analysis and simu-
lation results show very close concordance and support that
TCP/NC is robust against erasures. TCP/NC is not only
able to increase its window size faster but also to maintain a
large window size despite the random losses, whereas TCP
experiences window closing because losses are mistakenly
attributed to congestion. Note that network coding only
masks random erasures, and allows TCP to react to conges-
tion; thus, when there are correlated losses, TCP/NC also
closes its window.

1. INTRODUCTION
The Transmission Control Protocol (TCP) is one of the

core protocols of today’s Internet Protocol Suite. TCP was
designed for reliable transmission over wired networks, in
which losses are generally indication of congestion. This is
not the case in wireless networks, where losses are often due
to fading, interference, and other physical phenomena. In
wireless networks, TCP often incorrectly assumes that there
is congestion within the network and unnecessarily reduces
its transmission rate, when it should have actually transmit-
ted continuously to overcome the lossy links. Consequently,
TCP’s performance in wireless networks is poor when com-
pared to the wired counterparts as shown e.g. in [1,2]. There
has been extensive research to combat these harmful effects
of erasures and failures; however, TCP even with modifi-
cations does not achieve significant improvement. For ex-
ample, there has been suggestions to allow TCP sender to
maintain a large transmission window to overcome the ran-
dom losses within the network. However, as we shall show

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

in this paper, just keeping the window open does not lead
to improvements in TCP’s performance. Even if the trans-
mission window is kept open, the sender can not transmit
additional packets into the network without receiving ac-
knowledgments. References [3, 4] give an overview and a
comparison of various TCP versions over wireless links.

Some relief may come from network coding [5], which has
been introduced as a potential paradigm to operate commu-
nication networks, in particular wireless networks. Network
coding allows and encourages mixing of data at intermediate
nodes, which has been shown to increase throughput and ro-
bustness against failures and erasures [6]. There are several
practical protocols that take advantage of network coding in
wireless networks [7–10].

In order to combine the benefits of TCP and network cod-
ing, [11] proposes a new protocol called TCP/NC. TCP/NC
modifies TCP’s acknowledgment (ACK) scheme such that it
acknowledges degrees of freedom instead of individual pack-
ets, as shown in Figure 1. This is done so by using the con-
cept of “seen” packets – in which the number of degrees of
freedom received is translated to the number of consecutive
packets received.

In this paper, we present a performance evaluation of
TCP as well as TCP/NC in lossy networks. We adopt the
same TCP model as in [2] – i.e. we consider standard TCP
with Go-Back-N pipelining. Thus, the standard TCP dis-
cards packets that are out-of-order. We analytically show
the throughput gains of TCP/NC over standard TCP, and
present simulations results that support this analysis. We
characterize the steady state throughput behavior of both
TCP and TCP/NC as a function of erasure rate, round-trip
time (RTT), and maximum window size. Our work thus
extends the work of [2] for TCP and TCP/NC in lossy wire-
less networks. Furthermore, we use NS-2 (Network Sim-
ulator [12]) to verify our analytical results for TCP and
TCP/NC. Our analysis and simulations show that TCP/NC
is robust against erasures and failures. TCP/NC is not only
able to increase its window size faster but also maintain a
large window size despite losses within the network. Thus,
TCP/NC is well suited for reliable communication in lossy
networks. In contrast, standard TCP experiences window
closing as losses are mistaken to be congestion.

There has been extensive research on modeling and ana-
lyzing TCP’s performance [13–18]. Our goal is to present an
analysis for TCP/NC, and to provide a comparison of TCP
and TCP/NC in a lossy wireless environment. We adopt
Padhye et al.’s model [2] as their model provides a simple
yet good model to predict the performance of TCP. It would
be interesting to extend and analyze TCP/NC in other TCP
models in the literature.

The paper is organized as follows. In Section 2, we provide
a brief overview of TCP/NC. In Section 3, we introduce

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VALUETOOLS 2011, May 16-20, Paris, France
Copyright © 2011 ICST 978-1-936968-09-1
DOI 10.4108/icst.valuetools.2011.246509

131

p1

p2

p3 Lost
ACK(p1)

ACK(p1)

p1+p2+p3

Lost
seen(p1)

seen(p2)

p1+2p2+p3

p1+2p2+2p3

TCP E2E-TCP/NC

Figure 1: Example of TCP and TCP/NC. In the case of
TCP, the TCP sender receives duplicate ACKs for packet
p1, which may wrongly indicate congestion. However, for
TCP/NC, the TCP sender receives ACKs for packets p1

and p2; thus, the TCP sender perceives a longer round-trip
time (RTT) but does not mistake the loss to be congestion.

our communication model. In Section 4, we provide the
intuition behind the benefit of using network coding with
TCP. Then, we provide throughput analysis for TCP and
TCP/NC in Sections 5 and 6, respectively. In Section 7, we
provide simulation results to verify our analytical results in
Sections 5 and 6. Finally, we conclude in Section 8.

2. OVERVIEW OF TCP/NC
Reference [11] introduces a new network coding layer be-

tween the TCP and IP in the protocol stack. The network
coding layer intercepts and modifies TCP’s acknowledgment
(ACK) scheme such that random erasures does not affect
the transport layer’s performance. To do so, the encoder,
the network coding unit under the sender TCP, transmits R
random linear combinations of the buffered packets for every
transmitted packet from TCP sender. The parameter R is
the redundancy factor. Redundancy factor helps TCP/NC
to recover from random losses; however, it cannot mask cor-
related losses, which are usually due to congestion. The
decoder, the network coding unit under the receiver TCP,
acknowledges degrees of freedom instead of individual pack-
ets, as shown in Figure 1. Once enough degrees of freedoms
are received at the decoder, the decoder solves the set of
linear equations to decode the original data transmitted by
the TCP sender, and delivers the data to the TCP receiver.

