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ABSTRACT
This invited paper outlines some recent results on the max-
min SIR balancing problem in wireless networks in which
power control and beamforming are the only mechanisms
for resource allocation and interference management. In ad-
dition, we describe several potential extensions and improve-
ments to existing algorithmic solutions, as well as prove the
convergence of a distributed algorithm for joint power con-
trol and receive beamforming to a global optimum of the
max-min SIR balancing problem. Finally we briefly discuss
a possibility of how to incorporate the optimization of trans-
mit beamformers.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Network Architecture and De-
sign

General Terms
Theory, Algorithms

Keywords
Power Control, Beamforming, Max-Min Fairness, Utility Max-
imization, Saddle-Point Characterization, Algorithmic Solu-
tions, Distributed Implementation

1. INTRODUCTION
Max-min fairness is the most common notion of fairness [7].
The max-min fair approach consists in treating all users as
fairly as possible by making the rates allocated to the users
as equal as possible. Under certain assumption, max-min

∗The work was supported by the German Research Foun-
dation (DFG) under grant STA864/3-1 and by the German
Federal Ministry of Education and Research (BMBF) under
grant 01BU920.

fairness can be achieved by solving the so-called max-min
SIR balancing problem, where the objective is to maximize
the minimum signal-to-interference ratio (SIR). QoS-based
power control is closely related and aims at satisfying given
desired SIR levels (SIR targets) with a minimum total trans-
mit power. Both approaches have been extensively studied
and are fairly well understood [1, 36, 2, 63, 64, 19, 61, 62, 22,
26, 4, 39, 27, 58, 5, 65, 15, 17]. See also [14] for joint power
control, scheduling and routing. Optimal power allocations
in the sense of QoS-based power control can be found by
means of iterative algorithms that allow distributed imple-
mentation, provided that the SIR targets are feasible (see
for instance [19, 61, 5] and [25] for combined power control
and cell-site selection). These strategies are in particular
appropriate for applications that generate inelastic traffic,
and therefore do not tolerate large delays.

In contrast, utility maximization problems aiming at maxi-
mizing some aggregate utility function of link rates (or other
quantities) appears to fit better the needs and characteris-
tics of some wireless communications applications with elas-
tic traffic. Utility-based strategies implicitly use the relative
delay tolerance of data applications as well as the network
and channel dynamics to improve the network performance.
At the same time, the use of monotonically increasing and
strictly concave utility functions ensures the desired degree
of (link-layer and end-to-end) fairness [56, 33, 38]. For these
reasons, utility-based approaches to resource allocation and
interference management in wireless networks have attracted
a great deal of attention over the last decade. Theoretical
work on utility-based power control or, more generally, cross-
layer design includes [23, 45, 59, 32, 40, 12, 18, 13, 42, 55,
41, 53, 24, 57, 31, 6, 11]. Further references can be found in
the papers listed above and in [21]. The power control prob-
lem has been also analyzed within the framework of game
theory. See for instance [29, 30, 28, 3, 46].

In this paper, we consider a power-controlled wireless net-
work in which power control and beamforming are the only
mechanisms for resource allocation.1 If the beamformers
of all links are fixed, max-min fairness is a power control
problem and the max-min fair rate allocation is achieved
by the so-called max-min fair power allocation. This power
allocation is usually obtained by solving the max-min SIR

1There is no scheduling and all users (transmitter-receiver
pairs) share a common bandwidth.
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balancing problem, which is a widely studied resource allo-
cation problem for wireless networks (see, for instance, [65],
[60], [54]) and references therein). The main challenge is to
solve the max-min SIR balancing problem in a distributed
manner.

This paper summarizes some of our recent results on the
max-min SIR balancing problem in noisy wireless networks
with general power constraints [54, 51, 50, 16, 52]. In par-
ticular, in [51, 52], we established a connection between
the max-min SIR-balancing power control problem and the
utility-based power control problem. A similar connection
is known in the noiseless case [54;, 49, Section 5.9] and con-
stitutes the starting point for the analysis in [9]. The results
lead to a saddle point characterization of certain aggregate
utility functions [54, 51, 50], which was a basis in [52] for
the development of a saddle-point algorithm converging to
the solution of the max-min SIR balancing problem. The
convergence rate and the initial convergence speed of the
algorithm proposed in [52] are not satisfactory and the con-
vergence behavior strongly depends on the choice of the step
size. In this paper, therefore, we suggest using the max-
min methods of [57] to significantly improve the convergence
speed of the saddle-point algorithm. The power control it-
eration of [57] can be classified as a conditional Newton it-
eration (or reduced Lagrange-Newton iteration) that oper-
ates on a modified Lagrangian function and relies a specific
min-max formulation of the power control problem. The
combination of quadratic convergence and amenability to
decentralized implementation makes the conditional New-
ton iteration predestined for efficient online application in
real-world power control.

