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ABSTRACT
Stochastic Petri nets (SPNs) provide a convenient, diagram-
matic description of concurrent systems, such as computer
and communication networks, and can represent quantita-
tive (or performance) aspects such as mean response times
and probability of failure. Such models can be supported by
performance modelling interchange formats (PMIFs), facili-
tating sharing and model interoperability. We propose a hi-
erarchical method for constructing a large class of Petri nets,
which preserves efficient product-form solutions when they
exist. This scalable approach greatly improves the efficiency
of finding steady state probabilities in a wide range of SPNs,
making much larger SPNs feasible. An existing PMIF is ex-
tended by including a new type of node that describes a par-
ticular type of small Petri net, called a “building block”, the
synchronisation primitives for which can be used to specify
task-spawning and task-gathering, whilst retaining product-
form solutions under specified conditions. When there is no
product-form, the whole network is translated into a Petri
net and solved directly – either by a Markov chain solver
or by simulation. The extended PMIF and the proposed
methodology are applied to a model of a computer system
with RAID storage.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance Analysis and Design Aids;
C.4 [Performance of Systems]: Modeling Techniques.

General Terms
Performance engineering, Markov processes, model interop-
erability

Keywords
Petri nets, product-forms, performance modelling interchange
formats, RAID systems.

1. INTRODUCTION
The Stochastic Petri-net (SPN) is an expressive, graphical
formalism for performance modelling that is generally spec-

ified at a high level, in terms of workflows and constraints,
perhaps via a higher-level language such as UML. However,
solving for performance metrics generally requires mapping
onto an underlying continuous time Markov chain (CTMC),
which, in turn, is solved by direct methods in an essentially
“brute force” approach. This procedure is computationally
expensive – in terms of both computation time and storage –
and so limited for practical use. Worse still, many product-
form models that are known in other formalisms, like queue-
ing networks, become obscured in their Petri net form and
hence are also solved inefficiently by direct solution of their
CTMC, the very thing that product-forms sought to circum-
vent in the first place. The choice facing the system modeller
is this: to use either a Petri-net diagram (or higher level ab-
straction like UML) that he or she can understand relatively
easily, but which has an inefficient solution, or derive a set of
mathematical equations that are conducive to transforma-
tion into an efficient solution; in particular, a product-form.
We show how to achieve the best of both worlds: a way of
constructing hierarchical SPNs in terms of primitive “build-
ing blocks” (BBs) – themselves small, “flat” SPNs – that are
both easy to read and have solutions that are as efficient
as those obtained from the mathematical equations of, say,
queueing network analysis. Under appropriate conditions,
product-forms for the equilibrium probabilities of recursive
compositions of the BBs are obtained using the Reversed
Compound Agent Theorem (RCAT) of [9]. Moreover, we
integrate the hierarchical class of SPNs thus defined into a
generalised performance modelling interchange format (GP-
MIF) to provide a powerful, general and rigorous route to
product-forms in a large and significant class of stochastic
models. This is illustrated by a case study in the domain of
RAID storage systems.

Performance modelling interchange formats (PMIFs) are XML
schemata that facilitate seamless sharing of performance
models amongst appropriate software tools [19]. It is not
necessary for these tools to know about the capabilities of
other tools or their internal data formats. The only require-
ment for import/export is that they must either support the
PMIF itself or else provide an interface that reads/writes
model specifications from/to a file. Interchange formats
have been defined for specific formalisms such as queueing
network models (QNM), software performance models (S-
PMIF) and layered queueing networks (LQN).

A generalised PMIF (called GPMIF) extended the original,
QNM-based PMIF of [19] to incorporate negative customers
and fixed point models in such a way that product-form
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solutions, when they existed, would still be found [12, 8].
In the present contribution, we further extend the GPMIF
to hybrid models by including a new type of node that de-
scribes the SPN “building blocks” referred to above. In fact
the simplest building block, BB-1, consists of a single Petri
net place having a single input transition and a single output
transition, with no capacity constraint, which is equivalent
to an M/M/1 queue. Hence all queueing networks with no
capacity constraints fall into a subset of the new formalism;
indeed, multi-class queueing networks may also be included
and further extension to incorporate negative customers is
also possible [8]. Higher-order building blocks, BB-n, have n
places with pairs of input and output transitions that con-
nect to the same subset of k places (1 ≤ k ≤ n). The
BBs are defined in the enlarged GPMIF schema and models
that use them can be implemented, in general, by simulation
or direct solution of the underlying Markov chain, or via a
product-form solution when one exists. For completeness,
the extension to the PMIF we have implemented incorpo-
rates all simple Petri nets, not only those constructed from
BBs.

The derivation of product-forms by RCAT imposes condi-
tions in the extended GPMIF that are very similar to those
required of queueing networks [9]. As a result, complex sys-
tems can be solved efficiently and mechanically at equilib-
rium; for a wide range of parameterisations in closed sys-
tems and under certain conditions on the rates in open sys-
tems. We focus on fork-join operations and solve a RAID-
like model by two solution methods for the same specifica-
tion: via the Petri net analyser PIPE (Platform Independent
Petri net Editor) and a product-form solution [1, 2].