We briefly note the overhead associated with network cod-
ing. The main overhead associated with network coding can
be considered in two parts: 1) the coding vector (or coeffi-
cients) that has to be included in the header; 2) the encod-
ing/decoding complexity. For receiver to decode a network
coded packet, the packet needs to indicate the coding coeffi-
cients used to generate the linear combination of the original
data packets. The overhead associated with the coefficients
depend on the field size used for coding as well as the number
of original packets combined. It has been shown that even
a very small field size of F256 (i.e. 8 bits = 1 byte per coef-
ficient) can provide a good performance [11,19]. Therefore,
even if we combine 50 original packets, the coding coeffi-
cients amount to 50 bytes over all. Note that a packet is
typically around 1500 bytes. Therefore, the overhead as-
sociated with coding vector is not substantial. The second
overhead associated with network coding is the encoding and
decoding complexity, and the delay associated with the cod-
ing operations. Note that to affect TCP’s performance, the
decoding/encoding operations must take substantial amount
of time to affect the round-trip time estimate of the TCP
sender and receiver. However, we note that the delay caused
the coding operations is negligible compared to the network

round-trip time. For example, the network round-trip time
is often in milliseconds (if not in hundreds of milliseconds),
while a encoding/decoding operations involve a matrix mul-
tiplication/inversion in F256 which can be performed in a
few microseconds.

In [11], the authors present two versions of TCP/NC –
one that adheres to the end-to-end philosophy of TCP, in
which coding operations are only performed at the source
and destination; another that takes advantage of network
coding even further by allowing any subset of intermediate
nodes to re-encode. Note that re-encoding at the interme-
diate nodes is an optional feature, and is not required for
TCP/NC to work. Here, we focus on TCP/NC with end-to-
end network coding, which we denote E2E-TCP/NC (or in
short E2E). However, a similar analysis applies to TCP/NC
with re-encoding.

3. A MODEL FOR CONGESTION CONTROL
We focus on TCP’s congestion avoidance mechanism, where

the congestion control window size W is incremented by
1/W each time an ACK is received. Thus, when every
packet in the congestion control window is ACKed, the win-
dow size W is increased to W + 1. On the other hand, the
window size W is reduced whenever an erasure/congestion
is detected.

We model TCP’s behavior in terms of rounds [2]. We
denoteWi to be the size of TCP’s congestion control window
size at the beginning of round i. The sender transmit Wi

packets in its congestion window at the start of round i, and
once all Wi packets have been sent, it defers transmitting
any other packets until at least one ACK for the Wi packets
are received. The ACK reception ends the current round,
and starts round i+ 1.

For simplicity, we assume that the duration of each round
is equal to a round trip time (RTT), independent of Wi.
This assumes that the time needed to transmit a packet is
much smaller than the round trip time. This implies the fol-
lowing sequence of events for each round i: first, Wi packets
are transmitted. Some packets may be lost. The receiver
transmits ACKs for the received packets. (Note that TCP
uses cumulative ACKs. Therefore, if the packets 1, 2, 3, 5, 6
arrive at the receiver in sequence, then the receiver ACKs
packets 1, 2, 3, 3, 3. This signals that it has not yet received
packet 4.) Some of the ACKs may also be lost. Once the
sender receives the ACKs, it updates its window size. As-
sume that ai packets are acknowledged in round i. Then,
Wi+1 ←Wi + ai/Wi.

TCP reduces the window size for congestion control using
the following two methods.

1)Triple-duplicate (TD): When the sender receives four
ACKs with the same sequence number, then Wi+1 ←

1
2
Wi.

2)Time-out (TO): If the sender does not hear from the
receiver for a predefined time period, called the “time-out”
period (which is To rounds long), then the sender closes its
transmission window, Wi+1 ← 1. At this point, the sender
updates its TO period to 2To rounds, and transmits one
packet. For any subsequent TO events, the sender transmits
the one packet within its window, and doubles its TO period
until 64To is reached, after which the TO period is fixed to
64To. Once the sender receives an ACK from the receiver,
it resets its TO period to To and increments its window
according to the congestion avoidance mechanism. During
time-out, the throughput of both TCP and E2E is zero.

132

sequence number

time
RTT (round i)

Wi

RTT (round i+1)

Received packet

Lost packet

ACK

ai

(a) TCP

sequence number

time
RTT (round i) RTT (round i+1)

Received packet

Lost packet

ACK

Wi

ai

(b) E2E-TCP/NC

Figure 2: The effect of erasures: TCP experiences triple-duplicate ACKs, and results in Wi+2 ← Wi+1/2. However, E2E-
TCP/NC masks the erasures using network coding, which allows TCP to advance its window. This figure depicts the sender’s
perspective, therefore, it indicates the time at which the sender transmits the packet or receives the ACK.

Finally, in practice, the TCP receiver sends a single cu-
mulative ACK after receiving β number of packets, where
β = 2 typically. However, we assume that β = 1 for simplic-
ity. Extending the analysis to β ≥ 1 is straightforward.

There are several variants to the traditional TCP conges-
tion control. For example, STCP [20] modifies the conges-
tion control mechanism for networks with high bandwidth-
delay products. Other variants include those with selec-
tive acknowledgment schemes [21]. It may be interesting to
compare the performance of the TCP variants with that of
TCP/NC. However, we focus on traditional TCP here.

3.1 Maximum window size
In general, TCP cannot increase its window size unbound-

edly; there is a maximum window size Wmax. The TCP
sender uses a congestion avoidance mechanism to increment
the window size until Wmax, at which the window size re-
mains Wmax until a TD or a TO event.

3.2 Erasures
We assume that there is are random erasures within in the

network. We denote p to be the probability that a packet
is lost at any given time. We assume that packet losses are
independent. We note that this erasure model is different
from that of [2] where losses are correlated within a round –
i.e. bursty erasures. Correlated erasures model well bursty
traffic and congestion in wireline networks. In our case, how-
ever, we are aiming to model wireless networks, thus we shall
use random independent erasures.

We do not model congestion or correlated losses within
this framework, but show by simulation that when there are
correlated losses, both TCP and E2E close their window;
thus, E2E is able to react to congestion.

3.3 Performance metric
We analyze the performance of TCP and E2E in terms of

two metrics: the average throughput T, and the expected
window evolution E[W], where T represents the total aver-
age throughput while window evolution E[W] reflects the
perceived throughput at a given time. We define N[t1,t2] to
be the number of packets received by the receiver during the
interval [t1, t2]. The total average throughput is defined as:

T = lim
∆→∞

N[t,t+∆]

∆
. (1)

We denote Ttcp and Te2e to be the average throughput for
TCP and E2E, respectively.