Further we combine the power control iteration with optimal
receive beamforming and prove that the proposed iteration
converges to a global optimal solution of the max-min SIR
balancing problem over the joint space of transmit powers
and receive beamformers. Although the approach is different
from that in [9], the result in some sense extends the main
statement of [9] to noisy channels with individual power con-
straints. In contrast to [16], the algorithm proposed in this
paper does not exploit the knowledge of principal left and
right eigenvectors of some nonnegative matrices, and there-
fore the iteration can be relatively efficiently implemented
in decentralized wireless networks. The last section of the
paper briefly discusses the possibility of incorporating trans-
mit beamformers into the joint optimization process. The
simulation results suggest huge potential for performance
gains.

2. DEFINITIONS AND PROBLEM STATE-
MENT

We consider a wireless network with an established network
topology, in which K ≥ 2 users (point-to-point logical links)
share a common wireless spectrum and transmit their inde-
pendent data concurrently. Let K = {1, . . . ,K} denote the
set of all users and let p = (p1, . . . , pK) ≥ 0 be the power
vector or power allocation, where pk is the transmit power of
user k ∈ K. Due to power constraints, we have p ∈ P where
P is a compact convex set of all feasible power allocations
(called feasible power region). For brevity, in this paper, P

is assumed to be2

P = {p ∈ R
K
+ : ∀k∈Kpk ≤ p̂k} = {p ∈ R

K
+ : p ≤ p̂} (1)

for a given vector p̂ = (p̂1, . . . , p̂K) with individual power
constraints on each link.

The main figure of merit is the SIR at the output of each
receiver given by

SIRk(p) =
pk

Ik(p)
, k ∈ K, (2)

where Ik : RK
+ → R++ is a given interference function. The

interference functions are assumed to fulfill the following
conditions:

(A.1) For each k, we have Ik(p) > 0,p ≥ 0

(A.2) ∇pIk(p), k ∈ K, exists and the partial derivatives are
continuous functions on R

K
++. Moreover, ∂Ik(p)/∂pl ≥

0 for each k, l ∈ K and all p > 0.

(A.3) mink∈K SIRk(p) attains its maximum on P.

Sometimes (see Sect. 4.1) it is also required that the interfer-
ence functions are convex functions of s = log(p),p ∈ R

K
++.

If the Hessian of Ik(e
s) exists and its entries are continuous,

then this is equivalent to saying that

(A.4) ∇2
sIk(e

s) is positive semidefinite for every s ∈ R
K .

An important example of interference functions satisfying
the above conditions are affine interference functions that
are of the form:

(A.5) Ik(p) = (Vp+ σ)k =
∑K

l=1 vk,lpl + σ2
k.

Here and hereafter, V := (vk,l) ∈ R
K×K
+ is the gain matrix,

vk,l = Vk,l/Vk,k if l 6= k and 0 if l = k where Vk,l ≥ 0 with
Vk,k > 0 is the attenuation of the power from transmitter l
to receiver k. The kth entry of σ := (σ2

1 , . . . , σ
2
K) is equal

to the noise variance at the output of receiver k ∈ K dev-
ided by Vk,k > 0.3 Unless otherwise stated, the interference
functions are assumed to be affine and therefore are of the
form given by (A.5). Moreover, if the interference functions
are affine, then, unless otherwise stated, we assume that

(A.6) the gain matrix V ≥ 0 is irreducible.

In words, (A.6) means that the network is entirely coupled
by interference. This is equivalent to saying that under cer-
tain optimal conditions, the change of any transmit power
has an impact on each SIR.

Now we are in a position to define a max-min SIR power
allocation.

2
R+,R++ are nonnegative and positive reals, respectively.

3Thus σ2
k is a normalized noise variance so that the numer-

ator of (2) contains only the transmit power.
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Definition 1. Suppose that (A.1)–(A.3) hold. The power
vector p̄ is said to be a max-min SIR power vector/allocation
if

min
k∈K

SIRk(p̄) = max
p∈P

min
k∈K

SIRk(p) . (3)

The problem is referred to as the max-min SIR balancing
problem. A simple examination of the definition shows that
p̄ is a positive vector. Further, it is pointed out that there
may be multiple max-min SIR power allocations, which stands
in contrast to the max-min fair power allocation defined as
follows [7, p. 526].

Definition 2. p̄′ ∈ P is said to be a max-min fair power
allocation if any SIRk(p̄

′) cannot be increased without de-
creasing some SIRl(p̄

′), l 6= k, which is smaller than or equal
to SIRk(p̄

′).

Let P̄ ⊂ P be the set of all max-min SIR power allocations.
The following proposition states a sufficient condition for a
max-min SIR power vector to be unique and equal to the
max-min fair power vector.

Proposition 1. If (A.6) is true , then |P̄| = 1 and p̄ =
p̄′ ∈ P+ := P ∩ R

K
++.

Since p̄ > 0, we can focus on P+. Considering this and (1),
p̄ defined by (3) can be written as

p̄ = argmax
p>0

min
k∈K

SIRk(p) s.t. max
k∈K

gk(p) ≤ 1 , (4)

where

gk(p) := 1/p̂kc
T
k p = pk/p̂k ≤ 1, k ∈ K , (5)

and ck = (0, . . . , 0, 1, 0, . . . , 0) ∈ {0, 1}K is a vector with 1
at the kth position and zeros elsewhere.

