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ABSTRACT
Many real-world problems modeled by stochastic games have
huge state and/or action spaces, leading to the well-known
curse of dimensionality. The complexity of the analysis of
large-scale systems is dramatically reduced by exploiting
mean field limit and dynamical system viewpoints. Under
regularity assumptions and specific time-scaling techniques,
the evolution of the mean field limit can be expressed in
terms of deterministic or stochastic equation or inclusion
(difference or differential). In this paper, we overview re-
cent advances of large-scale games in large-scale systems.
We focus in particular on population games, stochastic pop-
ulation games and mean field stochastic games. Considering
long-term payoffs, we characterize the mean field optimality
equations by using mean field dynamic programming prin-
ciple and Kolmogorov forward equations.

1. INTRODUCTION
Dynamic Game Theory deals with sequential situations

of several decision makers (often called players) where the
objective for each one of the players may be a function of
not only its own preference and decision but also of decisions
of other players.

Dynamic games allow to model sequential decision mak-
ing, time-varying interaction, uncertainty and randomness
of interaction by the players. They allow to model situa-
tions in which the parameters defining the games vary in
time and the players can adapt their strategies (or policies)
according the evolution of the environment. At any given
time, each player takes a decision (also called an action) ac-
cording to a strategy. A (behavioral) strategy of a player
is a collection of history-dependent maps that tell at each
time the choice (which can be probabilistic) of that player.
The vector of actions chosen by players at a given time may
determine not only the payoff for each player at that time; it
can also determine the state evolution. A particular class of
dynamic games widely studied in the literature is the class of
stochastic games. Those are dynamic games with probabilis-
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tic state transitions (stochastic state evolution) controlled by
one or more players. The discrete time state evolution is of-
ten modeled as interactive Markov decision processes while
the continuous time state evolution is referred to stochas-
tic differential games. Discounted stochastic games have
been introduced in [26]. Stochastic games and interactive
Markov decision processes are widely used for modeling se-
quential decision-making problems that arise in engineering,
computer science, operations research, social sciences etc.
However, it is well known that many real-world problems
modeled by stochastic games have huge state and/or action
spaces, leading to the well-known curse of dimensionality
that makes solution of the resulting models intractable. In
addition, if the size of the system grows without bound, the
number of parameters: states, actions, transitions explode
exponentially.

In this paper we present recent advances in large-scale
games in large-scale systems. Different models (discrete
time, continuous, hybrid etc) and different coupling struc-
tures (weakly or strongly) are presented. Mean field so-
lutions are obtained by identifying a consistency relation-
ship between the individual-state-mass interaction such that
in the population limit each individual optimally responds
to the mass effect and these individual strategies also col-
lectively produce the same mass effect presumed initially.
In the finite horizon case, this leads to a coupled system
forward/backward optimality equations (partial differential
equation or difference equations).

The remainder of the paper is structured as follows. In the
next section we overview the mean field model description
and its wide range of applications in large-scale wireless net-
works. We then focus on different mean field coupling formu-
lation. After that we present mean field related approaches.
The novelties of the mean field systems are discussed.

We summarize some of the notation used in the paper in
Table 1.

2. OVERVIEW OF LARGE-SCALE GAMES
Population games Interactions with large number of

players and different types can be described as a sequence
of dynamic games. Since the population profile involves
many players for each type or class and location, a com-
mon approach is to replace individual players and to use
continuous variables to represent the aggregate average of
type-location-actions. The validity of this method has been
proven only under specific time-scaling techniques and reg-
ularity assumptions. The mean field limit is then modeled
by state and location-dependent time process. This type of
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Table 1: Summary of Notations
Symbol Meaning
ft drift function (finite dimensional)
σt diffusion function at time t
xnj,t state of player j in a population of size n
qxux′,t transition probability at time t
Mn
t mean field process
Lxx′,t(u,m) transition kernel of the population profile
xj,t limit of state process xnj,t
rt instantaneous payoff function
gT terminal payoff function

aggregate models are also known as non-atomic or popula-
tion games. It is closely related to von Neumann (1944) and
mass-action interpretation in Nash (1951). In the context
of transportation networks, interactions between continuum
of players have been studied by Wardrop (1952) in a deter-
ministic and stationary setting of identical players. In finite
game, a (Nash) equilibrium is characterized by ∀j,

{xj ∈ Xj , mj,xj > 0} = support(mj) ⊆ arg max
x′j∈Xj

rj(ex′j ,m−j)

where rj(.) denotes payoff of j, Xj its action space and mj

its randomized action, m−j = (mj′)j′ 6=j .
In the infinite population game, a (Nash) equilibrium is

characterized by a fixed inclusion: the support of the popu-
lation profile is included in argmax of the payoff function,

{x ∈ X , mx > 0} = support(m) ⊆ arg max
x′∈X

rx′(m).

In other words, if the fraction of players under a specific ac-
tion is non-zero then the payoff of the corresponding action is
maximized. This large-scale methodology has inherent con-
nections with evolutionary game theory when one is study-
ing a large number of interacting players in different subpop-
ulations. Different solution concepts such as evolutionarily
state states or strategies, neutrally stable strategies, invad-
able states have been proposed and several applications can
be found in evolutionary biology, ecology, control design,
networking and economics.