Related work is discussed in the next section, before sec-
tion 3 provides background material on concepts related to
the present paper: PMIFs, queues and Petri nets, includ-
ing the definition of the new BBs. Furthermore, the con-
struction of a product-form solution is illustrated by a sim-
ple example comprising a BB-2 building block connected
to three queues (i.e. BB-1s). Section 4 defines the fur-
ther extended GPMIF by showing how an XML specifi-
cation for BBs can be integrated into the current GPMIF
schema (already an extension of the original PMIF schema,
as noted above). The full schema, which applies to more
general Petri nets, is too large to include but is available at
dmi.uib.es/~cllado/mifs/. Section 5 describes two solu-
tion methods: product-form solution and simulation. It also
elaborates the simple example as an illustrative exemplar for
more complex applications of the extended schema. An ab-
stract case study is presented in section 6 which is solved
both as a product-form for the equilibrium state probabili-
ties and by simulation via translation into PIPE. Both open
and closed, product-form and non-product-form cases are
considered. The paper concludes in section 7.

2. RELATED WORK
2.1 Multi-formalism performance models
Extensive work has been done on multi-formalism perfor-
mance models. Sharpe [20] was one of the earliest expe-
riences, where submodels based on different formalisms in-
teract by exchanging probability distributions to obtain a
global result. More recently, Mobius, OsMoSys (Object-
based multi-formaliSm MOdeling of SYStems) and SIMTHESys
(Structured Infrastructure for Multiformalism modeling and

Testing of Heterogeneous formalisms and Extensions for SYS-
tems) have followed a similar path [17, 21, 14]. All of them
aim to provide a methodology and tool support for multi-
formalism models’ design and evaluation, and consider model
composition and multiple solution methods. All of the ap-
proaches use submodel composition to support interaction
amongst formalisms, but with different premises. In Mo-
bius, submodels interact by sharing state variables and by
superposing events between submodels. More specifically,
in order for a formalism to be compatible with the Mobius
framework, it must be possible to translate any of its models
into an equivalent model that uses Mobius framework com-
ponents. Because all models are transformed into frame-
work components, they and their solution techniques in the
framework are able to interact with each other. The frame-
work is also extensible, allowing new formalisms and solvers
to be added with little impact on existing ones, since new
formalisms and solvers also communicate using framework
components.

In OsMoSys, interactions between formalisms are defined by
using operators that formally describe the semantics of infor-
mation exchange between submodels. Finally, in SIMTHESys
multi-formalism cooperation is achieved by allowing hetero-
geneous models to be considered. This can be implemented
by proper composition formalisms that define hybrid ele-
ments, the behaviours of which are specifically designed for
interaction with elements of different formalisms, and en-
capsulate in their behaviours an interaction logic.

What we propose instead is a general performance model in-
terchange format that allows for specifying hybrid networks.
We show how these hybrid networks can be solved in differ-
ent ways and with tools depending on the specific models.
In our case study, the model can be solved by RCAT as a
product-form but alternatively it can be completely trans-
formed into a pure Petri net and solved by PIPE.

2.2 Product-form Petri nets
A product-form result for Petri nets was obtained by Boucherie
in [6], where it was found that two SPNs, whose stationary
solutions are known, can be composed under a strict block-
ing discipline to yield a product-form solution. More gen-
erally, but non-incrementally, Henderson et al. obtained a
method to determine product-forms in fully specified SPNs
that satisfy certain structural conditions [13, 7]. This in-
volves solving a certain set of linear equations on the whole
net, akin to the traffic equations of queueing networks, to-
gether with a condition on the rank of a matrix, the elements
of which depend on the net’s transition rates.

More recently, in [16], it was shown that a class of SPNs with
a rate-independent product-form condition is equivalent to
the class of chemical reaction networks that satisfies the so-
called deficiency zero property. It was further proved that
a state-machine possessing the deficiency zero property is
equivalent to a Jackson network.

3. PMIFS, QUEUES AND PETRI NETS
PMIF 2.0 is a common representation for system perfor-
mance model data that can be used to move models among
modeling tools that use a QNM paradigm [18]. GPMIF
(Generalised PMIF) allows, in addition, the specification of
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non-standard queueing networks, such as G-networks, and
certain fixpoint solutions [11, 8]1.

A natural, orthogonal direction to extend GPMIF is to find
non-queueing building blocks that can be defined as primi-
tive service centres with associated workloads that interact
with the existing components. We look to Petri nets for
such building blocks because of their ease of expressing fea-
tures found in real networks and their widespread use. To
this end, consider a building block that consists of a set of
places P1, . . . PN , a set TI of input transitions whose input
vectors are null (i.e. 0 = (0, . . . , 0)), and a set TO of output
transitions whose output vectors are null2. All the arcs have
multiplicity 1.

Definition 1 (Building block (BB) [2]). Given an
ordinary (connected) SPN S with set of transitions T and
set of N places P, then S is a building block if it satisfies
the following conditions:

1. For all T ∈ T then either O(T ) = 0 or I(T ) = 0.
In the former case we say that T ∈ TO is an output
transition while in the latter we say that T ∈ TI is an
input transition. Note that T = TI ∪TO and TI ∩TO =
∅, where TI is the set of input transitions and TO is the
set of output transitions.