Our approach to the max-min SIR balancing problem (3) is
based on a certain saddle point characterization of a weighted
sum of utilities of the SIRs (see Section 3 below), why we
use φ to denote the utility function assigned to each link and
assume the following.

(A.7) Let φ : R++ → Q ⊆ R be any continuous and strictly
increasing utility function. Moreover, φ is a twice
continuously differentiable function.

(A.8) φ(ex), x ∈ R, is a concave function.

Examples of functions satisfying (A.7) and (A.8) are x 7→
log(x), x > 0, and x 7→ −1/xn, n ≥ 1, x > 0. In order to
match the usual derivations in optimization theory, in this
paper, we will minimize the objective function with respect
to p. To this end, we define the function θ : R++ → R to be

θ(x) := −φ(x), x > 0 . (6)

Obviously, (A.7) implies that θ is a strictly decreasing func-
tion. By strict decreasingness, we have θ(maxk∈K SIRk(p)) =
maxk∈K θ(SIRk(p)) for all p > 0. Thus, as p̄ ∈ P+, we have

p̄ = argmin
p∈P+

max
k∈K

θ
(

SIRk(p)
)

. (7)

3. SADDLE POINT CHARACTERIZATION
The basic idea for solving (4) is to rewrite the problem as a
utility maximization problem. To be more precise, let

ΠK := {x ∈ R
K
+ : ‖x‖1 = 1}

and Π+
K = ΠK ∩ R

K
++. We define the objective function of

interest G : Π+
K × P+ → R to be

G(u,p) := −
∑

k∈K

ukφ
(

SIRk(p)
)

=
∑

k∈K

ukθ
( pk
Ik(p)

)

, (8)

where u = (u1, . . . , uK) ∈ Π+
K is a positive weight vector

that has to be determined. We see that any power vector
minimizing G(u,p) with respect to p ∈ P for some given
weight vector u > 0 is optimal in the sense of the utility
maximization problem considered in [54].

Now if the weight vector is chosen appropriately, then we can
solve our problem by minimizing (8) with respect to p ∈ P.
The problem of choosing the weight vector has been solved
in [51]. To be precise, let B(k) ∈ R

K×K
+ (for each k ∈ K) be

defined to be

B(k) := V +
1

p̂k
σcTk . (9)

Notice that by (A.6), B(k) is irreducible for each k ∈ K.
As a consequence, the Perron-Frobenius theory [48, 37, 35]
implies that the matrix has positive left and right eigenvec-
tors (denoted by y and x, respectively) associated with the

spectral radius ρ(B(k)) which is a simple eigenvalue of B(k):

ρ(B(k))x = B(k)x,x > 0 ρ(B(k))y = (B(k))Ty,y > 0 .

Moreover, the eigenvectors are unique up to a multiplica-
tive (scalar) factor. They are called principal left and right
eigenvectors.

Now it was shown in [51] that the weight vector we are

searching for can be computed from B(k) for some k and
the index k must be a member of a set K0 which is defined
as follows:

K0 :=
{

k0 ∈ K : k0 = argmax
k∈K

ρ(B(k))
}

. (10)

This leads us to the following result.

Proposition 2. Let k0 ∈ K0 be arbitrary and let

ρ(B(k0))x = B(k0)x ρ(B(k0))y = (B(k0))Ty

so that x > 0 and y > 0 are principal right and left eigen-
vectors of the matrix B(k0) with yTx = 1.Then,

p̄ = argmin
p∈P

G(w,p) (11)

where

w = y ◦ x > 0 ‖w‖ = 1 . (12)

In words, if the weight vector is chosen to be equal to the
Hadamard product of the principal left and right eigenvec-
tors of B(k0) for some k0 ∈ K0, then the minimum of G (as
a function of p) on the set P is attained for the max-min
SIR power allocation. Note that the choice of the weight
vector is independent of the choice of the utility function,
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provided that (A.7) and (A.8) are satisfied. Furthremore, if
w is defined by (12), then

min
p∈P

G(w,p) = min
p∈P

∑

k∈K

wkθ
( pk
Ik(p)

)

= min
p∈P

max
k∈K

θ
( pk
Ik(p)

)

.

(13)

The constraint p ∈ P can be replaced by maxk gk(p) ≤ 1
and in the minimum we have gk(p̄) = 1, k ∈ K0.

Unfortunately the problem in (11) may not be meaningful
for an algorithmic approach unless there is a method for
an efficient computation of the Hadamard product without
knowing the principal eigenvectors in advance (whose com-
putation in a distributed wireless networks is not a trivial
task). This is clarified by the following proposition.

Proposition 3. If (A.6) is satisfied, then p̄ is the unique
max-min SIR power allocation if and only if p̄ is the prin-
ciple right eigenvector of B(k0) (associated with the spectral

radius ρ(B(k0))) for some k0 ∈ K0 normalized such that
gk0(p̄) = 1:

ρ(B(k0))p̄ = B(k0)p̄, gk0(p̄) = 1 k0 ∈ K0 .