Overview of mean field stochastic games • Discrete
time mean field stochastic games with continuum of play-
ers have been studied by [19] under the name anonymous
sequential games. The authors considered the evolution of
the mean field limit in the Bellman dynamic programming
equation. The work in [19] shows, under suitable condi-
tions, the existence of such mean field equilibria in the case
where the mean field limit of players’ characteristics evolves
nonstochastically. The authors in [5] showed how stochastic
mean field limit can be introduced into the model (so the
mean field limit evolves stochastically).
• Decentralized stochastic mean field control and Nash

Certainty Equivalence have been studied in [17, 18, 14, 15]
for large population stochastic dynamic systems. Inspired
by mean field approximations in statistical mechanics and
linear quadratic Gaussian (LQG) differential games, the au-
thors analyzed a common situation where the dynamics and
payoffs (costs,reward, utility) of any given agent are influ-
enced by certain aggregate of the mass multi-agent behaviors
and established the existence of optimal response to mean
field under boundedness and regularity assumptions. In the

infinite population limit, the players become statistically in-
dependent under some technical assumptions on the control
laws and the structure of state dynamics, a phenomenon re-
lated to the propagation of chaos in mathematical physics.
In [16], the authors extended the LQG mean field model
to non-linear state dynamics and non-quadratic case for lo-
calized and multi-class of players. LQG hybrid mean field
games have been considered in [37].
• In [24, 22, 23] a mathematical modeling approach for

highly dimensional systems of evolution equations correspond-
ing to a large number of players (particles or agents) have
been developed. The authors extended the field of such
mean-field approaches also to problems in economics, finance
and game theory. They studied n-player stochastic differen-
tial games and the related problem of the existence of equi-
librium points, and by letting n tend to infinity they de-
rived the mean-field limit equations such as Fokker-Planck-
Kolmogorov (FPK) equation coupled with the mean field
version of Hamilton-Jacobi-Bellman-Fleming (HJBF). Ap-
plications to finance can be found in [13]. The authors in
[6, 7, 36] extended the framework to mean field stochastic
differential games under general structure of drift and noise
function but also with major and minor players. The authors
in [10, 21] applied mean field games to crowd and pedestrian
dynamics. Numerical methods for solving backward-forward
partial differential equations can be found in [1].
• Discrete time models with many firm dynamics have

been studied by [39, 38] using decentralized strategies. They
proposed the notion of oblivious equilibria via a mean field
approximation. Extension to unbounded cost function can
be found in [2]. In [3], the mean field equilibrium analy-
sis of dynamic games with complementarity structures have
been conducted. In [32, 33], models of interacting players
in discrete time with finite number of states have been con-
sidered. The players share local resources. The players are
observable only through their own state which changes ac-
cording to a Markov decision process. In the limit, when the
number of players goes to infinity, it is found that the sys-
tem can be approximated by a non-linear dynamical system
(mean field limit). The mean field limit can be in discrete or
in continuous time, depending on how the model scales with
the number of players. If the expected number of transitions
per player per time slot vanishes when the size of the system
grows, then the limit is in continuous time. Else the limit is
in discrete time. Markov mean field teams have been studied
[32], Markov mean field optimization, controls and Markov
decision processes have been studied in [11, 31]. Connec-
tion of the resulting limiting mean field games to anonymous
games or stochastic population games have been established.
A stochastic population game given by a population profile
which evolves in time, internal states for each player and
a set of actions in each state and population profile. The
expected payoffs of player are completely determined by the
population profile and its current internal state. At the con-
tinuum limit of the population, one can have (i) a discrete
time mean field games which cover the so-called anonymous
sequential games or (ii) a continuous time mean field games
leading the so-called differential population games. The cor-
responding limiting games fall down to

(i) Differential population games in which the optimality
criteria leads an extended HJBF coupled with FPK equa-
tions or,

(ii) Anonymous sequential games in which the leading
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dynamics are mean field version of Bellman-Shapley equa-
tions combined discrete time mean field Kolmogorov forward
equations similar to the prescribed dynamics developed by
[19].

Below we present the relevance of large-scale games in
large-scale networks. Due to the limitations of the classical
perfect simulation approaches in presence of large number
of entities, mean field approach can be more appropriate in
some scenarios:
• MFSG and continuum modeling The simulation of mul-

tiple networks and their statistical modelling can be very
expensive, whereas solving a continuum equation such as
partial differential equation can be less expensive in com-
parison. Example of such large-scale systems include:

• Internet of things with 2 billions of nodes,

• Network of sensors deployed along a volcano, collecting
large quantities of data to monitor seismic activities
where transmissions are from relay-node to relay-node
until finally delivered to a base station

• Disruption-tolerant networks with opportunistic meet-
ing in a large population of 20.000.000 nodes

• Opportunistic interaction under random mobility: The
work in [10, 21] has modelled crowd behavior and pedes-
trian dynamics using a mean field approach. Inspired from
[10], one can get a random mobility model for the users. In
[31] an application to opportunistic networking have been
studied. This example illustrates how mean field game dy-
namics can be useful in describing the network dynamics in
absence of infrastructure, low connectivity and in absence
of fixed routes to disseminate information. The model has
been extended to Brownian mobility of players with commu-
nication distance parameter and energy saving in wireless
ad hoc networks. A challenging problem of interest such in
configuration is a routing packet over the wireless network
from sources to destinations (their locations are unknown
and they can move randomly). The wireless random path
maximizing the quality of service with minimal end-to-end
delay from a source to a destination changes continuously
as the network traffic and the topology change. An ex-
pected element characterizing the network state (mean field)
and mean field learning-based routing protocol are therefore
needed to estimate the network traffic and to predict the
best network behavior.
• MFSG for carrier sense multiple protocols: The mean

field stochastic game approach has potential applications in
wireless networks (see [2] and the references therein). Mean
field Markov models have been studied in details in [9, 8] for
Carrier Sense Multiple Access (CSMA)-based IEEE 802.11
Medium Access Control (MAC) protocols and gossip proto-
cols. When the strategies of the users are taken into consid-
eration, one gets interdependent decision processes for the
backoff stage: The backoff process in IEEE 802.11 is gov-
erned by a Markovian decision process if the duration of
per-stage backoff is taken into account:

• every node in backoff state xθ attempts transmission
with probability 1

γn+β2+β3 ln(n)
uθxθ for every time-slot;

• if it succeeds, the backoff state changes to 0;

• otherwise, the backoff state changes to (xθ + 1) mod
(Kθ+1) where Kθ is the index of the maximum backoff
state in class θ.

Extension to SINR-based admission control and quality of
service (QoS) management with backoff state can be found
[34].
• Mean field power allocation: In [31] the author study

a power management problem using mean field stochastic
game. The mean field approach have been applied to dy-
namic power allocation (vector) in green cognitive radio net-
works. The authors showed that if the players react to the
mean field and, if the size of the system is sufficiently large
then decentralized mean field power allocations can be ap-
proximated equilibria.