2. For each T ∈ TI , there exists T ′ ∈ TO such that O(T ) =
I(T ′) and vice versa.

3. Given two places Pi, Pj ∈ P, 1 ≤ i, j ≤ N , there exists
a transition T ∈ T such that the components i and j
of I(T ) or of O(T ) are non-zero.

Condition 1 requires that all the transitions are either in-
put or output transitions, while Condition 2 states that if
there exists an input transition Ty feeding a subset of places
y, then there must be a corresponding output transition T ′

y

that consumes the tokens from the same subset; i.e. for each
input transition Ty there must exist an output transition T ′

y

whose input vector is equal to the output vector of Ty. Fi-
nally, Condition 3 simply requires the SPN to be connected.

Figure 1 illustrates an example of a BB consisting of 3 places
P = {P1, P2, P3}, 3 input transitions TI = {T3, T23, T12} and
3 output transitions TO = {T ′

3, T
′
23, T

′
12}.

Note that if two or more input (output) transitions have
the same output (input) vector, we can fuse them in one
transition whose rate is the sum of the rates of the original
transitions. Therefore, without loss of generality, we assume
that all the input (output) transitions have different output
(input) vectors.

Finally, to simplify the notation, we use Ty (T ′
y) to denote

an input (output) transition, where y is the set of place-
indices of the non-zero components in the output (input)
1Later, GPMIF was further generalised to accommodate the
extended RCAT, whilst maintaining compatibility with its
previous versions [10].
2The components of an input/output vector specify the
number of tokens taken from / added to the correspond-
ing places. Thus a null vector implies tokens arrive/depart
externally.

P1 P2 P3

T12 T23

T ′
12 T ′

23

T3

T ′
3

Figure 1: A 3-place building block.

vector of Ty (T ′
y). For instance, transition T23 (T ′

23) in the
net of Figure 1 is the transition that produces (consumes)
the tokens in P2 and P3.

Before giving the product-form for a general BB, we first
consider a simple one, with just two places, depicted in Fig-
ure 2. We use the following conventions: transitions Ty,

P1 P2

T1 T12 T2

T ′
1 T ′

12 T ′
2

Figure 2: Two-place building block model.

with null input vector, are always enabled; we call them
input transitions and denote the set of all such Ty by TI .
Transitions T ′

y, with null output vector, are called output
transitions and the set of all T ′

y is denoted by TO . The sub-
script y is the set of indices of the output/input places for
the input/output transition Ty/T ′

y . The rates for this SPN
are written χy = λy and χ′

y = µy where y = {1}, {2}, {1, 2}.

Let P 1, P 2 be the Markov processes whose states represent
the number of tokens in the places P1, P2, respectively. We
use ty to denote the action (name) associated with transition
Ty, and t′y similarly for T ′

y .

3.1 Simple example
To illustrate, we consider the Markov process defined by
the composition of the BB-2 node defined above with three
M/M/1 queues. The outputs of the BB-2 node are con-
nected to the inputs of the queues and the outputs of the
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queues are connected to the three inputs of the BB-2 node;
see Figure 3. As drawn, this network is closed, with a fixed
population, and has product-form equilibrium joint proba-
bilities for the numbers of tokens in each of the five places.
If all the BB-2 outputs instead randomly choose an input to
one of the M/M/1 queues with fixed probability (one third
in the figure), a product-form still exists. If an additional in-
put transition were now added as input to any of the places,
the network would become open and have a product-form
only under a certain condition on the rates. These product
forms are examined by RCAT in section 5.1.1.

µ1 µ2µ12 2

21

! 1 ! 2! 12 2 543

Figure 3: Simple closed hybrid network.

µ1 µ2µ12 2

21

! 1 ! 2! 12 2 543

1/3 1/3 1/3

Figure 4: Closed network with random choice.

4. BB COMPONENTS IN GPMIF
This section describes the Petri net building blocks’ specifi-
cation in an extended GPMIF schema. Keeping the model
interchange format compatible with PMIF 2.0 [19] and GP-
MIF [12], we added a new element PNBuldingBlock to GP-
MIF, which can be any GSPN, specified in PNML (Petri Net
Markup Language). A partial view of the resulting schema
showing the new elements is drawn in Figures 5 and 6.

4.1 Central server system with RAID
The following excerpt shows part of the BBs specification,
based on the above schema, for the RAID case study of sec-
tion 6.1. Specification of Nodes and Workloads is as specified
in PMIF, see [19].

<PNBuildingBloc Name= ‘ ‘RAID’ ’>
<net id=”Net−One” type=”P/T net”>
<p lace id=”RAID−1”>

Figure 5: GPMIF schema with BBs.

<graphics >
<p o s i t i o n x=”285.0” y=”180.0”/>

</graphics >
<name>

<value>RAID−1</value>
<graphics>

<o f f s e t x=”−5.0” y=”35.0”/>
</graphics>

</name>
<i n i t i a lMark ing >

<value>0</value>
<graphics>

<o f f s e t x=”0.0” y=”0.0”/>
</graphics >

</in i t i a lMark ing >
<capac i ty>

<value>0</value>
</capac ity>

</p lace>
. . .

The full example and the schema is at dmi.uib.es/~cllado/
mifs/.