4. INTUITION

For traditional TCP, random erasures in the network can
lead to triple-duplicate ACKs. For example, in Figure 2a,
the sender transmits Wi packets in round i; however, only ai

of them arrive at the receiver. As a result, the receiver ACKs
the ai packets and waits for packet ai +1. When the sender
receives the ACKs, round i+ 1 starts. The sender updates
its window (Wi+1 ← Wi + ai/Wi), and starts transmitting
the new packets in the window. However, since the receiver
is still waiting for packet ai + 1, any other packets cause
the receiver to request for packet ai + 1. This results in a
triple-duplicate ACKs event and the TCP sender closes its
window, i.e. Wi+2 ←

1
2
Wi+1 = 1

2
(Wi + ai/Wi).

Notice that this window closing due to TD does not occur
when using E2E as illustrated in Figure 2b. With network
coding, any linearly independent packet delivers new infor-
mation. Thus, any subsequent packet (in Figure 2b, the first
packet sent in round i+ 1) can be viewed as packet ai + 1.
As a result, the receiver is able to increment its ACK and
the sender continues transmitting data. It follows that net-
work coding masks the losses within the network from TCP,
and prevents it from closing its window by misjudging link
losses as congestion. Network coding translates random

losses as longer RTT , thus slowing down the transmission
rate to adjust for losses without closing down the window in
a drastic fashion.

Note that network coding does not mask correlated (or
bursty) losses due to congestion. With enough correlated
losses, network coding cannot correct for all the losses. As
a result, the transmission rate will be adjusted according to
standard TCP’s congestion control mechanism when TCP/NC
detects correlated losses. Therefore, network coding allows
TCP to maintain a high throughput connection in a lossy
environment; at the same time, allows TCP to react to con-
gestion. Thus, network coding naturally distinguishes con-
gestion from random losses for TCP.

5. ANALYSIS FOR TCP
We consider the effect of losses for TCP. The throughput

analysis for TCP is similar to that of [2]. However, the model
has been modified from that of [2] to account for independent
losses and allow a fair comparison with network coded TCP.
TCP can experience a TD or a TO event from random losses.

We note that, despite independent packet erasures, a sin-
gle packet loss may affect subsequent packet reception. This
is due to the fact that TCP requires in-order reception. A
single packet loss within a transmission window forces all
subsequent packets in the window to be out of order. Thus,

133

window size Wi

round i

j j+r-1

r rounds

Received packet

Lost packet

Out of order packets

Wj

Wj+r-1

j-2 (TD)

r+1 rounds = � time interval

j+r (TO)

time-out

Figure 3: TCP’s window size with a TD event and a TO
event. In round j − 2, losses occur resulting in triple-
duplicate ACKs. On the other hand, in round j + r − 1,
losses occur; however, in the following round j + r losses
occur such that the TCP sender only receives two-duplicate
ACKs. As a result, TCP experiences time-out.

they are discarded by the TCP receiver. As a result, stan-
dard TCP’s throughput behavior with independent losses is
similar to that of [2], where losses are correlated within one
round.

5.1 Triple-duplicate for TCP
We consider the expected throughput between consecutive

TD events, as shown in Figure 3. Assume that the TD events
occurred at time t1 and t2 = t1 + ∆, ∆ > 0. Assume that
round j begins immediately after time t1, and that packet
loss occurs in the r-th round, i.e. round j + r − 1.

First, we calculate E[N[t1,t2]]. Note that during the in-
terval [t1, t2], there are no packet losses. Given that the
probability of a packet loss is p, the expected number of
consecutive packets that are successfully sent from sender
to receiver is

E
[

N[t1,t2]

]

=

(∞
∑

k=1

k(1− p)k−1p

)

− 1 =
1− p

p
. (2)

The packets (in white in Figure 3) sent after the lost pack-
ets (in black in Figure 3) are out of order, and will not be
accepted by the standard TCP receiver. Thus, Equation (2)
does not take into account the packets sent in round j − 1
or j + r.

We calculate the expected time period between two TD
events, E[∆]. As in Figure 3, after the packet losses in round
j, there is an additional round for the loss feedback from the
receiver to reach the sender. Therefore, there are r+1 rounds
within the time interval [t1, t2], and ∆ = RTT (r+1). Thus,

E[∆] = RTT (E[r] + 1). (3)

To derive E[r], note that Wj+r−1 = Wj + r − 1 and

Wj =
1

2
Wj−1 =

1

2

(

Wj−2 +
aj−2

Wj−2

)

. (4)

Equation (4) is due to TCP’s congestion control. TCP in-
terprets the losses in round j − 2 as congestion, and as
a result halves its window. Assuming that, in the long
run, E[Wj+r−1] = E[Wj−2] and that aj−2 is uniformly dis-
tributed between [0,Wj−2],

E[Wj+r−1] = 2

(

E[r]−
3

4

)

and E[Wj] = E[r]−
1

2
. (5)

During these r rounds, we expect to successfully transmit

1−p
p

packets as noted in Equation (2). This results in:

1− p

p
=

(

r−2
∑

k=0

Wj+k

)

+ aj+r−1 (6)

= (r − 1)Wj +
(r − 1)(r − 2)

2
+ aj+r−1. (7)

Taking the expectation of Equation (7) and using Equation
(5),

1− p

p
=

3

2
(E[r]− 1)2 + E[aj+r−1]. (8)

Note that aj+r−1 is assumed to be uniformly distributed
across [0,Wj+r−1]. Thus, E[aj+r−1] = E[Wj+r−1]/2 =
E[r] − 3

4
by Equation (5). Solving Equation (8) for E[r],

we find:

E[r] =
2

3
+

√

−
1

18
+

2

3

1− p

p
. (9)

The steady state E[W] is the average window size over two
consecutive TD events. This provides an expression of steady
state average window size for TCP (using Equations (5)):

E[W] =
E[Wj] + E[Wj+r−1]

2
=

3

2
E[r]− 1. (10)

The average throughput can be expressed as

T ′
tcp =

E[N[t1,t2]]

E[∆]
=

1− p

p

1

RTT (E[r] + 1)
. (11)

For small p, T ′
tcp ≈

1
RTT

√

3
2p

+ o(1√
p
); for large p, T ′

tcp ≈
1

RTT
1−p
p

. If we only consider TD events, the long-term

steady state throughput is equal to that in Equation (11).
The analysis above assumes that the window size can grow

unboundedly; however, this is not the case. To take maxi-
mum window size Wmax into account, we make a following
approximation:

Ttcp = min

(

Wmax

RTT
, T ′

tcp

)

. (12)

For small p, this result coincide with the results in [2].