MFSG for Energy Market in Smart Grid, Chemical reac-
tion and Red blood mobility can be found in [31]

3. BASICS OF MFSG MODELS
In this section we overview basics of mean field stochastic

game (MFSG) models.

3.1 Weakly coupling
Weakly coupling via the payoff functions The play-

ers are weakly coupled only via the payoff functions if the
individual state dynamics are not directly influenced by the
others states and strategies i.e

xnj,t+1 = f̄nj,t(x
n
j,t, u

n
j,t, w

n
j,t) (1)

where xnj,t is the state of player j, f̄nj,t is a deterministic
function, unj,t is the action/control of player j and wnj,t is a
random variable (independent to the state and the action
processes of others) with transition probabilities given by

P(xt+1 ∈ X̄|xnt , unj,t, . . . , unj,0, xnj,0),

where X̄ is a subset of X . The instantaneous payoff function
of player j may depend on the state and/or actions of the
others or the state mean field 1

n

∑n
j=1 1l{xnj,t=x} or the state-

action mean field

1

n

n∑
j=1

1l{(xnj,t,unj,t)=(x,u)}

or the population profile process 1
n

∑n
j=1 δxnj,t , etc.

Note that in dynamic environment, the players may not
interact all the time with the same set of neighbors. Some
players may be active or inactive, some new player may join
or leave the game temporary etc. Then the payoff function
depends on the state and also the actions of all the player
that her/he meets during the long-run interaction.

A simple continuous time version of the above state dy-
namics is the following Itô stochastic differential equation
(SDE)

dxnj,t = fnj,t(x
n
j,t, u

n
j,t)dt+ σnj,t(x

n
j,t, u

n
j,t)dBj,t (2)

where σnj,t is the variance function and fnj,t is the drift func-
tion for player j at time t and Bj is a standard Brown
motion (Wiener process). An example of such dynamics
is dxnj,t = unj,tdt+ σnj,tdBj,t

How the payoff depends on the mean field? When the
number of players is very large, the payoff function can be
expressed in function of the mean field under technical con-
ditions. Here is a simple example. Let the instantaneous
payoff functions be in the following form

rnj,t =
1

n

n∑
i=1

r̄nj,t(x
n
j,t, u

n
j,t, x

n
i,t).
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Let recall that for any measurable bounded function φ de-
fined over the state space, one has∫
w

φ(w)

[
1

n

n∑
i=1

δxni,t

]
(dw) =

∫
w

φ(w)Mn
t (dw) =

1

n

n∑
i=1

φ(xni,t) (3)

Thus, the instantaneous payoff function is

rnj,t(x
n
j,t, u

n
j,t,M

n
t ) =

∫
w

r̄nj,t(x
n
j,t, u

n
j,t, w)Mn

t (dw).

The long-term payoff function can be in finite horizon or
in infinite horizon with discount factor or not.

Weakly coupling via the individual states Here we
focus on the case where the players are only weakly coupling
via the individual states. In this case the payoff functions
of player depends only its own state and own strategy but
his/her state is influenced by the other players states and
actions.

An example of such discrete time dynamics is

xnj,t+1 = f̄nj,t(x
n
j,t, u

n
j,t, x

n
−j,t, u

n
−j,t, w

n
j,t) (4)

where transition kernel of wnj,t depends on the states and the
actions of the others: P(.|xnt , unt , . . . , un0 , xn0 ) where xn−j,t =
(xnj′,t)j′ 6=j , x

n
t = (xnj,t)j , u

n
t = (unj,t)j , t ≥ 0.

An example of continuous time version is

dxnj,t = fnj,t(x
n
j,t, u

n
j,t, x

n
−j,t, u

n
−j,t)dt+ σnj,t(x

n
t , u

n
t )dBj,t (5)

which covers the following dynamics:

dxnj,t =
1

n

n∑
i=1

f̄nj,t(x
n
j,t, u

n
j,t, x

n
i,t, u

n
i,t)dt

+
1

n

n∑
i=1

σ̄nj,t(x
n
j,t, u

n
j,t, x

n
i,t, u

n
i,t)dBj,t (6)

The case where fnj,t and σnj,t depends only the state are
well-studied. Then, the averaging structure becomes

dxnj,t =
1

n

n∑
i=1

f̄nj,t(x
n
j,t, u

n
j,t, x

n
i,t)dt+

1

n

n∑
i=1

σ̄nj,t(x
n
j,t, u

n
j,t, x

n
i,t)dBj,t

(7)
The last equation can be written in function of the mean

field Mn
t = 1

n

∑n
j′=1 δxnj′,t :

dxnj,t =

[∫
w

f̄nj,t(x
n
j,t, u

n
j,t, w)Mn

t (dw)

]
dt

+

[∫
w

σ̄nj,t(x
n
j,t, u

n
j,t, w)Mn

t (dw)

]
dBj,t (8)

For discrete time models, the similarity of with the above
methodology can be done in the transition probabilities. An-
other way is to consider directly the model in which the
probabilities depends on the fraction of players with specific
state by considering 1

n

∑n
j=1 1l{xnj,t=x}. If only the transitions

depend only on a local mean field, then it can written as a
function of mean field seen from that player.

Weakly coupling via neighborhoods Consider the in-
dividual dynamics in the form:

dxnj,t =
∑
i∈Nj ω

n
ij(t)f

n
θj ,t

(xnj,t, u
n
j,t, x

n
i,t, u

n
i,t)dt

+
∑
i∈Nj ω

n
ij(t)σ

n
θj ,t

(xnj,t, u
n
j,t, x

n
i,t, u

n
i,t)dBj,t,

xnj,0 ∈ X ⊆ Rk, k ≥ 1
j ∈ {1, 2, . . . , n}, θj ∈ Θ

where coefficient ωnij(t) ≥ represents the influence of player
i to player j at time t. Then, player j has its own local
mean field limit Mn

j,t :=
∑
i∈Nj ω

n
ijδ(xni,t,uni,t) where n is the

number of players, xnj,t is the state of player j, unj,t is the
control of player j, Bj is a standard Brown motion (Wiener
process), the coefficients are normalized such that

ωnij ≥ 0,
∑
i∈Nj

ωnij = 1.