5. EQUILIBRIUM SOLUTIONS OFGPMIF
SPECIFICATIONS

The steady state probabilities of GPMIF models (when equi-
librium exists) may be obtained by direct solution of the un-
derlying Markov process by a standard numerical method,
finding a product-form solution if such exists and simula-
tion. We have implemented the second and third of these;
the first could easily be done using the same specification
as that provided to the simulator and software such as Dna-
maca [15].

5.1 Product-forms by RCAT
The most general form of the RCAT theorem applies to pair-
wise synchronisations amongst any finite number of Markov
processes [10]. In the present study a simpler version is suffi-
cient, which is stated in the Appendix. Consider an isolated
building block, which is open by definition. Unless there are
population constraints at any of the BB’s places – e.g. finite
capacity – all the inputs to every place are outgoing from ev-
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Figure 6: PNML schema included in the GPMIF.

ery state; this is because in building blocks they come from
input transitions which are always enabled. Similarly, there
is no restriction on the state from which a BB generates an
output; hence every output causes a transition into every
state of a building block. Thus RCAT can be applied, and
a product-form therefore constructed in a network of BBs,
provided the reversed rates of each output transition is the
same at every one of its instances. This is not always the
case, but the property does hold when the BB is a reversible
Markov process. This is determined by the following result.

Proposition 1. Consider a BB-n, S with n places, and
let N ⊆ 2{1,...,n} ! ∅. Let ρy = λy/µy for Ty, T ′

y ∈ T , y ∈
N , |y| ≥ 1. If the following system of equations has a unique
solution ρi, (1 ≤ i ≤ N):

(
ρy =

Q
i∈y ρi ∀y : Ty, T ′

y ∈ T ∧ |y| > 1

ρi = λi
µi

∀i : Ti, T
′
i ∈ T , 1 ≤ i ≤ n

(1)

then the BB’s balance equations – and hence equilibrium
probabilities when they exist – have product-form solution:

π(m1, . . . , mn) ∝
nY

i=1

ρmi
i . (2)

Proof. We show that the BB-n is reversible when at
equilibrium. By the symmetry between the input and out-
put transitions in the definition of a BB, there is certainly
either no transition between any given pair of states or a
transition in each direction. Let the equilibrium probabili-
ties be π(m) ≡ π(m1, . . . , mn). Then the detailed balance
equations for transitions between states π(m) and π(m′),
where m′

k = mk + 1 for k ∈ y and m′
k = mk for k /∈ y are:

π(m)λy = π(m′)µy or π(m)ρy = π(m′)

This equation is satisfied for all y ∈ N , Ty ∈ T and hence
for all transition-pairs. The BB is therefore reversible with
the equilibrium probabilities stated in the proposition.

It is well known that M/M/1 queues satisfy the conditions
of RCAT when departures are interpreted as active synchro-
nising action and arrivals passive actions. Since the M/M/1
queue is reversible, the reversed rate of a departure is sim-
ply the arrival rate of its reversed transition, a constant.
For the BB, as noted already, the first two conditions of
RCAT are satisfied because of the nature of input and out-
put transitions. Similarly the reversed rates are constant
(assuming the arrival rates are state-independent) provided
that the conditions of Proposition 1 are satisfied, in this
case, ρ12 = ρ1ρ2 or λ1λ2µ12 = µ1µ2λ12.

5.1.1 Illustrative exemplar
The baby application with three queues connected between
the outputs and inputs of a BB-2 can now be analysed for a
product-form solution. In terms of BBs, it can be expressed
as a synchronisation amongst three BB-1 nodes (the queues)
and the BB-2 node, as shown in Figure 7. The outputs of
BB-2 synchronise as active transitions with rates µ1, µ12, µ2

(from left to right in the figure) with the passive inputs of
the BB-1 nodes, which are assigned variable rates y1, y12, y2.
Similarly, the outputs from the BB-1 nodes synchronise ac-
tively at rates λ1, λ12, λ2 with the passive inputs of BB-2,
which are assigned variable rates x1, x12, x2.

x1 x2

1y

x12

µ1 µ2µ12 2

! 1 ! 2! 12 2

12y 2y

2

5

1

43

Figure 7: Composition of the hybrid network.

The rate equations for the three BB-2 outputs are now y1 =
µ1 = x1, y12 = µ12 = x12, y2 = µ2 = x2. For the three
queues, we have similarly x1 = λ1 = y1, x12 = λ12 =
y12, x2 = λ2 = y2, the same equations. We therefore have
three degrees of freedom to choose x1, x2, x3 say. However
we have one constraint imposed by the BB-2 product-form
condition,

x12 =
µ12x1x2

µ1µ2

Therefore a product-form exists unconditionally since all the
constraints can be satisfied. We have two degrees of freedom
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in computing the unnormalised probabilities π(n1, n2, n3, n4, n5),
where ni is the number of tokens in place i in Figure 7; so
let x1 = x2 = 1. Then we obtain

π(n1, n2, n3, n4, n5) ∝„
1
µ1

«n1
„

1
µ2

«n2
„

1
λ1

«n3
„

µ12

µ1µ2λ12

«n4
„

1
λ2

«n5

Whilst this is a nice product-form, normalisation still has to
be done which requires enumeration of the state space, which
is not entirely trivial. Because of the synchronisations in
Petri net and the fact that it is closed, it is easy to verify that
the total number of tokens in places 1, 3 and 4 is constant;
symmetrically, the total number of tokens in places 2, 4 and
5 is constant. Therefore the state space comprises vectors
(n1, n2, n3, n4, n5) such that ni ≥ 0(i = 1, . . . , 5), n1 + n3 +
n4 = N1, n2+n4+n5 = N2 for given constants N1, N2. This
turns out to give a state space of size (N + 1)(N + 2)(2N +
3)/6 when N1 = N2 = N ; te expression for N1 -= N2 is
rather messy.