Thus if the principal right eigenvector is known, then there is
no problem to solve because this vector provides the solution
to our problem. Note that although the cardinality of K0

can be larger than one, the principal eigenvectors of B(k0)

for different k0 ∈ K0 are the same due to the assumption of
irreducibility of the gain matrix.

Unfortunately, the computation of the weight vector w de-
fined by (12) is not amenable to distributed implementation.
It is illusive to assume that the gain matrix V is known at
some nodes.

When developing distributed power control algorithms for
achieving the max-min fairness, the characterization of a
saddle point of the function G : Π+

K × P → R turns out to
be useful.

Proposition 4. Suppose that (A.6)–(A.7) hold. Then,
for each k0 ∈ K0 defined by (10), we have

θ(1/ρ(B(k0))) = max
u∈ΠK

min
p∈P

G(u,p)

= min
p∈P

max
u∈ΠK

G(u,p)
(14)

and (w, p̄) is the unique saddle point in ΠK × P+.

Intuitively, the results implies that u = w with w defined by
(12) is the worst-case weight vector in the sense that it leads
to the worst performance in terms of the aggregate utility
function.

Finally we point out that Proposition 4 is substantially re-
lated to results of the seminal paper of Friedland and Karlin
[20].

4. POWER CONTROL ALGORITHM
Now the goal is to use the characterization of Proposition
4 to design an iterative saddle-point algorithm that simul-
taneously maximizes G(u,p) with respect to u ∈ ΠK and
minimizes this function over the feasible power region P.
Due to Theorem 4, the algorithm will converge to a saddle
point (u∗,p∗) of G(u,p), which is a unique point in ΠK×P.
For brevity, we assume in this section that φ (and with it θ)
is continuously differentiable.

The function G(u,p) is in general not convex in p ∈ P but
by Theorem 4, we have p∗ > 0 (and u∗ > 0). Therefore, by
[54, Section 6.2],

Ge(u, s) := G(u, es) =
∑

k∈K

ukθ
( esk

Ik(es)

)

is well-defined on ΠK × S with

S := {s ∈ R
K : s = log(p),p ∈ P+}

and convex with respect to s ∈ S. So, Ge(u, s) is a concave-
convex function on ΠK ×S, meaning that it is concave (and
convex) with respect to u and convex in s ∈ S. Now since the
logarithmic function is a bijective function that map R++

onto R, we can restate Proposition 4 using the logarithmic
power vectors. To this end, we define

s̄ := log(p̄) ∈ S . (15)

With this definition in hand, it follows directly from (14)
that

θ(1/ρ(B(k0))) = max
u∈ΠK

min
s∈S

Ge(u, s)

= min
s∈S

max
u∈ΠK

Ge(u, s)
(16)

and (w, s̄) is the unique saddle point in ΠK × S.

Now using these definitions, the power control problem can
be stated as follows:

min
s

max
u

Ge(u, s) = max
u

min
s
Ge(u, s)

s.t

{

∀k∈K esk − p̂k ≤ 0
∑

k∈K
uk − 1 = 0

(17)

In order to obtain Newton-like algorithms that are amenable
to distributed implementation, we proceed essentially as in
[57] to introduce a new interference variable by splitting each
SIR, say SIR of link k, into the power control variables esk

and the interference variable Jk such that Jk ≤ Ik(e
s), k ∈

K. Using the telescope variable t = (t1, . . . , tK) to separate
the constraint inequalities for different variables, we obtain

min
s,t

max
u,J

∑

k∈K

ukθ
(esk

Jk

)

s.t



















∀k∈K esk − p̂k ≤ 0
∑

k∈K
uk − 1 = 0

∀k∈K Jk − tk ≤ 0

∀k∈K Ik(e
s)− tk = 0

(18)

where J = (J1, . . . , JK). It is important to emphasize that
in general, (17) and (18) are not equivalent. In fact, even if
(A.7)–(A.8) are satisfied, it is easy to see that the objective
function in (18) is not necessarily concave in Jk, k ∈ K. For
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this reason, it may be not possible to change the order of the
min and max operators in (18) and the associated Karush-
Kuhn-Tucker conditions are only necessary conditions for
the optimum. An immediate consequence of this modifica-
tion is the lack of important properties that ensure global
convergence of primal-dual algorithms with the class of util-
ity functions satisfying Conditions (A.7)–(A.8) [57] (see also
Sect. 4.1).

The classical linear Lagrangian function for the modified
problem (18) takes therefore the form

L̄(z) = L̄(s,J,u,µ,λJ ,λI , t, ω)

=
∑

k∈K

ukθ
(esk

Jk

)

+
∑

k∈K

µ(esk − p̂k)

+
∑

k∈K

λJ
k (Jk − tk)

+
∑

k∈K

λI
k(Ik(e

s)− tk)

+ ω
(

∑

k∈K

uk − 1
)

(19)

with z := (s,J,u,µ,λJ ,λI , t, ω) ∈ R
2K × R

3K
+ × R

2K ×
R. Note that the primal variable u is in this formulation
constrained to be nonnegative. We keep this constraint but
point out that an additional dual variable can be introduced
to deal with this constraint.