Then, ωnij = 0 can be interpreted as the case where player i
does not affect the state dynamics of player j. The term θj
is the type of the player j. Θ is the set of types.

Then, under suitable conditions, the asymptotic of a sub-
sequence of the individual state dynamics lead to macro-
scopic McKean-Vlasov equation with local mean field limit
under the form:

dxj,t =
∫
w′ fθj ,t(xj,t, uj,t, w

′) mj,t(dw
′)dt

+
∫
w′ σθj ,t(xj,t, uj,t, w

′) mj,t(dw
′)dBj,t,

xnj,0 ∈ X ⊆ Rk, k ≥ 1
uj,t ∈ Uθj

Note that the processes mj,t are interdependent and their
laws can be obtained as a solution of coupled systems of
Fokker-Planck-Kolmogorov equations. Moreover, the con-
vergence rate is in order of O( 1√

n
+ ε0n) where ε0n captures

the initial estimates and the gap at the initial distributions.
We refer to [31] for more recent discussions on the conver-
gence issue.

3.2 Strongly coupling
Here the state evolutions and the payoff functions depend

on the state and/or the strategies of some of the other play-
ers. Typically, most of games with variable number of inter-
acting during time fall down in the class of strongly coupling
mean field interaction. For example, the instantaneous pay-
off rnj,t =

∑
i∈Nj ω

n
ij(t)r̄

n
θj ,t

(xnj,t, u
n
j,t, x

n
i,t, u

n
i,t) and the state

dynamics
dxnj,t =

∑
i∈Nj ω

n
ij(t)f

n
θj ,t

(xnj,t, u
n
j,t, x

n
i,t, u

n
i,t)dt

+
∑
i∈Nj ω

n
ij(t)σ

n
θj ,t

(xnj,t, u
n
j,t, x

n
i,t, u

n
i,t)dBj,t,

xnj,0 ∈ X ⊆ Rk, k ≥ 1
j ∈ {1, 2, . . . , n}, θj ∈ Θ

lead to a strongly coupling mean field interaction.

4. WHAT IS NEW?
The novelties of the MFSG approach are in the charac-

terization of the mean field optimality1. Theses optimality
equations differ from the classical dynamic games and dy-
namic programming principles.

4.1 Discrete time
In the mean field stochastic Markov game modeling in dis-

crete time, there must be an equation to express the dynamic
optimization problem of each player. Usually this involves
one equation for each player. If players are classified together
by similar player types, there is one equation per type. This
equation is generally a Bellman-Shapley equation, since a

1Note that “mean field optimality” refers to response to a
consistent mean field. It is not necessarily optimal in the
finite regime.
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large proportion of dynamic optimization problems with per-
fect state observation fall within the framework of dynamic
programming. Hence, the Bellman-Shapley equations will
be used to compute optimal behavioral strategies. An equa-
tion is also needed to express the subpopulations’ behavior,
the mean field behavior of each type. The dynamics of the
distribution is governed by a Kolmogorov forward equation.
In the Kolmogorov forward equation, the optimal behaviors
of the players occur as data, since it is the infinite collec-
tion of individual behaviors that is aggregated and consti-
tutes collective behavior by consistency. Thus, the modeling
of the behavior of a group of players naturally leads to a
BS-K (Bellman-Shapley and Kolmogorov) system of equa-
tions. The discrete BS-K have been studied by Jovanovic
& Rosenthal in the eighty’s. The novelty in their study is
that the mean field games formalism involves the density of
players on the state space can enter in the Bellman-Shapley
equation. Thus, the mean field equilibrium is defined by an
BS-K system in which the Bellman-Shapley equations are
doubly coupled: individual behaviors are given for the Kol-
mogorov forward equation and, at the same time, the dis-
tribution of players in the state space enters in the Bellman
equation which is completely innovative. This means that
players can incorporate into their preferences the density
of states/actions of other players at the anticipated equilib-
rium. Therefore each player can construct his strategy by
taking account of the anticipated distribution of strategies
and of the actions of other players. Under suitable condi-
tions, this fixed-point of behaviors, the mean field equilibria
can be defined by moving to the limit on the number of
players in the class of Markov games in discrete time (or
difference games) that are asymptotically invariant by per-
mutation within the same type of players called Asymptotic
Indistinguishability Per Class2.

4.2 Continuous time
In the continuous time model, the Hamilton-Jacobi-Bellman-

Fleming (HJBF) equation will replace the Bellman equation
and the Kolmogorov forward equation becomes a Fokker-
Planck-Kolmogorov (FPK) equation. We then get a coupled
system of partial differential equations (PDEs). In addition,
in presence specific player such major player, its individ-
ual state dynamics at the limit regime should be added to
the system. Then, the question of existence, uniqueness,
regularity, and performance bounds arise for the system of
PDEs. See the mean field games (MFG) lectures by Lions
at College de France.

4.3 Connection between the mean field mod-
els

The reader may ask what is the connection between all
the above mean field models.

Is there a connection between the discrete time Markov
model and the mean field differential game model?

The authors in [31] give a partial answer to this question.
Under particular structure of payoff functions and probabil-
ity transitions of the mean field stochastic population game
model one can get a mean field differential game at the limit
for vanishing intensity of interactions. This establishes a

2These assumptions follow the line of the works by de Finetti
(1931), Hewitt & Savage (1955), Aldous (1983), Sznitman
(1991), Graham (2000), Tanabe (2006), McDonald (2007)
etc.

first connection from discrete time to continuous time mean
field model. Next, we need to show that the convergence of
subsequences of optimal strategies and optimal payoffs un-
der the Bellman-Shapley’s equation to the Hamilton-Jacobi-
Bellman equation under mean field dynamics. The authors
provided sufficient conditions for mean field stochastic games
with random number of interacting players for mean field
convergence to stochastic differential equations. Their tech-
niques for the mean field optimality criterion combine Itô-
Dynkin’s formula with dynamic programming principle.