Remark
The choice x1 = x2 = 1 can now be seen to be arbitrary.
Leaving x1, x2 unspecified, we would have

π(n1, n2, n3, n4, n5) ∝„
x1

µ1

«n1
„

x2

µ2

«n2
„

x1

λ1

«n3
„

x1x2µ12

µ1µ2λ12

«n4
„

x2

λ2

«n5

= xn1+n2+n4
1 xn3+n4+n5

2 ×
„

1
µ1

«n1
„

1
µ2

«n2
„

1
λ1

«n3
„

µ12

µ1µ2λ12

«n4
„

1
λ2

«n5

∝
„

1
µ1

«n1
„

1
µ2

«n2
„

1
λ1

«n3
„

µ12

µ1µ2λ12

«n4
„

1
λ2

«n5

since the powers of x1 and x2 are the constants N1 and N2

respectively.

However, it should be noted that this simple network is
analogous to three parallel cyclic pairs of queues, with con-
straints imposed on the middle queue only. This is why there
are the two degrees of freedom. A more general topology, in
either a closed or an open network, would result in no de-
grees of freedom after normalisation so that the constraints
arising from any BB-n nodes (n > 1) would restrict the do-
main of parameters allowing a product-form solution. Our
case study in section 6.1 is an instance of this.

More simply, consider the cyclic network of Figure 4. The
can be described similarly to the composition of Figure 7,
except the passive actions y1, y12, y2 must each be replaced
by three passive actions corresponding to input from the
three output transitions of the BB-2 node; denote these by
y1a, y1b, y1c in place of y1 and similarly for y12 and y2. The
rate equations of RCAT now become:

y1a = µ1/3 = x1/3, y1b = x12/3, y1c = x2/3

and x1 = λ1 = y1, where y1 = y1a +y1b +y1c, x12 = y12 and
x2 = y2. Thus, (x1 + x12 + x2)/3 = x1 = x12 = x2 and so
the condition for product-form in Proposition 1 becomes

x1 = x12 = x2 = y1 = y12 = y2 = µ1µ2/µ12

The condition can therefore be satisfied, giving the uncon-

ditional product-form

π(n1, n2, n3, n4, n5) ∝„
µ2

µ12

«n1
„

µ1

µ12

«n2
„

µ1µ2

λ1µ12

«n3
„

µ1µ2

µ12λ12

«n4
„

µ1µ2

λ2µ12

«n5

5.1.2 Open networks
An open network would be specified in a similar way ex-
cept that certain queues would have external arrival streams
and external departure streams probabilistically chosen af-
ter a service completion; these streams have fixed rates or
selection probabilities rspectively and do not synchronise
with other nodes. Similarly, BBs may have additional input
and/or output transitions that do not synchronise. Suppose
we add an additional external arrival stream into the left-
most queue (labelled 3) with rate γ1 and external departures
with probability 0.5 from the rightmost queue (labelled 5).
The rate equations now become

x1 = γ1 + y1, x12 = y12, x2 = y2/2

yua = x1/3, yub = x12/3, yuc = x2/3 (u=1,12,2)

Thus, x12 = (x1 + x12 + x2)/3, x2 = (x1 + x12 + x2)/6, x1 =
γ1 + (x1 + x12 + x2)/3. These equations have the unique
solution x1 = 3γ1, x12 = 2γ1, x2 = γ1. There is therefore a
product-form solution if and only if 2µ1µ2 = 3γ1µ12, where-
upon it is

π(n1, n2, n3, n4, n5) ∝„
3γ1

µ1

«n1
„

γ1

µ2

«n2
„

3γ1

λ1

«n3
„

2γ1

λ12

«n4
„

γ1

λ2

«n5

5.2 Translation into a SPN
Performance Model interoperability between Queueing Net-
works and Petri nets is desirable since it can be very useful
to compare performance results coming from tools that use
different formalisms and the distinct benefits of the tools can
be shared and combined. In our case, we can take advantage
of the efficiency of product-form solutions on the one hand
and be able to solve general models, without the constraints
that hamper product-forms, on the other. In [5] a tool that
allows for the transformation of a QN specified using PMIF
into a Stochastic Petri Net (SPN) is presented. The result-
ing SPN can be read and solved by PIPE2 (Platform Inde-
pendent Petri net Editor 2) [4] and TimeNet [22]. The QN
→ PN tool uses the ATL transformation language to trans-
late from the PMIF schema to a SPN schema (eDSPN.xsd)
used by TimeNet and that can also be inported/exported
to/from PIPE2 . This way, we can use both tools depen-
dent on which one is more convenient. We enhance this
transformation tool such that it can also transform PMIF
models with BBs (we call it eQN->PN, for “enhanced QN-
>PN tool”). Since the BBs are actually SPNs anyway, the
transformation enhancement is mainly syntactic. We can
then use the eQN->PN tool to tranform any PMIF model
with BBs (product-form or not, open or closed) into a SPN
model that can be solved by PIPE. If the PN is bounded,
we can use a GSPN analysis solver such as PIPE’s one to
obtain equilibrium probabilities when they exist [4].