5.2 Time-out for TCP
If there are enough losses within two consecutive rounds,

TCP may experience a TO event, as shown in Figure 3.
Thus, P(TO|W), the probability of a TO event given a win-
dow size of W , is given by

P(TO|W) =

{

1 if W < 3;
∑2

i=0

(W
i

)

pW−i(1 − p)i if W ≥ 3.
(13)

Note that when the window is small (W < 3), then losses
result in TO events. For example, assume W = 2 with
packets p1 and p2 in its window. Assume that p2 is lost.
Then, the TCP sender may send another packet p3 in the
subsequent round since the acknowledgment for p1 allows it
to transmit a new packet. However, this would generate a
single duplicate ACK with no further packets in the pipeline,
and TCP sender waits for ACKs until it times out.

We approximate W in above Equation (13) with the ex-
pected window size E[W] from Equation (10). The length
of the TO event depends on the duration of the loss events.
Thus, the expected duration of TO period (in RTTs) is given

134

E[duration of TO period] = (1− p)

[

Top+ 3Top
2 + 7Top

3 + 15Top
4 + 31Top

5 +
∞
∑

i=0

(63 + i · 64)Top
6+i

]

(14)

= (1− p)

[

Top+ 3Top
2 + 7Top

3 + 15Top
4 + 31Top

5 + 63To
p6

1− p
+ 64To

p7

(1− p)2

]

(15)

Ttcp = min

Wmax

RTT
,
1− p

p

1

RTT

(

5
3
+

√

− 1
18

+ 2
3

1−p
p

+P(TO|E[W])E[duration of TO period]
)

(16)

window size Wi

round i

j j+r-1 (No TD)

r rounds = � time interval

Received packet

Lost packet

Received packets

only with TCP/NC

Wj

Wj+r-1

j-1 (No TD)

Figure 4: E2E-TCP/NC’s window size with erasures that
would lead to a triple-duplicate ACKs event when using
standard TCP. Note that unlike TCP, the window size is
non-decreasing.

0 50 100 150
0

10

20

30

40

50

60

70

80

90

100

round i

E
xa

pe
ct

ed
 w

in
do

w
 s

iz
e

E

[W
i]

E[W
1
]

W
max

−E[W
1
]

 min(1,R(1 − p))

W
max

Slope = min(1,R(1−p))

Figure 5: Expected window size for E2E where Wmax = 90,
E[W1] = 30. We usually assume E[W1] = 1; here we use
E[W1] = 30 to exemplify the effect of E[W1].

in Equation (15). Finally, by combining the results in Equa-
tions (12), (13), and (15), we get an expression for the av-
erage throughput of TCP as shown in Equation (16).

6. ANALYSIS FOR E2E-TCP/NC
We consider the expected throughput for E2E. Note that

erasure patterns that result in TD and/or TO events under
TCP may not yield the same result under E2E, as illustrated
in Section 4. We emphasize again that this is due to the
fact that any linearly independent packet conveys a new
degree of freedom to the receiver. Figure 4 illustrates this
effect – packets (in white) sent after the lost packets (in
black) are acknowledged by the receivers, thus allowing E2E
to advance its window. This implies that E2E does not
experience window closing owing to random losses often.

6.1 E2E-TCP/NC Window Evolution
From Figure 4, we observe that E2E is able to maintain

its window size despite experiencing losses. This is partially
because E2E is able to receive packets that would be consid-
ered out of order by TCP. As a result, E2E’s window evolves
differently from that of TCP, and can be characterized by a

1 2 m m+2/m m+(m-1)/m m+1

p

1-p

p

1-p 1-p 1-p 1-p 1-p

p p p p p

2+½

p

m+1/m Wmax

1-p

1

Figure 6: Markov chain for the E2E’s window evolution.

P =

p 1 − p 0 0 0 · · · 0 0

0 p 1 − p 0 0 · · · 0 0

0 0 p 1 − p 0 · · · 0 0

.

.

.

.
.
.

.
.
. · · ·

.

.

.

0 0 0 0 0 0 p 1 − p

0 0 0 0 0 0 0 1

Figure 7: The transition matrix P for the Markov chain
in Figure 6. The shaded part of the matrix is denoted Q.
Matrix N = (I − Q)−1 is the fundamental matrix of the
Markov chain, and can be used to compute the expected
rounds until the absorption state.

simple recursive relationship as

E[Wi] = E[Wi−1]+
E[ai−1]

E[Wi−1]
= E[Wi−1]+min{1, R(1−p)}.

The recursive relationship captures the fact that every packet
that is linearly independent of previously received packets
is considered to be innovative and is therefore acknowl-
edged. Consequently, any arrival at the receiver is acknowl-
edged with high probability; thus, we expect E[ai−1] packets
to be acknowledged and the window to be incremented by
E[ai−1]

E[Wi−1]
. Note that E[ai−1] = (1 − p) · R · E[Wi−1] since

the encoder transmits on average R linear combinations for
every packet transmitted by the TCP sender.

Once we take Wmax into account, we have the following
expression for E2E’s expected window size:

E[Wi] = min(Wmax, E[W1] + imin{1, R(1− p)}), (17)

where i is the round number. E[W1] is the initial window
size, and we set E[W1] = 1. Figure 5 shows an example of
the evolution of the E2E window using Equation (17).

6.1.1 Markov Chain Model
The above analysis describes the expected behavior of

E2E’s window size. We can also describe the window size
behavior using a Markov chain as shown in Figure 6. The
states of this Markov chain represent the instantaneous win-
dow size (not specific to a round). A transition occurs when-
ever a packet is transmitted. We denote S(W) to be the
state representing the window size of W . Assume that we
are at state S(W). If a transmitted packet is received by the
E2E receiver and acknowledged, the window is incremented
by 1

W
; thus, we end up in state S(W + 1

W
). This occurs

with probability (1 − p). On the other hand, if the packet

135

is lost, then we stay at S(W). This occurs with probability
p. Thus, the Markov chain states represent the window size,
and the transitions correspond to packet transmissions.

Note that S(Wmax) is an absorbing state of the Markov
chain. As noted in Section 4, E2E does not often experience
a window shutdown, which implies that there are correlated
or heavy losses. Thus, E2E’s window size is non-decreasing,
as shown in Figure 6. Therefore, given enough time, E2E
reaches state S(Wmax) with probability equal to 1. We an-
alyze the expected number of packet transmissions needed
for absorption.