A second connection can be obtained by considering mean
field stochastic difference game. Under specific time-scales,
one show that the discrete time mean field stochastic game
converges to a mean field stochastic differential game charac-
terized by a non-linear macroscopic McKean-Vlasov, Fokker-
Planck-Kolmogorov and HJBF equations.

Following the same setting, one can design numerical scheme
of the Itô stochastic differential to move from differential
mean field model into difference mean field model. But still
one need to show that the strategies, the values, ε−Nash
properties holds under these scaling schemes because these
properties depends mainly on the proposed scheme for the
time-derivative and integration of the partial differential equa-
tions (PDE).

5. MEAN FIELD RELATED APPROACHES
In this section we present mean field related approaches.

5.1 Connection to mathematical physics
There are connections between exact microscopic mod-

els that govern the evolution of large particle systems and a
certain type of approximate models known in Statistical Me-
chanics as mean field limit. This notion of mean field limit
is best understood by getting acquainted with the most fa-
mous examples of such equations inspired from physics. The
particle system model describes the evolution of a generic
player (particle) subject to the collective interaction cre-
ated by a large number n of other players (particles). The
state of the generic player is then given by its phase space
density; the force field exerted by the n other players on
this generic player is approximated by the average with re-
spect to the phase space density of the force field exerted on
that particle from each point in the phase space. A number
of models have been studied in the literature. Those are
McKean-Vlasov equation, Fokker-Planck equations, mean-
field Schrödinger equation, Hartree-Fock equation, Bergers
equation, Boltzmann equations, transport equations, conti-
nuity equations etc.

Incorporation of controls in these models give controlled
mean field equations. If in addition a dynamic optimization
setting were present, one gets a large-scale dynamic game.

5.2 Connection to evolutionary dynamics
The paradigm of evolutionary game dynamics has been

to associate relative growth rate to actions according to the
expected payoff they achieved, then study the asymptotic
trajectories of the state of the system, i.e. the fraction of
players that adopt the different individual and actions. The
works in [20, 27, 4, 25] derive mean field game dynamics
for multiple-type population games. These mean field game
dynamics are generalization of evolutionary game dynamics
(deterministic or stochastic). For large populations with fi-
nite number of states and/or actions in X , the standard de-
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terministic evolutionary game dynamics based on revision
protocols are in the form

ṁt(x) =
∑
x′∈X

Lxx′(mt)mt(x
′)−mt(x)

∑
x′∈X

Lx′x(mt) (9)

which is a specific Kolmogorov forward equation. The term
Lxx′ represents a rate transition from x to x′.

This equation can be obtained from the drift limit and
single selection per time unit without control parameter
([25]). By specifying the transitions probabilities L, one
gets Replicator dynamics, Best-response dynamics, Smith
dynamics, Brown-von Neumann-Nash dynamics, Orthogo-
nal projection dynamics, Target projection dynamics, Ray-
projection dynamics, Smooth best response dynamics, Imi-
tative Boltzmann-Gibbs dynamics, Multiplicative weight im-
itative dynamics, Generalized pairwise comparison dynam-
ics, Excess payoff dynamics, “Imitate the better” dynamics
etc.

5.3 Connection to the propagation of chaos
If the mean field stochastic games model satisfies the in-

variance in law by any permutation with players index within
the same type under specific controls u that preserve this
property, one can use the exchangeability per class or in-
distinguishability per class [12] to establish a propagation
of chaos [28, 29]. Let xnj = (xnj,t)t≥0. Then, the process
Λn = 1

n

∑n
j=1 δxnj converges in law to a random process

m̃ with law µ is equivalent to the so-called µ−chaoticity:
for any integer k, any measurable and bounded functions
φ1, . . . , φk

lim
n

E

(
k∏
j=1

φj(x
n
j )

)
=

k∏
j=1

(∫
w∈X

φj(w)µ(dw)

)
(10)

Non-commutative diagram Consider a population with n
players. Denote the mean field by Mn

t =
∑n
j=1 ω

n
j δxnj,t

where xnj,t is the state of player j at time t and ωnj is the
weight of player j in the hull population of size n. Then,
given a initial condition m0, denote by Mn

t [u,m0] the pro-
cess Mn

t starting with the distribution given by m0 at time 0
subject to the control u. The study of the process Mn

t [u,m0]
is summarized in the following diagram:

Mn
t [u,m0]

t −→ +∞- $n[u,m0]

mt[u,m0]

n −→ +∞

? t −→ +∞ - ?

n −→ +∞

?

If the limits are well-defined, we call $n = limt M
n
t and

mt = limnM
n
t . Then, the question is on the double limit i.e

the commutativity of the diagram.
It turns out that the double limit can be different. The

diagram is not always commutative.

lim
n

lim
t
Mn
t 6= lim

t
lim
n
Mn
t .

This phenomenon is in part due to the fact that the sta-
tionary distribution of the process $n is unique under ir-
reducibility conditions and the dynamics of mt may lead
to a limit cycle. As a consequence, many techniques and
approaches based on stationary regime (such as fixed point

techniques, limiting of frequencies state-actions approaches
in sequence of stochastic games, replica methods, interacting-
particle systems etc) need some justification. This difference
in the double limits (the non-commutativity phenomenon)
suggests to be careful about the use of stationary popula-
tion state equilibria as the outcome prediction and the anal-
ysis of equilibrium payoffs since this equilibrium may not be
played. Limit cycles are sometimes more appropriate than
the stationary equilibrium approach.

The convergence to an independent and identically dis-
tributed system is sometimes referred to chaoticity, and the
fact that chaoticity at the initial time implies chaoticity at
further times is called propagation of chaos. This diagram
says that, in general the chaoticity property may not holds
in stationary regime. This means that two randomly picked
players in the population may be correlated.

We mention a particular case where the rest point m∗ is
related to the δm∗− chaoticity. If the mean field dynamics of
mt has a unique global attractor m∗ then the propagation
of chaos property holds for the measure δm∗ . Beyond this
particular case, one can have multiple rest points but also
the double limit limn limtM

n
t may differ from limt limnM

n
t

leading a non-commutative diagram. Thus, a deep study of
the dynamical system is required if one want to analyze a
performance metric for a stationary regime. A counterex-
ample of different double limits is provided in [31].