To get rid of all the nonnegativity constraints on the dual
variables, one can consider the following non-linear Lagran-
gian function [57] which is a modification of the classical
linear Lagrangian defined by (19):

L(z) = L(s,J,u,µ,λJ ,λI , t, ω)

=
∑

k∈K

ukθ
(esk

Jk

)

+
∑

k∈K

ψ(µk)(e
sk − p̂k)

+
∑

k∈K

ψ(λJ
k )(Jk − tk)

+
∑

k∈K

λI
k(Ik(e

s)− tk)

+ ω(
∑

k∈K

uk − 1)

z = (s,J,u,µ,λJ ,λI , t, ω) ∈ R
7K+1

(20)

where ψ(x) = x2, x ∈ R, and u ≥ 0.4 Note that there
are no constraints on the optimization variable z except for
u ≥ 0. Thus, if u > 0 is fixed, then the Lagrangian is
unconstrained in which case the formulation falls into the
framework of generalized Lagrangian theory [34, 44]. This
can be used to significantly improve the convergence rate of
the power control algorithms.

4The quadratic function is just one possibility for choosing
the function ψ. More general conditions can be found in
[57].

4.1 An arbitrary fixed weight vector
Suppose for a moment that the weight vector u > 0 is arbi-
trary but fixed so that the Lagrangian (20) is not a function
of u (it is in fact parameterized by the weight vector). If
u > 0 is fixed, then there is no dual variable ω, and therefore
the modified non-linear Lagrangian for the problem becomes

Lu(z) := Lu(s,J,µ,λJ ,λI , t)

= L(s,J,u,µ,λJ ,λI , t, ω), z ∈ R
6K .

(21)

Since u is fixed, it follows from [57] that any Karush-Kuhn
point (e.g. a point satisfying Karush-Kuhn-Tucker condi-
tions) can be associated with stationary points of Lagrangian
(20). However, the question which immediately arises is
whether the stationary points of the Lagrangian correspond
to global minima of the function Ge(u, s) for some fixed
u > 0. In other words, the question is whether the sta-
tionary points of the Lagrangian (which are Karush-Kuhn
points of (18)) are necessary and sufficient for the sought
optimum.

As already indicated before, the answer is “no” in general
because Conditions (A.7)–(A.8) are not sufficient to ensure
concavity with respect to the new interference variables Jk,
k ∈ K. However, as shown in [57], the concavity property
is ensured whenever the function θe(y) := θ(ey) fulfills the
following condition (in addition to (A.7) and (A.4))

(A.9) θ′′e (y) + θ′e(y) ≤ 0, θ′′e (y) ≥ 0, y ∈ R .

Two prominent examples of functions fulfilling (A.7) and
(A.9) are θ(x) = − log(x), x > 0, and θ(x) = 1/x, x > 0.
As mentioned in Sect. 2, the requirement of positive semi-
definiteness of the interference functions (A.4) are satisfied
by affine interference functions.

Now assuming (A.4), (A.7) and (A.9), Lagrangian (20) has
the desired convex-concave property5 and its stationary poin-
ts are saddle points given by

min
s,λJ ,t

max
J,µ,λI

Lu(z) = max
J,µ,λI

min
s,λJ ,t

Lu(z) .

Moreover, it can be shown that the saddle point is unique up
to component signs if (A.6) holds, that is, if the gain matrix
is irreducible.

In order to find stationary points of Lagrangian (21), Refer-
ence [57] considered a conditional Newton iteration on this
Lagrangian of the form:
{
(

s(n+1)
µ(n+1)

)

=
(

s(n)
µ(n)

)

− (∇2
(s,µ)L

u(z(n)))
−1

∇(s,µ)L(z(n))

∇(J,λJ ,λI ,t)L
u(z(n+ 1)) = 0

.

(22)
For any fixed u > 0, it was shown under the assumption of
(A.4), (A.6), (A.7) and (A.9), that the algorithm converges
to the saddle point of Lagrangian (20) which corresponds
to the global optimum of Ge(u, s). This in turn solves the
max-min SIR balancing problem (7).

5The desired property is that Lu is a convex-concave func-
tion of s and J for λJ ≥ 0 and J− t ≤ 0. See [57, Corollary
2]
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The nice property of the iteration in (22), which is also called
reduced Lagrange-Newton iteration, is that it is amenable
to a distributed implementation and it exhibits much higher
convergence rates than classical primal-dual iterations based
on gradient methods with a constant step size. In fact, [57]
proved the quadratic quotient convergence of the iteration.
The iteration is called reduced because the Newton update
is performed under reduced dimensionality (in this case in
R

2K with respect to (s,µ)). Such a dimensionality reduc-
tion is required for an efficient distributed implementation
because Newton updates involve a linear combination of all
gradient components with coefficients being determined by
the inverse of the Hessian matrix which in general is notori-
ously difficult to implement in a distributed manner. In con-
trast, due to the dimensionality reduction and the variable
splitting in (18), the reduced Hessian matrix (in R

2K×2K)
has a relatively simple standard four-block structure with
block-diagonals so that the Newton update is well-behaved
in terms of distributed implementation.