The transition matrix P and the fundamental matrix N =
(I −Q)−1 of the Markov chain is given in Figure 7. The en-
try N(S1, S2) represents the expected number of visits to
state S2 before absorption – i.e. we reach state S(Wmax) –
when we start from state S1. Our objective is to find the
expected number of packets transmitted to reach S(Wmax)
starting from state S(E[W1]) where E[W1] = 1. The partial
sum of the first row entries of N gives the expected num-
ber of packets transmitted until we reach the window size
W . The expression for the first row of N can be derived us-

ing cofactors: N(1, :) =
[

1
1−p

, 1
1−p

, · · · , 1
1−p

]

. The expected

number of packet transmissions Tp(W) to reach a window
size of W ∈ [1,Wmax] is:

Tp(W) =

S(W)
∑

m=S(1)

N(1, m) =

S(W)
∑

m=S(1)

1

1− p
=

1

1− p

S(W)
∑

m=S(1)

1

=
W (W − 1)

2(1− p)
. (18)

Tp(W) is the number of packets we expect to transmit
given the erasure probability p. If we set p = 0, then

T0(W) = W (W−1)
2

. Therefore, W (W−1)
2

is the minimal num-
ber of transmission needed to achieve W (since this assumes

no packets are lost). Note that
Tp(W)

T0(W)
= 1

1−p
represents

a lower bound on cost when losses are introduced – i.e.
to combat random erasures, the sender on average has to
send at least 1

1−p
packets for each packet it wishes to send.

This is exactly the definition of redundancy factor R. This

analysis indicates that we should set R ≥
Tp(W)

T0(W)
. Further-

more, T0(W) is equal to the area under the curve for rounds

i ∈ [0, W−E[W1]
min{1,R·(1−p)}] in Figure 5 if we set R ≥ 1

1−p
. A more

detailed discussion on the effect of R is in Section 6.2.1.

6.2 E2E-TCP/NC Analysis per Round
Using the results in Section 6.1, we derive an expression

for the throughput. The throughput of round i, Ti, is di-
rectly proportional to the window size E[Wi], i.e.

Ti =
E[Wi]

SRTT
min{1, R(1− p)} packets per second, (19)

where SRTT is the round trip time estimate. The RTT and
its estimate SRTT play an important role in E2E. We shall
formally define and discuss the effect of R and SRTT below.

We note that Ti ∝ (1− p) ·R ·E[Wi]. At any given round
i, E2E sender transmits R · E[Wi] coded packets, and we
expect pR ·E[Wi] packets to be lost. Thus, the E2E receiver
only receives (1− p) · R · E[Wi] degrees of freedom.

6.2.1 Redundancy FactorR
The redundancy factor R ≥ 1 is the ratio between the

average rate at which linear combinations are sent to the

receiver and the rate at which TCP’s window progresses.
For example, if the TCP sender has 10 packets in its win-
dow, then the encoder transmits 10R linear combinations.
If R is large enough, the receiver will receive at least 10 lin-
ear combinations to decode the original 10 packets. This
redundancy is necessary to (a) compensate for the losses
within the network, and (b) match TCP’s sending rate to
the rate at which data is actually received at the receiver.
References [11, 19] introduce the redundancy factor with
TCP/NC, and show that R ≥ 1

1−p
is necessary. This co-

incides with our analysis in Section 6.1.1.
The redundancy factor R should be chosen with some

care. If R < 1
1−p

causes significant performance degrada-
tion, since network coding can no longer fully compensate
for the losses which may lead to window closing for E2E. To
maximize throughput, an optimal value of R ≥ 1

1−p
should

be chosen. However, setting R≫ 1
1−p

may over-compensate
for the losses within the network; thus, introducing more re-
dundant packets than necessary. On the other hand, match-
ing R to exactly 1

1−p
may not be desirable for two reasons:

1) The exact value of 1
1−p

may not be available or difficult

to obtain in real applications; 2) As R → 1
1−p

, it becomes
more likely that E2E is unable to fully recover from losses
in any given round. By fully recover, we mean that E2E de-
coder is able to acknowledge all packet transmitted in that
round. As we shall show in Section 7, E2E can maintain a
fairly high throughput with just partial acknowledgment (in
each round, only a subset of the packets are acknowledged
owing to losses). However, we still witness a degradation in
throughput as R decreases. Thus, we assume that R ≥ 1

1−p
.

6.2.2 Effective Round Trip TimeSRTT

SRTT is the round trip time estimate that TCP maintains
by sampling the behavior of packets sent over the connec-
tion. It is denoted SRTT because it is often referred to as
“smoothed” round trip time as it is obtained by averaging
the time for a packet to be acknowledged after the packet has
been sent. We note that, in Equation (19), we use SRTT
instead of RTT because SRTT is the “effective” round trip
time E2E experiences.

In lossy networks, E2E’s SRTT is often greater thanRTT .
This can be seen in Figure 1. The first coded packet (p1 + p2

+p3) is received and acknowledged (seen(p1)). Thus, the
sender is able to estimate the round trip time correctly; re-
sulting in SRTT = RTT . However, the second packet (p1+
2p2 + p3) is lost. As a result, the third packet (p1 + 2p2+
2p3) is used to acknowledge the second degree of freedom
(seen(p2)). In our model, we assume for simplicity that
the time needed to transmit a packet is much smaller than
RTT; thus, despite the losses, our model would result in
SRTT ≈ RTT . However, in practice, depending on the size
of the packets, the transmission time may not be negligible.

6.3 E2E-TCP/NC Average Throughput
Taking Equation (19), we can average the throughput

over n rounds to obtain the average throughput for E2E-
TCP/NC.

Te2e =
1

n

n
∑

i=1

E[Wi]

SRTT
min{1, R(1− p)}

=
1

n · SRTT
· f(n), (20)

136

Figure 8: Network topology for the simulations.

where

f(n) =

{

nE[W1] +
n(n+1)

2
for n ≤ r∗

nWmax − r∗(Wmax − E[W1]) +
r∗(r∗−1)

2
for n > r∗

r∗ = Wmax − E[W1].

Note that as n→∞, the average throughput Te2e →
Wmax

SRTT
.