6. MODELLING RAID SYSTEMS
Redundant Arrays of Inexpensive Disks (RAIDs) have been
used for cost-efficient storage, increased performance through
parallelism and fault tolerance for many years [3]. A RAID
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subsystem is problematic to represent in a queueing model
since it involves a fork-join operation, whereby an arriving
task, representing an access request, forks into a number of
subtasks that each go to a different disk. This is because
data is “striped”, i.e. divided up into a number of segments
that are allocated to different disks in the array, and/or
mirrored, i.e. copied to another disk. The subtasks are run
asynchronously, perhaps queueing with subtasks from other
accesses, and then recombined after all have been served, i.e.
are joined. Stripes can be of any size (number of segments,
or disks used) up to the number of disks in the array, n say.
Large accesses will use a number of full stripes of n segments
and a partial stripe of size less than n. Smaller requests will
just comprise a partial stripe. We assume the partial stripes
use a sequence of adjacent disks, with wraparound, starting
at any disk with equal probability. Thus, in a BB-n, we
need to specify one workload for each possible combination
of disks used for each stripe size. There is only one for a
full stripe – the compete set of n disks. For partial stripes
of size k < n, there are n combinations of disks that can be
selected, corresponding to the choice of disk for the first seg-
ment in the stripe. Hence there are 1 + n(n − 1) workloads
in the PMIF, corresponding to each of these combinations.

A RAID system of n disks is modelled here by a BB-n. This
can represent the forking of arrivals into up to n subtasks,
which pass to places at which they are served with processor-
sharing discipline as in standard Petri nets. Moreover, the
building block can also represent the corresponding com-
bining operations. However, it does not faithfully model
joins because the subtasks output in parallel are selected
randomly from each input place and do not in general corre-
spond to the same task that forked previously. Nevertheless,
it is a good approximation at low utilisations – in fact exact
in the limit that the occupancy of the places never exceeds
1. Moreover, at equilibrium, on average the number of forks
over a long period will be equal to the number of correspond-
ing joins. Obviously a further limitation is that individual
disk service times are assumed to be exponential random
variables, but this is common to the other servers in a larger
system-model; and indeed to many analytical models preva-
lent in performance engineering. We anticipate reasonable
accuracy in the prediction of system measures such as mean
place occupancy levels, device utilisations and throughput,
but probably poor on user-oriented measures like response
time variance and probability distribution.

6.1 Case study
We constructed a model of a RAID within a typical, in-

teractive, multi-access data storage system. As discussed
above, the RAID is modelled by a BB-n node and the other
service centres are modelled by conventional queues. The
model is depicted in Figure 8 and implemented first, for
simplicity of explanation, with a BB-2 node. The method is
easy to mechanise and it is straightforward to introduce the
additional workloads required for n > 2.

We have assumed that there are two other dedicated disks,
A and B, a CPU and a “think” node, with infinite server
discipline, that represents user interaction in a multi-access
system (historically this would be a “terminal system”). We
solve this model, when equilibrium exists, first by product-
form solution and then by translation into a standard Petri
net by PIPE; see Figure 9. Notice that the Petri net is un-
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Figure 8: RAID network model.

bounded, with infinite state space. In the general case, with
a BB-n representation of the RAID, when the total token-
population is N , suppose both the input to T12 and the
output from T ′

12 are suspended. The remaining operational
transitions are now equivalent to an irreducible queueing
network and so any configuration of the tokens amongst the
six places is possible, subject to the total population of N .
Moreover, if the input to T12 operates once, the population
will go up to N + 1 and repeating the preceding argument
shows that any configuration is possible with total popula-
tion N + 1. Conversely, if T ′

12 fires once, the population
reduces by one. Hence we see inductively that any state
(n1, . . . , n6), ni ≥ 0, 1 ≤ i ≤ 6 is reachable. This is a
complication for simulation or direct solution, which must
truncates the state space appropriately, but a great simpli-
fication for any product-form solution which does not need
to find a normalising constant (or, rather, can determine
it easily as the product of the normalising constants of the
individual nodes).

6.2 Product-form solution
In this model, every active action represents a service com-
pletion at a queue or the firing of an output transition in
the BB node. In each case, the reversed rate is the arrival
rate of the individual queue or the rate of the corresponding
input transition. We can therefore write down the rate equa-
tions of RCAT as follows, for the case of a BB-2 RAID-node.
First note that the total arrival rate to the CPU queue, xC

in Figure 8, is the sum of the passive arrival rates from the
RAID BB and the passive arrival rates from DiskA, DiskB
and the Think queues.

xT = pT xC

x1 = p1xC

x12 = p12xC

x2 = p2xC

xA = pAxC

xB = pBxC

xC = xT + x1 + x12 + x2 + xA + xB
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where the terms p• are the routing probabilities indicated in
Figure 8. This is a homogeneous set of linear equations with
a unique solution up to a constant multiplicative factor x =
(pT , p1, p12, p2, pA, pB, 1)xC . There is therefore one degree
of freedom, since the normalising constant is the product
of the individual node-normalising constants. The degree
of freedom is used up by the single constraint of the BB-2
node:

x1x2µ12 = µ1µ2x12

which implies that

xC =
µ1µ2p12

µ12p1p2

The unconditional product-form (when there is equilibrium)
is therefore:

π(n1, . . . , n6)) = e−z1

6Y

i=2

(1 − zi)
1

n1!