5.4 Weak convergence
• de Finetti-Hewitt-Savage Consider a complete separable

metric space X and a sequence of random processes (xnj )j,n,
satisfying the indistinguishability per class property i.e in-
variance in law of permutation within the same type/class.
Then, the population profile Mn converges weakly to a ran-
dom measure m. Moreover, conditionally to m, one has that
for any integer k, any measurable and bounded functions
φ1, . . . , φk defined over X ,

lim
n

E

(
k∏
j=1

φj(x
n
j ) | m

)
=

k∏
j=1

(∫
w∈X

φj(w)m(dw)

)
(11)

• Now we focus on the convergence of the pair (xnj,t,M
n
t ).

In the case where Mn
t goes to a deterministic object mt, van-

ishing time-scales, it shown in [33] that the pair (xnj,t,M
n
t )

converges weakly to (xj,t,mt) where xj,t is a continuous time
jump and drift process (which depends on m) mt is a solu-
tion of an ordinary differential equation.

5.5 Differential population game
In this subsection we provide a mean field equilibrium

characterization of the differential population game [32] where
each generic player reacts to the mean field for a finite hori-
zon [0, T ]. We first start by a payoff of the form r̄t(u,m).

(∗) sup
u

[ḡT (mT ) +

∫ T

t

r̄t′(ut′ ,mt′) dt
′]

subject to the mean field dynamics

mt = m0 +

∫ t

0

f̃t′(ut′ ,mt′) dt
′.

We say the pair of trajectories (u∗t ,m
∗
t )t≥0 constitutes a

consistent mean field response if u∗t is an optimal strategy
to be above problem (*) where m∗t is the mean field at time
t and u∗t produces the mean field mt[u

∗,m0] = m∗t
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A consistent mean field response is characterized by a
backward-forward equation

v̄T (m) = ḡT (m)

−∂tv̄t = supu

{
r̄t(u,mt) + 〈∇mv̄t, f̃t(u,mt)〉

}
mt = m0 +

∫ t
0
f̃t′(u

∗
t′ ,mt′) dt

′

where u∗t is in argmax of r̄t(u,mt) + 〈∇mv̄t, f̃t(u,m)〉.
Next, we consider a individual state-dependent payoff rt(x, u,m).

Define

F 1
T (x, u,m) = gT (xT ,mT ) +

∫ T

t

rt′(xt′ , ut′ ,mt′) dt
′

where gT is a terminal payoff.

(∗∗) sup
u

[gT (xT ,mT ) +

∫ T

t

rt′(xt′ , ut′ ,mt′) dt
′]

subject to the mean field dynamics

mt = m0 +

∫ t

0

f̃t′(ut′ ,mt′) dt
′.

where the individual state xt = xt[u] is a continuous time
Markov jump process under u. We denote by q̄ the infinites-
imal generator of xt[u]. See [33, 32] for more details on the
analysis of the process (xj,t,mt).

We say the pair of trajectories (u∗t ,m
∗
t )t≥0 constitutes a

mean field equilibrium if {u∗t }t≥0 is a mean field response to
be above problem (**) where m∗t is the mean field at time t
and u∗t produces the mean field mt[u

∗,m0] = m∗t
Consider a differential population game problem with sin-

gle type. Assume that there exists a unique pair (u∗,m∗)
such that

(a) there exists a bounded, continuously differentiable func-

tion ṽx : [0, T ]×R|X|, ṽ∗x,t(m) = vt(x,m) and differentiable

function m∗ : [0, T ] −→ R|X|, m∗t = mt[u
∗,m0] solution to

the backward-forward equation:

vT (x,m) = gT (x,m),

−∂tvt(x,m) = supu

{
rt(x, u,m) + 〈∇mvt(x,m), f̃t(u,m)〉

+
∑
x′∈X q̄xux′,t(m)vt(x

′,m)
}

mt = m0 +
∫ t

0
f̃t′(u

∗
t′ ,mt′) dt

′

x0 = x ∈ X ,m0 ∈ ∆(X )

(b) u∗t (x) maximizes of the function

rt(x, u,mt)+〈∇mvt(x,m), f̃t(u,mt)〉+
∑
x′∈X

q̄xux′,t(mt)vt(x
′,m)

where q̄xux′,t(m) is the transition of the infinitesimal gener-
ator of xt under the strategy u and m,

∑
x′ q̄xux′,t(m) = 0,

the term
∑
x′∈X q̄xux′,t(m)vt(x

′,m) is∑
x′ 6=x

q̄xux′,t(m)(vt(x
′,m)− vt(x,m)),

mt[u
∗,m0] = m∗t

Then, (u∗t ,m
∗
t )t≥0 with m∗t = mt[u

∗,m0] constitutes a
mean field equilibrium and ṽ∗x(m∗) = v(x,m∗) = Fx,T (u∗,m∗).

Similarly, for multiple types the systems becomes

vθ,T (yθ,m) = gθ,yθ (m),

−∂tvθ,t(x,m) = sup
uθ

{
rθ,t(yθ, uθ,m)+〈∇mvθ,t(x,m), f̃θ,t(u,m)〉

+
∑
y′
θ
q̄yθuθy′θ (m)vθ,t(y

′
θ,m)

}
mθ,t = mθ,0 +

∫ t
0
f̃θ,t′(u

∗
t′ ,mt′) dt

′

yθ,t = yθ, m0 ∈ ∆(X ), θ ∈ Θ.

Note that the applicability of this result is limited because
in general the arg max may not be reduced to a singleton.

6. MEAN FIELD SYSTEMS
Transition kernels: In this section we briefly present

the mean field optimality equations. In the discrete time
case, the BS-K equation for finite horizon T is given by mt+1(x′) =

∑
xmt(x)Lxx′,t(u∗t ,mt)

∀t, x, a such that mt(x)u∗t (a|x) > 0 =⇒
a ∈ arg maxb

{
rt(x, b,mt) +

∑
x′ vt+1(x′,mt+1)qxbx′(ut,mt)

}
Under regularity and boundedness of the instantaneous pay-
off and the transition kernels, the existence of solutions of
the backward-forward system can be established using Kakutani-
Glicksberg-Fan-Debreu fixed point theorem.