An important aspect of TCP is congestion control mech-
anism. This analysis may suggest that network coding no
longer allows for TCP to react to congestion. We emphasize
that the above analysis assumes that there are only random
losses with probability p, and that there are no correlated
losses. It is important to note that the erasure correcting
power of network coding is limited by the redundancy factor
R. If there are enough losses (e.g., losses caused by con-
gestion), network coding cannot mask all the erasures from
TCP. This may lead E2E to experience a TD or TO event,
depending on the variants of TCP used. In Section 7.3, we
present simulation results that show that TCP’s congestion
control mechanism still applies to E2E when appropriate.

7. SIMULATION RESULTS
We use simulations to verify that our analysis captures

the behavior of both TCP and E2E. We use NS-2 (Network
Simulator [12]) to simulate TCP and E2E-TCP/NC, where
we use the implementation of E2E from [19]. Two FTP ap-
plications (ftp0, ftp1) wish to communicate from the source
(src0, src1) to sink (sink0, sink1), respectively. There is no
limit to the file size. The sources generate packets continu-
ously until the end of the simulation. The two FTP appli-
cations use either TCP or E2E-TCP/NC. We denote TCP0,
TCP1 to be the two FTP applications when using TCP; and
we denote NC0, NC1 to be the two FTP applications when
using E2E.

The network topology for the simulation is shown in Fig-
ure 8. All links, in both forward and backward paths, are
assumed to have a bandwidth of C Mbps, a propagation
delay of 100 ms, a buffer size of 200, and a erasure rate of
q. Note that since there are in total four links in the path
from node 0 to node 4, the probability of packet erasure is
p = 1− (1− q)4. Each packet transmitted is assumed to be
8000 bits (1000 bytes). We set Wmax = 50 packets for all
simulations. In addition, time-out period To = 3

RTT
= 3.75

rounds long (3 seconds). Therefore, our variables for the
simulations are:

• p = 1− (1− q)4: End-to-end erasure rate,

• R: Redundancy factor,

• C: Capacity of the links (in Mbps).

We study the effect these variables have on the following:

• T: Throughput of TCP or E2E,

• E[W]: Average window size of TCP or E2E,

• SRTT : Round-trip estimate.

For each data point, we average the performance over 100
independent runs of the simulation, each of which is 1000
seconds long.

7.1 Probability of erasure p

We set C = 2 Mbps and R = 1.25 regardless of the value
of p. We vary q to be 0, 0.005, 0.015, 0.025, and 0.05. The
corresponding p values are 0, 0.0199, 0.0587, 0.0963, and
0.1855. The results are shown in Figures 9, 10, and 11.

Firstly, we show that when there are no random erasures
(p = 0), then E2E and TCP behave similarly, as shown
in Figures 9a, 10a, and 11a. Without any random losses
and congestion, all of the flows (NC0, NC1, TCP0, TCP1)
achieve the maximal throughput, Wmax

RTT
· 8
106

= 0.5 Mbps.
The more interesting result is when p > 0. As our analy-

sis predicts, E2E sustains its high throughput despite the
random erasures in the network. We observe that TCP
may close its window due to triple-duplicates ACKs or time-
outs; however, E2E is more resilient to such erasure patterns.
Therefore, E2E is able to increment its window consistently,
and maintain the window size of 50 even under lossy con-
ditions when standard TCP is unable to (resulting in the
window fluctuation in Figure 10).

An interesting observation is that, TCP achieves a mod-
erate average window size although the throughput (Mbps)
is much lower (Figures 9 and 10). This shows that näıvely
keeping the transmission window open is not sufficient to
overcome the random losses within the network, and does
not lead to improvements in TCP’s performance. Even if
the transmission window is kept open (e.g. during timeout
period), the sender can not transmit additional packets into
the network without receiving ACKs. Eventually, this leads
to a TD or TO event.

As described in Sections 4 and 6.2.2, E2E masks errors by
translating losses as longer RTT. For E2E, if a specific packet
is lost, the next subsequent packet received can “replace”
the lost packet; thus, allowing the receiver to send an ACK.
Therefore, the longer RTT estimate takes into account the
delay associated with waiting for the next subsequent packet
at the receiver. In Figure 11, we verify that this is indeed
true. TCP, depending on the ACKs received, modifies its
RTT estimation; thus, due to random erasures, TCP’s RTT
estimate fluctuates significantly. On the other hand, E2E is
able to maintain a consistent estimate of the RTT; however,
is slightly above the actual 800 ms.

7.2 Redundancy factor R

We set C = 2 Mbps. We vary the value of p and R to
understand the relationship between R and p. In Section
6.2.1, we noted that R ≥ 1

1−p
is necessary to mask random

erasures from TCP. However, as R → 1
1−p

, the probability
that the erasures are completely masked decreases. This
may suggest that we need R ≫ 1

1−p
for E2E to maintain

its high throughput. However, we shall show that R need
not be much larger than 1

1−p
for E2E to achieve its maximal

throughput.
In Figure 12, we present E2E throughput behavior with

p = 0.0963 and varying R. Note that 1
1−p

= 1.107 for
p = 0.0963. There is a dramatic change in throughput
behavior as we increase R from 1.11 to 1.12. Note that
R = 1.12 is only 1% additional redundancy than the theo-
retical minimum, i.e. 1.12

1/(1−p)
≈ 1.01. Another interesting

observation is that, even with R = 1.10 or R = 1.11, E2E

137

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(a) p = 0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(b) p = 0.0199

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(c) p = 0.0587

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(d) p = 0.0963

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(e) p = 0.1855

Figure 9: Throughput of E2E-TCP/NC and TCP with varying link erasure probability p.