4.2 Computing the optimal weights
The reduced Lagrange-Newton iteration (22) can be per-
formed for an arbitrary but fixed weight vector u > 0. Dif-
ferent choices of the weight vector lead in general to different
utility maximization problems, and therefore provide differ-
ent points on some Pareto optimal boundary. In a special
case of the max-min SIR balancing problem (4), the weight
vector must be of the form given by (12). As aforementioned,
this vector is not known in advance and its computation in
a distributed environment seems to be notoriously difficult.
Moreover, an examination of Proposition 3 reveals that the
weight vector highly depends on the solution to the prob-
lem at hand. For this reason, such approaches seem to be
inappropriate for algorithmic solutions.

A remedy to the problem of computing the weight vector
is offered by the saddle-point characterization (14) or (16).
The basic idea is to use the characterization of Proposition 4
to design an iterative saddle-point algorithm that maximizes
Ge(u, s) with respect to u ∈ ΠK and simultaneously min-
imizes this function over the feasible power region S. Due
to Theorem 4, the algorithm will converge to a saddle point
(w, s̄) of G(u, s), which is a unique point in ΠK × S.

In [52], we proposed a saddle-point algorithm operating on
a classical linear Lagrangian similar to that in (19). The
difference is that in [52] no variable splitting was used and
the power constraints were not captured by Lagrange mul-
tipliers. Instead, the updates were projected on the fea-
sible set in every iteration. If the associated Lagrangian
L : RK

+ × S×R → R is defined to be L
(

u, s, λ
)

= Ge(u, s)+
λ(
∑

k∈K
uk − 1), the algorithm of [52] takes of the form:

u(n+ 1) = max
[

u(n) + δ∇uL
(

u(n), s(n), λ(n)
)

, 0
]

s(n+ 1) = min
[

s(n)− δ∇sL
(

u(n), s(n), λ(n)
)

, ŝ
]

λ(n+ 1) = λ(n)− δ∇λL
(

u(n), s(n), λ(n)
)

(23)

where ŝ = (ŝ1, . . . , ŝK) := (log(p̂1), . . . , log(p̂K)) is the vec-
tor of power constraints in S, the minimum and the maxi-
mum are taken component-wise, δ > 0 is a sufficiently small
step size (small enough to ensure convergence but not too
small in order to achieve a sufficient convergence speed) and
λ ∈ R

K is the dual variable associated with the equality

constraint ‖u‖1 = 1.

The algorithm solves the problem (17) since it converges
to the unique saddle point of Ge(u, s), but the convergence
speed and convergence rate are not satisfactory, especially
for applications in many wireless networks. One poten-
tial approach is to combine the saddle-point characteriza-
tion (16) with the conditional Newton iteration (or reduced
Lagrange-Newton iteration) presented in Sect. 4.1 to ob-
tain a significantly faster algorithm that updates the weight
vector u in parallel to updates of other primal and dual
variables. Due to linearity of Ge(u, s) in u, we observe that
Lagrangian (20) is a convex-concave function and, although
we have no formal proof at the time of writing this paper, we
conjecture that its stationary points are saddle points given
by

min
s,λJ ,t,ω

max
u,J,µ,λI

L(z) = max
u,J,µ,λI

min
s,λJ ,t,ω

L(z)

and these stationary points are necessary and sufficient for
solving (17). However, if this is even true, it is not clear to us
how to incorporate an online computation of weight vector
updates into the iteration specified by (22). The main chal-
lenge is to preserve both the quadratic quotient convergence
and the simple structure of the Hessian matrix so that the it-
eration can be efficiently performed in decentralized wireless
networks.

A straightforward idea is to iterate the weight vector with
the corresponding dual variable in parallel to the reduced
Lagrange-Newton iteration defined by (22) so that the new
combined iteration yields
{
(

s(n+1)
µ(n+1)

)

=
(

s(n)
µ(n)

)

− (∇2
(s,µ)L(z(n)))

−1
∇(s,µ)L(z(n))

∇(J,λJ ,λI ,t)L(z(n+ 1)) = 0
{

∀k∈K uk(n+ 1) = max{uk(n) + δω(n) + θ
(

esk(n+1)

Jk(n+1)

)

, 0}

ω(n+ 1) = ω(n)− δ(
∑

k∈K
uk(n)− 1)

where δ > 0 is a sufficiently small step size and L given by
(20) depends on both u and ω. It is however emphasized that
the approach may be not a good idea so that the challenge
stated above seems to be an open problem.