Mean field Itô’s SDE In this subsection we present
the backward-forward system for mean field limit satisfying
Itô’s stochastic differential equation. The mean field system
for horizon T in continuous time for a payoff in the form

E
(
gT (mT ) +

∫ T
0
rt(ut,mt) dt

)
is given by (McK-V-FPK):

ṽT (m) = gT (m)
− ∂
∂t
ṽt = suput∈U {rt(mt, ut)

+
∑
x∈X f̃t,x(mt, ut)

∂
∂mx

ṽt

+ 1
2

∑
(x,x′)∈X2 ãxx′,t(mt, ut)

∂2

∂mx∂mx′
ṽt
}

∂tmt + div
(
f̃t(mt, u

∗
t )mt

)
= 1

2

∑
x,x′ ∂

2
xx′ (ãxx′,t(mt, u

∗
t )mt)

m0 ∈ ∆(X ).

where f̃t is the drift and σtσ
′
t = ãt.

Stochastic difference games Consider the stochastic
difference equation in R :


xnj,tn

k+1
= xj,tn

k
+ δn

∑n
i=1 ω̄

n
ijfθj ,t(x

n
j,tn
k
, unj,tn

k
, xi,tn

k
)

+
∑n
i=1 ω̄

n
ijσθj ,t(x

n
j,tn
k
, unj,tn

k
, xni,tn

k
)
(
Bnj,tn

k+1
− Bnj,tn

k

)
xnj,0 = xj , t

n
k = kδn, k ≥ 0, δn > 0, limn δn = 0.

where ω̄nij is a weight representing the influence of player to

player j’s state. We define the cumulative function F̃n as
F̃n(t, w) =

∑n
j=1 ω̄

n
j 1l{xnj,t≤w} where xnj,t is the interpolated

process from xnj,tn
k+1

. For any T < +∞ there exists c̃T > 0

such that

E ‖ F̃ (tnk , .)− F̃n(tnk , .) ‖1≤ c̃T
[
‖ F̃0 − F̃n0 ‖1 +

1√
n

+
√
δn

]
Moreover F̃ (t, .) is the solution of

∂

∂t
F̄θ̄,t(x̄) +

[∫
w
fθ̄,t(x̄, ū, w)

∂

∂w
F̄θ̄,t(w)dw

]
∂

∂x̄
F̄θ̄,t(x̄) (12)

=
1

2

∂

∂x̄

[(∫
w
σθ̄,t(x̄, ū, w)∂wF̄θ̄,t(w)dw

)2

∂x̄F̄θ̄,t(x̄)

]
(13)

θ̄ ∈ Θ, m̄0(.) fixed (14)
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The finite horizon cost function optimization leads to a
coupled system of backward-forward equations:



vj,T (xj ,m) = g(xj ,m)

−∂tvj,t = supuj

{
rθj ,t(xj , uj ,mj,t) + 〈f̄t(xj , uj ,mj,t), ∂xvj,t〉

+ 1
2
σ̄2
θj ,t

(xj , uj ,mt)∂
2
xxvj,t

}
dx̄θ̄,t =

∫
w fθ̄,t(x̄θ̄,t, u

∗
θ̄,t
, w)mt(dw)dt+

∫
w σθ̄,t(x̄θ̄, u

∗
θ̄,t
, w),mt(dw)dBt

x̄0 = q
∂
∂t
mθ̄,t + ∂

∂x

[
f̄θ̄,t(x, u

∗
t ,mt)mθ̄,t

]
= 1

2
∂2

∂x2

[
σ̄2
θ̄,t

(x, u∗t ,mt)mθ̄,t

]
θ̄ ∈ Θ, m0(.) ∈ ∆(X )

f̄t =
∫
w fθ̄,t(x̄θ̄,t, u

∗
θ̄,t
, w)mt(dw)

Risk-sensitive mean field stochastic games A link be-
tween stochastic and deterministic mean field viewpoints is pro-
vided by considering risk-sensitive stochastic approach. The risk-
sensitive approach consists to optimize the expectation E (g̃(R))
whereR is the traditional long-term payoff function. The certainty-
equivalent expectation e(R) is defined by g̃(e(R)) = (E(g̃(R))) .

When g̃ = eyµ is exponential e(R) = g̃−1 (E(g̃(R))) = 1
µ

log
(
E
(
eµR

))
.

Consider the finite horizon payoff:

Rµ :=
1

µ
∗ sign(µ) logE

(
eµ[g(xT+1)+

∑T
t′=t rt′ (xt′ ,ut′ ,M

n
t′ )]
)
,

The intuitive view of the risk-sensitive criterion at zero is the
following: Taylor expansion at µ close to zero leads

Rµ = E(R) +
µ

2
var(R) + o(µ2)

This means that the risk-sensitive criterion takes into consider-
ation not only the expectation but also the variance!

When µ −→ 0 one gets the risk-neutral. Depending on the sign
of µ, one gets the risk-seeking case or the risk-averse case. The
analogue of BS-K becomes a multiplicative BS-K i.e a mean field
version of the multiplicative Bellman-Shapley equation coupled
with Kolmogorov equation. Denote by vj,µ,t the optimal payoff
of player j with respect to m.


g̃(v∗j,µ,t(xt,mt)) = maxu∈∆(Aj(xt))

[
eµrt(xt,u,mt)∑

x′ qxtux′,t(mt)g̃(v
∗
j,µ,t+1(x′,mt+1))

]
mt+1(x′) =

∑
x̄∈X mt(x̄)Lx̄x′ (u∗t ,mt)

where

u∗t ∈ arg max
u

eµrt(xt,u,mt)
∑
x′
qxtux′,t(mt)g̃(v

∗
j,µ,t+1(x′,mt+1)).