 0

 10

 20

 30

 40

 50

 0 250 500 750 1000

cw
n
d
 (

in
 p

ac
k

et
s)

time (s)

(a) p = 0

 0

 10

 20

 30

 40

 50

 0 250 500 750 1000

cw
n
d
 (

in
 p

ac
k

et
s)

time (s)

(b) p = 0.0199

 0

 10

 20

 30

 40

 50

 0 250 500 750 1000

cw
n
d
 (

in
 p

ac
k

et
s)

time (s)

(c) p = 0.0587

 0

 10

 20

 30

 40

 50

 0 250 500 750 1000

cw
n
d
 (

in
 p

ac
k

et
s)

time (s)

(d) p = 0.0963

 0

 10

 20

 30

 40

 50

 0 250 500 750 1000

cw
n
d
 (

in
 p

ac
k

et
s)

time (s)

(e) p = 0.1855

Figure 10: The congestion window size of E2E-TCP/NC and TCP with varying link erasure probability p.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 250 500 750 1000

sr
tt

 (
s)

time (s)

(a) p = 0

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 250 500 750 1000

sr
tt

 (
s)

time (s)

(b) p = 0.0199

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 250 500 750 1000

sr
tt

 (
s)

time (s)

(c) p = 0.0587

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 250 500 750 1000

sr
tt

 (
s)

time (s)

(d) p = 0.0963

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 250 500 750 1000

sr
tt

 (
s)

time (s)

(e) p = 0.1855

Figure 11: The round trip time estimate (SRTT) of E2E-TCP/NC and TCP with varying link erasure probability p.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g
h
p
u
t

(M
b
/s

)

time (s)

(a) R = 1.10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g
h
p
u
t

(M
b
/s

)

time (s)

(b) R = 1.11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g
h
p
u
t

(M
b
/s

)

time (s)

(c) R = 1.12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g
h
p
u
t

(M
b
/s

)

time (s)

(d) R = 1.13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g
h
p
u
t

(M
b
/s

)

time (s)

(e) R = 1.15

Figure 12: Throughput of E2E-TCP/NC for p = 0.0963 with varying redundancy factor R. Note that 1
1−p

= 1.107.

138

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(a) R = 1.26

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

(b) R = 1.28

Figure 13: Throughput of E2E-TCP/NC for p = 0.1855
with varying redundancy factor R. Note that 1

1−p
= 1.228.

achieves a significantly higher throughput than TCP (in Fig-
ure 9d) for p = 0.0963.

Figure 9e shows that, with p = 0.1855, E2E throughput is
not as steady, and does not achieve the maximal throughput
of 0.5 Mbps. This is because 1

1−p
= 1.23 is very close to

R = 1.25. As a result, R = 1.25 is not sufficient to mask
erasures with high probability. In Figure 13, we show that
E2E achieves an average throughput of 0.5 Mbps once R ≥
1.28. Note that R = 1.28 is only 4% additional redundancy
than the theoretical minimum, i.e. 1.28

1/(1−p)
≈ 1.04.

Similar behavior can be observed for p = 0.0199 and
0.0587, and setting R to be slightly above 1

1−p
is sufficient.

A good heuristic to use in setting R is the following. Given a
probability of erasure p and window size W , the probability
that losses in any given round is completely masked is upper

bounded by
∑W (R−1)

x=0

(

RW
x

)

px(1−p)RW−x, i.e. there are no
more than W (R − 1) losses in a round. Ensuring that this
probability is at least 0.8 has proven to be a good heuristic
to use in finding the appropriate value of R.

7.3 Congestion Control
We showed that E2E achieves a good performance in lossy

environment. This may raise concerns about masking cor-
related losses from TCP; thus, disabling TCP’s congestion
control mechanism. We show that the network coding layer
masks random losses only, and allows TCP’s congestion con-
trol to take affect when necessary.

Given a capacity C and erasure rate p, the available band-
width is C(1 − p) Mbps. Therefore, given two flows, a fair

allocation of bandwidth should be C(1−p)
2

Mbps per flow.
Note that this is the available bandwidth, not the achieved
bandwidth. As we have seen, if p > 0, TCP may not be
able to use fully the available bandwidth. On the other
hand, E2E is able to use the available bandwidth efficiently.
With E2E flows, there is another parameter we need to con-
sider: the redundancy factor R. Since E2E sends R coded
packets for each data packet, the achievable bandwidth is
min{C(1 − p), C

R
} Mbps; if shared among two flows fairly,

we expect 1
2
min{C(1 − p), C

R
} Mbps per coded flow. Note

that, if R is chosen appropriately (i.e. slightly above 1
1−p

),

then E2E can achieve rate close to C(1−p), which is optimal.
We show that multiple E2E flows share the bandwidth

fairly. We consider two flows (NC0, NC1) with Wmax = 50,
R = 1.2, and p = 0.0963. If there is no congestion, each flow
would achieve approximately 0.5 Mbps. However, we set
C = 0.7 Mbps. The two flows should achieve 1

2
min{0.7(1−

0.0963), 0.7
1.2
} = 0.2917 Mbps. We observe in Figure 14 that

NC0 and NC1 achieve 0.2878 Mbps and 0.2868 Mbps, re-

spectively. Note that C(1−p)
2

= 0.3162; thus, NC0 and NC1

is near optimal even though R = 1.2 > 1
1−p

= 1.106.
For our next simulations, we set C = 0.9 Mbps, Wmax =

50, p = 0.0963, and R = 1.2. Furthermore, we assume that
NC0 starts at 0s, and runs for 1000s, while NC1 starts at
time 350s and ends at time 650s. Before NC1 enters, NC0
should be able to achieve a throughput of 0.5 Mbps; how-
ever, when NC1 starts its connection, there is congestion,
and both NC0 and NC1 have to react to this. Figure 15
shows that indeed this is true. We observe that when NC1
starts its connection, both NC0 and NC1 shares the band-
width equally (0.3700 and 0.3669 Mbps, respectively). The
achievable bandwidth predicted by min{C(1−p), C

R
} is 0.75

Mbps (or 0.375 Mbps per flow). Note that both NC0 and
NC1 maintains its maximum window size of 50. Instead,
NC0 and NC1 experience a longer RTT, which naturally
translates to a lower throughput given the same Wmax.

7.4 Comparison to the analytical model
Finally, we examine the accuracy of our analytical model

in predicting the behavior of TCP and E2E. First, note that
our analytical model of window evolution (shown in Equa-
tion (17) and Figure 5) demonstrates the same trend as that
of the window evolution of E2E NS-2 simulations (shown in
Figure 10). Second, we compare the actual NS-2 simulation
performance to the analytical model. This is shown in Table
1. We observe that Equations (19) and (17) predict well the
trend of E2E’s throughput and window evolution, and pro-
vides a good estimate of E2E’s performance. Furthermore,
our analysis predicts the average TCP behavior well. In Ta-
ble 1, we see that Equation (16) is consistent with the NS-2
simulation results even for large values of p. Therefore, both
simulations as well as analysis support that E2E is resilient
to erasures; thus, better suited for reliable transmission over
unreliable networks, such as wireless networks.