6Y

i=1

zni
i (3)

where we rename the variables as z1 = pT xC/µT , z2 =
p1xC/µ1, z3 = p2xC/µ2, z4 = pAxC/µA, z5 = pBxC/µB , z6 =
xC/µC . Finally, the condition for equilibrium to exist is
zi < 1 for 2 ≤ i ≤ 6, i.e.

xC < min(µ1/p1, µ2/p2, µA/pA, µB/pB , µC)

6.2.1 Numerical parameterisation
The parameter values chosen for the model depicted in Fig-
ure 8 are as shown in the specification in section 4.1 for
the BB-2 node. The complete parameterisation is, for the
service rates: µT = 1/60, µ1 = 5, µ12 = 12, µ2 = 5, µA =
50, µB = 20, µC = 100; and for the routing probabilities
pT = 1/16, p1 = 1/16, p12 = 1/8, p2 = 1/16, pA = 7/16, pB =
1/4. From these we calculate the mean queue lengths at all
the nodes, mi, i = 1, . . . , 6, the throughput τ and mean re-
sponse time R for a user. These follow directly from the
equilibrium probabilities 3 and Little’s result as:

m1 = z1; mi = zi/(1 − zi), i = 2, . . . , 6

and

τ = z1µT = xCpT ; R = (m1 + . . . + m6)/τ

Numerical results for the performance predicted by this model
are reported in section 6.4, where we also look at the changes
we get by increasing the rate µ12 of the output transition T ′

12

(representing the access time for stripes of size two) from 12
to 16.

6.2.2 Constraints for product-forms with BB-n
Similar RAID systems modelled with BB-n nodes are no
more difficult to analyse but there are more RAID inputs
– actually 1 + n(n − 1) of them – to define, as discussed
above. Let us assume that the output rates are fixed and
try to choose the input probabilities such that the conditions
for product-form are satisfied. Since there are 1 + n(n − 1)
inputs, there are n(n−1) independent probabilities and 1 de-
gree of freedom because the network is closed with homoge-
neous equations for the rates x•. The number of constraints
in Proposition 1 is the number of inputs less the number of
places, i.e. 1 + n(n − 1)− n = (n − 1)2 in the RAID model,
the number of inputs that fork. Subtracting the one degree
of freedom, we have n(n − 2) further constraints to satisfy,
which is n less than the number of independent input proba-
bilities to assign, n(n−1). Therefore, a product-form can be

guaranteed by picking the input probabilities appropriately.
This observation allows file allocations to be organised so
as to achieve product-forms, facilitating simple quantitative
analysis.

In particular, since the number of free input probabilities
is n(n − 1) − n(n − 2) = n, which is the number of inputs
that do not fork, one strategy is to choose the non-forking
input probabilities in any way desired, for example propor-
tional to the rates of the corresponding disk drives. The
probabilities for the forking tasks are then defined uniquely
if the network is to have a product-form. Thus, for n = 2
above, there are no further constraints to satisfy and, as we
found, the product-form is unconditional; we can choose the
two non-forking input probabilities, whereupon the remain-
ing (forking) one is determined. For n = 3, the BB-3 has 7
inputs, 4 constraints, 1 degree of freedom and 6 independent
input probabilities. Hence a product-form can be found with
three of the input probabilities assigned arbitrarily; i.e. we
can again choose the non-forking probabilities, after which
the other four are determined.

6.3 Direct solution of a Petri net model
The GPMIF xml specification corresponding to the model
of Figure 8 (partially written in section 4) will be trans-
formed by our eQN->PN tool in another xml file specifying
a Petri net that can be read by PIPE. This net is shown in
Figure 9. It is an standard SPN where all timed transitions
have single server semantics but the THINKTime transition
that needs an infinite server semantics in order to model the
Think Device.

Figure 9: Petri net model produced by PIPE.
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6.4 Numerical results
For the model defined in section 6.2.1, we obtained the mean
queue lengths, or numbers of tokens at places shown in
Table 1 as well as an average of 5 tokens in RAID-1 and
RAID-2; the non-think node utilisations were 0.833 (RAID-
1), 0.833 (RAID-2), 0.583 (DiskA), 0.833 (DiskB), 0.667
(CPU); the throughput was 4.167; the mean network pop-
ulation was 268.4; and the mean response time was 4.416
seconds. As it can be seen from the table, these results were
confirmed very closely by a discrete event simulation of the
PIPE-generated Petri net.