4.3 Remarks on distributed implementation
Due to the mutual dependence of logical links, the compu-
tation of variable updates involves in general coordination
and exchange of global information between network nodes.
The use of classical flooding protocols to exchange this in-
formation (as for instance proposed in [13]) may consume
a lot of wireless resources. Therefore, we argue in favor of
a scheme based on the use of so-called adjoint network to
efficiently distribute some locally measurable quantities to
all other transmitters. A network is said to be adjoint to
a given (primal) network with the gain matrix V if it has
the same network topology and its gain matrix is VT [53,
54]. Now, instead of each node sending its message sepa-
rately as in the case of classical flooding protocols, nodes
transmit simultaneously over the adjoint network in such
a way that each node can estimate its gradient component
based on some local measurements. Except for coarse syn-
chronization, no cooperation between the nodes is required.
When compared with [13], we expect that the overall sig-
naling overhead can be reduced significantly because, in ad-
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dition to a low-rate feedback for each transmitter-receiver
pair, only the received powers in the adjoint network must
be estimated on each link separately. The problem of noisy
estimates can be dealt with using the techniques of stochas-
tic approximation. For more details, the reader is referred
to [53, 54].

5. JOINT POWER CONTROL AND RECEI-
VE BEAMFORMING

In this section, we assume that each link is equipped with
M antenna elements at the transmitter side and the receiver
side. There is a single-data stream per each link. While the
transmit beamformers are arbitrary but fixed, the receive
beamformers, which act as linear receivers, are jointly opti-
mized with transmit powers. Since channel properties from
one transmitter to distinct receivers are not necessarily the
same, each transmitter is in general identified by a set of dif-
ferent spatial covariance matrices, each of which being asso-
ciated with a distinct receiver. Let Gk,l ∈ C

M×M , k ∈ K, be
the (instantantaneous or statistical) spatial covariance ma-
trix from transmitter l to receiver k which is fixed positive
semi-definite matrix. We use

rk := rk(p) ∈ Uk := {x ∈ R
M : xHGk,kx = 1}

to represent the beamforming strategy employed by link
k ∈ K and point out that the receive beamformers in general
depend on p. The beamformers rk ∈ C

M of all links are col-
lected in the receive beamforming matrixR = (r1, . . . , rK) ∈
C

M×K .

With these assumptions in mind, we consider the interfer-
ence functions under the optimal receive beamformers in the
sense that:

Ik(p) = min
rk∈Uk

(ϕk(p, rk)), k ∈ K (24)

where

ϕk(p, rk) =
∑

l∈K,l 6=k

plr
H
k (Gk,l + σ2

kI)rk . (25)

Under the assumption of (24) in the definition of SIR given
by (2), the max-min SIR balancing problem (7) becomes a
joint power control and receive beamforming problem. The
problem formulation is not novel and the problem was for
instance addressed in [9, 16] (see also references therein). In
contrast to the setting in this paper, however, note that Ref-
erence [9] considered a noiseless channel, which is equivalent
to assuming that σ2

k = 0 for each k ∈ K. This makes the re-
sults applicable only to interference-limited systems where
the link performance is limited by interference and power
constraints can be neglected. Moreover, the authors of [9]
were primarily interested in the single-cell downlink chan-
nel of a cellular wireless network. As a consequence of this,
the algorithm proposed there is for centralized control by
a base station. They used the uplink-downlink duality [8]
to identify optimal transmit beamformers in the downlink
channel.

It may be easily verified that any interference function of the
form (24) fulfills Conditions (A.1)–(A.3). In contrast, (A.4)
is not satisfied due to the minimum operator. This led the
researchers to iterative algorithms that update the power
vector and the receive beamforming matrix in an alternating

way. More precisely, the idea is to keep one of the variables
R and p fixed while optimizing with respect to the other.
When optimizing with respect to p, the gain matrix V(R)
depends on fixed receive beamformers R and is given by

(V(R))k,l =

{

rHk Gk,lrk k 6= l

0 k = l
. (26)

Further, we write G(u,p,R), SIR(p,R) and for each k ∈ K

B(k)(R), ρ(B(k)(R)), to emphasize the dependence of the
objective function, the SIR, the extended gain matrix and
its spectral radius on R. In what follows, we also assume
that

(A.10) V(R) is irreducible for any choice of R.

The alternating optimization principle mentioned above was
also applied in [9] to find an optimal allocation of transmit
powers and receive beamformers. However, as the algorithm
of [9] is not amenable to distributed implementation, we
limit ourselves to pointing out the following: It seems that
the algorithm can be extended to include the background
noise and the individual power constraints by considering
the principal left and right eigenvectors of B(k)(R̄), k ∈ K0

instead ofV(R̄) where R̄ denotes optimal receive beamform-
ers (in the sense of the max-min SIR balancing problem; see

also [9]) and the structure of B(k)(R̄) is given by (9) except
that V is replaced by V(R). Further in the definition of K0

given by 10, ρ(B(k)) should be replaced by ρ(B(k)(R̄)).

In this paper, we propose the following algorithm which ap-
pears to be better predestined for distributed wireless envi-
ronments.

Algorithm 1 Joint power control and receive beamforming
achieving the max-min SIR-balancing solution

Input: n = 0, rk(0) ∈ Uk, k ∈ K,p(0) ∈ P,u(0) ∈ Π+
K

1: repeat
2: n = n+ 1
3: p(n) = argminp∈P max

u∈Π+
K

G(u,p,R(n− 1))

4: rk(n) = argminr∈Uk
ϕ(p(n), r) ∀k

5: until termination condition is satisfied

Note that in contrast to [16], the optimal weight vector is
not computed using (12) but instead it is determined itera-
tively in parallel to the power vector iteration. The follow-
ing proposition shows that the algorithm converges to the
global optimum of the max-min SIR balancing problem (7)
with (24) and (25).