Considering individual state dynamics in the form of McKean-
Vlasov,


dxnj,t =

(∫
w ft(x

n
j,t, u

n
j,t, w)

[
1
n

∑n
i=1 δxni,t

]
(dw)

)
dt

+
√
ε
(∫
w σt(x

n
j,t, u

n
j,t, w)

[
1
n

∑n
i=1 δxni,t

]
(dw)

)
dBj,t,

xj,0 ∈ Rk, k ≥ 1
j ∈ {1, 2, . . . , n},

and a risk-sensitive cost criterion Rj(ūj ,M
n; t, xj ,m)

=
1

µ
logE

(
eµ[gT (xT )+

∫ T
t rs(xj,s,uj,s,M

n
s ) ds] | xj,t = xj ,M

n
t = m

)
,

We assume regular and bounded coefficients and their derivation
with the respect to the states and ūj : [0, T ]×Rk −→ Uj is piece-
wise continuous in t and Lipschitz in x. The mean field system

becomes HJBF +Fokker-Planck-Kolmogorov equation + macro-
scopic McKean-Vlasov individual dynamics, i.e.,

dxj,t =
(∫
w ft(xj,t, u

∗
j,t, w)mt(dw)

)
dt

+
√
ε
(∫
w σt(xj,t, u

∗
j,t, w)mt(dw)

)
dBj,t,

xj,0 = x
∂tvj,t + supuj

{
∂xvj,t.ft + ε

2
tr(σtσ′t∂

2
xxvj,t)

+ εµ
2
‖ σt∂xvj,t ‖2 +rt

}
= 0,

xj := x; vj,T (x,m) = gT (x,m)
∂tmt +D1

x

(
mt
∫
w ft(x, u

∗
t , w)mt(dw)

)
= ε

2
D2
xx

(
mt
(∫
w σ
′
t(x, u

∗, w)mt(dw)
)
·(∫

w σt(x, u
∗, w)mt(dw)

))
Under specific structures of drift, payoff and volatility functions,
existence result can be derived using fixed point theory. Also
uniqueness result can be addressed using monotonicity conditions
in m. However, the existence and the uniqueness conditions of
the above system under general structure remain a challenging
problem.

Here ft(.) ∈ Rk which we denote by (fk′,t(.))1≤k′≤k. Let

σt[x, u
∗
t ,mt] =

∫
w
σt(x, u

∗
t , w)mt(dw),

Γt(.) := σt(.)σ
′
t(.) is a square matrix with dimension k × k. The

term D1
x(.) denotes

k∑
k′=1

∂

∂xk′

(
mt

∫
w
fk′,t(x, u

∗
t , w)mt(dw)

)
,

and the last term on D2
xx(.) denotes

k∑
k′′=1

k∑
k′=1

∂2

∂xk′∂xk′′

(
mtΓk′k′′,t(.)

)
.

One can show that the asymptotic large deviations results as
µ −→ 0, are typically described through a risk-neutral mean
field problem. This approach is closely related to large-deviation,
H∞−control, the min max Hamiltonian of Isaacs and robust mean
field stochastic game. Preliminary results can be found in [35].
The model can be extended to include random switching (jump
and drift process) and delayed state measurement.

Other extensions • Extension to Poisson point processes,
Levy flights, Feller processes etc.
• Learning in large populations Assume that the strategy of

each player is revised according to some dynamics which can be
class-dependent drift and class-dependent diffusion terms. Then,
the limiting of the learning process fall down into mean field PDE.
When the diffusion is zero, one get the so-called continuity equa-
tion or transport equation. We refer the reader to [30] for recent
developments on combined fully distributed payoff and strategy
reinforcement learning (CODIPAS-RL).
• Imperfect state measurement: Now, we assume that the state

xj,t is not observed by player j, but ȳj,t which is an output func-
tion of the state and noise. Under such situations, a fundamental
question is: how to estimate the state under imperfect measure-
ment using mean field stochastic games?
• Mean field stochastic games with correlated populations, dif-

ferent types of players including major, minor and medium play-
ers, neighborhood based partial monitoring, hierarchical struc-
ture, and dynamic conjectural variations.
• Mean field cooperative games; mean field network formation

games; mean field Stackelberg games, mean field Bayesian games
etc. Mean field Q-learning, Mean field H-learning: heterogeneous,
hybrid, cost of learning, random updates, noisy strategy in large-
scale systems etc.
• Mean field games under fractional Brownian motion, ana-

malous diffusion (subdiffusion, superdifusion).
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7. CONCLUSIONS
In this paper we have presented recent advances in mean field

stochastic games, their applications as well as their connections
to related field in large-scale systems. Below we point out some
limitations and open issues for future works:

• What about a system with small size (5, 7, 29, 31 players)
?

• The curse of dimensionality problems are transformed into
a condensed form (using localized density or aggregative
terms). Are we able to solve the resulting continuum vari-
ables? What is the complexity in solving the continuum
model?

• Is there a performance loss by using mean field approach?
What is the performance gap?

• Beyond the indistinguishability per class property, what is
the class of finite games for which the mean field approach
can be applied? How big is this class of games compared
to the set of all games?
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population stochastic dynamic games: closed-loop

mckean-vlasov systems and the nash certainty equivalence
principle. Commun. Inf. Syst., 6(3):221–252, 2006.

[17] M. Y. Huang, R. P. Malhamé, and P. E. Caines. Stochastic
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Saint-Flour XI (1989), pages 165–251, 1991.

[29] Y. Tanabe. The propagation of chaos for interacting
individuals in a large population. Mathematical Social
Sciences, 51:125–152, 2006.

[30] H. Tembine. Distributed strategic learning for wireless
engineers. Supelec, 2010.

[31] H. Tembine. Mean field stochastic games: Simulation,
dynamics and applications. Supelec, October 2010.

[32] H. Tembine. Population games in large-scale networks.
LAP ISBN 978-3-8383-6392-9, 2010.

[33] H. Tembine, J. Y. Le Boudec, R. ElAzouzi, and E. Altman.
Mean field asymptotic of markov decision evolutionary
games and teams. in the Proc. of GameNets, May 2009.

[34] H. Tembine, P. Vilanova, M. Assaad, and M. Debbah. A
mean field stochastic game for sinr-based medium access
control. Valuetools, 2011.

[35] H. Tembine, Q. Zhu, and T. Başar. Risk-sensitive mean
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