8. CONCLUSIONS
We have presented an analytical study and compared the

performance of TCP and E2E-TCP/NC. Our analysis char-
acterizes the throughput of TCP and E2E as a function of
erasure rate, round-trip time, maximum window size, and
the duration of the connection. We showed that network
coding, which is robust against erasures and failures, can
prevent TCP’s performance degradation often observed in
lossy networks. Our analytical model shows that TCP with
network coding has significant throughput gains over TCP.
E2E is not only able to increase its window size faster but
also to maintain a large window size despite losses within the
network; on the other hand, TCP experiences window clos-
ing as losses are mistaken to be congestion. Furthermore,
NS-2 simulations verify our analysis on TCP’s and E2E’s
performance. Our analysis and simulation results both sup-
port that E2E is robust against erasures and failures. Thus,
E2E is well suited for reliable communication in lossy wire-
less networks.

Acknowledgments: This work is supported by the MIT-
Portugal Program under award No: 014098-153.

9. REFERENCES
[1] R. Cáceres and L. Iftode, “Improving the performance

of reliable transport protocols in mobile computing

139

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

Figure 14: E2E-TCP/NC for p =
0.0963 and C = 0.7 Mbps.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 250 500 750 1000

th
ro

u
g
h
p
u
t

(M
b
/s

)

time (s)

 0

 10

 20

 30

 40

 50

 60

 0 250 500 750 1000

cw
n
d
 (

in
 p

ac
k
et

s)

time (s)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 250 500 750 1000

sr
tt

 (
s)

time (s)

Figure 15: E2E-TCP/NC for p = 0.0963 with congestion (C = 0.9 Mbps, R = 1.2,
Wmax = 50).

Table 1: The average simulated or predicted long-term throughput of TCP and E2E in megabits per second (Mbps). ‘NC0’,
’NC1’, ‘TCP0’, ‘TCP1’ are average throughput achieved in the NS-2 simulations (with the corresponding ‘R’). ‘E2E analysis’
is calculated using Equation (20) with ⌊n · SRTT ⌋ = 1000. ‘TCP analysis’ is computed using Equation (16).

p E2E SRTT R NC0 NC1 E2E analysis TCP0 TCP1 TCP analysis
0 0.8256 1 0.5080 0.5057 0.4819 0.5080 0.5057 0.5000

0.0199 0.8260 1.03 0.4952 0.4932 0.4817 0.1716 0.1711 0.0667
0.0587 0.8264 1.09 0.4926 0.4909 0.4814 0.0297 0.0298 0.0325
0.0963 0.8281 1.13 0.4758 0.4738 0.4804 0.0149 0.0149 0.0220
0.1855 0.8347 1.29 0.4716 0.4782 0.4766 0.0070 0.0070 0.0098

environments,” IEEE Journal on Selected Areas in
Communications, vol. 13, no. 5, June 1995.

[2] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose,
“Modeling TCP throughput: A simple model and its
empirical validation,” in Proceedings of the ACM
SIGCOMM, 1998.

[3] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and
R. H. Katz, “A comparison of mechanisms for
improving tcp performance over wireless links,”
IEEE/ACM Transactions on Networking, vol. 5,
December 1997.

[4] Y. Tian, K. Xu, and N. Ansari, “TCP in wireless
environments: Problems and solutions,” IEEE Comm.
Magazine, vol. 43, pp. 27–32, 2005.

[5] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung,
“Network information flow,” IEEE Transactions on
Information Theory, vol. 46, pp. 1204–1216, 2000.

[6] R. Koetter and M. Médard, “An algebraic approach to
network coding,” IEEE/ACM Transaction on
Networking, vol. 11, pp. 782–795, 2003.

[7] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard,
and J. Crowcroft, “Xors in the air: Practical wireless
network coding,” in Proceedings of ACM SIGCOMM,
2006.

[8] S. Chachulski, M. Jennings, S. Katti, and D. Katabi,
“Trading structure for randomness in wireless
opportunistic routing,” in Proceedings of ACM
SIGCOMM, 2007.

[9] B. L. Yunfeng Lin, Baochun Li, “CodeOr:
Opportunisitic routing in wireless mesh networks with
segmented network coding,” in Proceedings of IEEE
International Conference on Network Protocols, 2008.

[10] J. Barros, R. A. Costa, D. Munaretto, and J. Widmer,
“Effective delay control for online network coding,” in
Proceedings of IEEE INFOCOM, 2009.

[11] J. K. Sundararajan, D. Shah, M. Médard,

M. Mitzenmacher, and J. Barros, “Network coding
meets TCP,” in Proceedings of IEEE INFOCOM,
April 2009, pp. 280–288.

[12] “Network simulator (ns-2),”
http://www.isi.edu/nsnam/ns/.

[13] S. H. Low, L. Peterson, and L. Wang, “Understanding
TCP vegas: a duality model,” in Proceedings of the
ACM SIGMETRICS, 2001, pp. 226–235.

[14] S. H. Low, F. Paganini, and J. C. Doyle, “Ineternet
congestion control,” in IEEE Control Systems
Magazine, 2002, pp. 28–43.

[15] E. Altman, T. Jiménez, and R. Núñez Queija,
“Analysis of two competing TCP/IP connections,”
Perform. Eval., vol. 49, pp. 43–55, 2002.

[16] A. Chaintreau, F. Baccelli, and C. Diot, “Impact of
TCP-like congestion control on the throughput of
multicast groups,” IEEE/ACM Trans. Netw., vol. 10,
pp. 500–512, August 2002.

[17] M. Garetto, R. L. Cigno, M. Meo, and M. A. Marsan,
“Modeling short-lived TCP connections with open
multiclass queuing networks,” Computer Networks,
vol. 44, pp. 153–176, February 2004.

[18] S. Liu, T. Başar, and R. Srikant, “Exponential-red: a
stabilizing aqm scheme for low- and high-speed TCP
protocols,” IEEE/ACM Transactions on Networking,
vol. 13, pp. 1068–1081, October 2005.

[19] J. K. Sundararajan, S. Jakubczak, M. Médard,
M. Mitzenmacher, and J. Barros, “Interfacing network
coding with TCP: an implementation,” Tech. Rep.,
August 2009, http://arxiv.org/abs/0908.1564.

[20] T. Kelly, “Scalable TCP: improving performance in
highspeed wide area networks,” SIGCOMM Comput.
Commun. Rev., vol. 33, pp. 83–91, April 2003.

[21] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky,
“An extension to the selective acknowledgement (sack)
option for TCP,” United States, 2000.

140