When we changed the output rate of the full stripes (transi-
tion T ′

12) from 12 to 16, the corresponding results were, were
again confirmed closely by the simulation as also shown in
Table 1. For the mean node occupancies of RAID-1 and
RAID-2 we got 1.667 and the non-think node utilisations
were 0.625 (RAID-1), 0.625 (RAID-2), 0.438 (DiskA), 0.625
(DiskB), 0.5 (CPU); the throughput became 3.125; the mean
network population was 194.3; and the mean response time
was 2.169 seconds.

Server Method T ′
12=12 T ′

12=16
Thinking Product-form 250.0 187.5

Simulation 249.5 187.3
DiskA Product-form 1.4 0.778

Simulation 1.41 0.773
DiskB Product-form 5.0 1.667

Simulation 5.01 1.660
CPU Product-form 2.0 1.0

Simulation 2.0 0.995

Table 1: Numerical results comparison

6.5 Arbitrary sized RAID arrays
As we discussed in section 6.2, in an array of d ≥ 2 disks, a
product-form is unconditional if there are only d+1 different
input combinations, since this implies only d independent
input probabilities. In the special case that a RAID IO re-
quest is either to just one (any) single disk or to a full stripe
across all disks, we require only the transitions T1, . . . , Td

and T1,2,...,d in the building block BB-d. With obvious ex-
tension of notation, this gives the constraint x1 . . . xdµ1...d =
µ1 . . . µdx1...d, leading to

xd−1
C =

p1...dµ1 . . . µd

µ1...dp1 . . . pd

which gives (in the notation of section 6.2) the product-form
solution

π(n1, . . . , n6)) = e−z1

d+4Y

i=2

(1 − zi)
1

n1!

d+4Y

i=1

zni
i

with no further conditions.

Any additional combinations of inputs in the BB-d, such
as would be required to model partial stripes, for example,
would lead to conditions on the rates or the input selection
probabilities for the product-form to be valid.

7. CONCLUSION
By facilitating sharing of software model specifications, porta-
bility and ease of use, PMIFs are enhancing the performance

engineering process and making it accessible to the non-
specialist. We have made a significant extension to the GP-
MIF schema so as to allow fork-join sub-models and a sub-
set of Petri nets to be specified and checked automatically
for efficient, product-form solutions. The compositional ap-
proach, using queues and Petri net “building blocks” is nat-
urally hierarchical and conducive to application of RCAT,
which is what provides product-forms when they exist. Oth-
erwise, solutions for general GPMIF model specifications
can be obtained by direct solution of the Petri net form
of the model, using either numerical solution of its Markov
chain or simulation. We have focused on the latter, us-
ing the simulation component of Dnamaca, which can also
solve for the equilibrium probabilities (when they exist) of
the Markov chain when the state space is truncated suit-
ably. The Petri net derived for the RAID system model
is unbounded and so requires truncation, so direct analytic
solution has been left for future work. Nevertheless, our
product-form solutions show that, under the given approx-
imating assumptions, RAID-type fork and join operations
can be incorporated efficiently into standard queueing net-
work models.

In the immediate future, we plan to incorporate general BB-
n building blocks for any integer n, including the mechanical
checking of the conditions for product-form by Proposition 1.
This will make our RAID system models more realistic and
suitable for testing against data monitored on real systems.
Longer term we intend to apply our approach to more re-
alistic case studies, to find more general building blocks for
fork-join that do not require exponential service times for
the sub-tasks (e.g. relax these to Erlang or Coxian) and
provide a beta-version implementation.
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APPENDIX
A. MULTI-AGENTREVERSEDCOMPOUND

AGENT THEOREM (RCAT)
Expressed using an extension of PEPA, consider a multiple
component, pairwise synchronisation amongst n component-

processes P1, . . . , Pn:
n
'(

k = 1
L

Pk (n ≥ 2), where L =
nS

k=1
Lk

and Lk is the set of synchronising action types that occur
in Pk. Every action in each of the n components synchro-
nises with at most one other, such that one instance of the
action type is active and the other is passive. A special case
of the Multiple Agent Reversed Compound Agent Theorem
(MARCAT)3 defines a product-form solution for the steady
state probabilities of the synchronised Markov process under
certain conditions, when equilibrium exists.

Theorem 1. (MARCAT)

Suppose that the cooperation
n
'(

k = 1
L

Pk of components Pk,

denoting stationary CTMCs, has a state transition graph
with an irreducible subgraph G and that the cooperation set L
is finite. Let Rk = Pk{0a ← xa | a ∈ Pk} for k = 1, . . . , n.
Given that

1. For k = 1, 2, . . . , n, every passive action type in Pk is
always enabled, i.e. outgoing in all states of Pk;

2. For k = 1, 2, . . . , n, every active action type in Pk is
incoming in all states of Pk;

3. Every instance of a reversed action, type a, of an active
action type a ∈ Ak has the same rate ra in Rk (1 ≤
k ≤ n), and {xa} satisfy the rate equations

{xa = ra | a ∈ Ak, 1 ≤ k ≤ n}

then the synchronisation has product-form solution π(i) ∝
nQ

k=1
πk(ik) for the equilibrium probability of state i = (i1, . . . , in),

where πk(ik) is proportional to the equilibrium probability of
state ik in Rk.

The proof verifies Kolmogorov’s criteria for reversed pro-
cesses and is given in full in [10].

3The most general form, which we do not need here, is given
in [10]
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