Proposition 5. The proposed algorithm converges to the
global optimum of the max-min SIR balancing problem (7)
over the joint space of transmit powers and receive beam-
formers.

Proof. First let n ∈ N be arbitrary but fixed and let
̺(R(n)) = ρ(B(k(n))(R(n))). Suppose that (w(n), p̄(n)) ∈
Π+

K ×P+ is the saddle point of G(u,p,R(n)) for some given
R(n) and that k(n) ∈ K0 is the active power constraint in
the optimum. By (A.10) and Proposition 4, the saddle point
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is unique. By Proposition 2, (13), (14), and (24), Algorithm
1 yields

θ(1/̺(R(n))) = G(w(n), p̄(n),R(n))

= min
p∈P

max
k∈K

θ(SIRk(p̄(n),R(n)))

≥ min
p∈P

max
k∈K

θ(SIRk(p̄(n),R(n+ 1)))

≥ min
p∈P

max
k∈K

θ(SIRk(p̄(n+ 1),R(n+ 1)))

= G(w(n+ 1), p̄(n+ 1),R(n+ 1))

= θ(1/̺(R(n+ 1)))

where the second inequality follows from the fact that the
optimal receivers in the sense of (24) maximize each SIR. So
since θ is strictly decreasing and n ∈ N is arbitrary, we can
conclude that {̺(R(n))}n∈N with is monotonically decreas-
ing. Now we proceed essentially as in the proof of [9, Theo-
rem 1]. First we observe the following: (i) the spectral radius
is bounded below, (ii) it is continuous in the matrix entries
which are continuous functions ofR and (iii)R is bounded in
any norm. This implies that there exist a subsequence {nl}

and a matrix R̂ such that limnl→∞ ‖R(nl) − R̂‖ = 0 and

limnl→∞ f(R(nl)) = f(R̂) > fmin where fmin is the global
minimum. Now suppose that the optimum is not achieved
so that f(R̂) = fmin+δ for some δ > 0. Thus, by [9, Lemma
5], (24), (25) with (A.10) as well as by the convergence of

R(nl) to R̂, it follows that there are some ǫ := ǫ(δ) > 0 and
l0 such that ǫ < ̺(R(nl)) − ̺(R(nl + 1)) for all l ≥ l0. So
since ̺(R(nl+1)) ≤ ̺(R(nl + 1)), we have (for all l ≥ l0)

ǫ < ̺(R(nl))− ̺(R(nl + 1)) ≤ ̺(R(nl))− ̺(R(nl+1)) .

But the right-hand side converges to zero as nl tends to
infinity which leads to contradiction.

6. JOINT POWER AND TRANSCEIVER
OPTIMIZATION

In the previous section, the transmit beamformers are as-
sumed to be arbitrary but fixed. The optimization of trans-
mit beamforming however may be crucial for the system
performance, because in contrast to receive beamforming it
impacts the interference power at all other receivers. There-
fore a joint optimization of transmit and receive beamform-
ers together with transmit powers offers huge potential for
performance gains.

Again the problem of transmit beamforming optimization
(separate or joint) has been addressed in many papers, in-
cluding [43, 10, 47, 16]. In particular, it is shown in [43] that
the transceiver optimization problem in networks with gen-
eral power constraints presents some additional challenges
which is mainly due to the lack of the uplink-downlink dual-
ity. Nevertheless some joint optimization of power-controlled
transmit and receive beamformers is possible. As in [10] the
basic idea is to optimize the transmit and receive beam-
formers in an alternating way. For a better understanding
we use the notion of the primal and the reversed network. In
contrast to the primal network the reversed network is the
network that is obtained by reversing the roles of transmit-
ters and receivers. More precisely, transmitters and trans-
mit beamformers are assumed to be receivers and receive
beamformers, respectively. Vice versa receivers and receive

10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

Number of Users

m
in

k S
IR

k

Max. Power
Max−Min PC
Max−Min PC/RX
Max−Min PC/TX/RX

Figure 1: Balanced SIR as a function of the num-
ber of users for different schemes: No power control
(users transmit at their maximum transmit pow-
ers) with beamformers matched to the local chan-
nels (Max.Power), power control with beamform-
ers matched to the local channels (Max-Min PC),
power control and receive beamforming (Max-Min
PC/RX), transmit and receive beamforming (Max-
Min PC/TX/RX).

beamformers are assumed to be transmitters and transmit
beamformers.

Figures 1 and 2 illustrate the performance gain that can
be achieved by different resource allocation schemes. We
consider a network with K links, M = 4 transmit and re-
ceive antennas and a channel matrix which entries are iid
complex Gaussian distributed. The max-min SIR-balanced
value averaged over 1000 channel realizations is depicted
over the number of users/links in the network for the 4 re-
source allocation strategies discussed in this paper. All links
have the same individual power constraints and operate at
SNR = 30dB.
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power allocation (Max.Power).
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