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ABSTRACT
The cloud computing paradigm offers easily accessible com-
puting resources of variable size and capabilities. We con-
sider a cloud-computing facility that provides simultaneous
service to a heterogeneous, time-varying population of users,
each associated with a distinct job. Both the completion
time, as well as the user’s utility, may depend on the amount
of computing resources applied to the job. In this paper, we
focus on the objective of maximizing the long-term social
surplus, which comprises of the aggregate utility of executed
jobs minus load-dependent operating expenses. Our prob-
lem formulation relies on basic notions of welfare economics,
augmented by relevant queueing aspects.
We first analyze the centralized setting, where an omni-

scient controller may regulate admission and resource alloca-
tion to each arriving job based on its individual type. Under
appropriate convexity assumptions on the operating costs
and individual utilities, we establish existence and unique-
ness of the social optimum. We proceed to show that the
social optimum may be induced by a single per-unit price,
which charges a fixed amount per unit time and resource
from all users.

Keywords
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1. INTRODUCTION
Cloud computing is meant to offer on-demand network

access to shared pools of configurable computing resources
[13], such as virtual servers, applications and software ser-
vices. This paradigm promises to deliver to the user the
economics of scale of a large datacenter, fast and flexible
provisioning of resources, and the freedom from long-term
investments in equipment and related technology. The inner
workings of the datacenter that supports the cloud opera-
tions are hidden from the user, who is presented with virtual
servers, computing infrastructure, or software services. The
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idea of offering shared computing resources is of course not
new, and has been extensively studied and implemented un-
der different computing paradigms, including cluster, grid
and utility computing [6]. Recently, however, the notion of
cloud computing has gained prominence, spurred by numer-
ous implementations by Amazon, Microsoft, Google, IBM
and many others, both of public clouds (openly available
over the Internet), or private cloud (intended for internal or
restricted use). A recent survey of the promise and chal-
lenges of cloud computing can be for in [1], for example.

Shared computing facilities require effective mechanism
for allocating available resource among users. This becomes
a major challenge in view of the diversity of application types
and user needs, which are at least partly hidden from the
system manager. In public clouds, a major role is taken
up by economic mechanisms, notably resource pricing, but
also spanning more elaborate mechanisms such as bidding
and auctions. Such economic mechanisms are naturally sub-
ject to revenue and profit considerations by commercial ser-
vice provider. In this paper, however, our main focus is
on the use of pricing as a means to maximize the social
welfare associated with the cloud operations, which con-
sists of the aggregate service utility obtained by the cloud
users, less the infrastructure and operating costs of the ser-
vice provider. Maximizing the social welfare (equivalently,
the social surplus or social efficiency) is especially relevant
for public clouds operated by a public organization or of-
ficial agencies for the public benefit, as well as for private
clouds set up by a commercial company or consortium of
firms for internal use. Socially efficienct operation might
as well be aligned with the interests of certain commercial
public clouds, as it can help build the company’s long-run
reputation in this emerging market.

Social efficiency, and pricing as a means to achieve it, are
basic notions in economic theory [10, 16]. The present paper
leverages the standard theory, by considering explicitly the
temporal dynamics of service. Our model considers a shared
computing facility to which heterogeneous jobs (or applica-
tions) arrive sequentially. We assume that each job belongs
to a distinct user, and henceforth use the terms job and user
interchangeably. Each arriving user may acquire a certain
amount of the computing resources, while all present jobs
are served simultaneously, each on its allocated resources.
The service quality experienced by the user naturally de-
pends on the resources allocated to his job. Furthermore,
depending on application, the job execution time may con-
siderably scale down with the amount of resources applied
to it. This is especially true for batch-type applications such
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as scientific computing applications and business data anal-
ysis, that are computation and data intensive and can be
efficiently parallelized. As argued in [1], such applications
present notable opportunities for the utilization and further
advancement of cloud computing. Both these factors, ser-
vice quality and execution time, are essential parts of the
user performance and utility model that we consider.
The pricing mechanism we consider is the simple usage-

based pricing with linear tariffs, where each user pays a
fixed amount per unit resource and unit time. Such pric-
ing schemes are currently in use by several central cloud
providers. The decision on how much resources to use and
for what length of time is thus relegated to the user. Natu-
rally, potential users may also decide to give up the offered
service altogether, or balk. Such balking decisions effectively
shape the arrival rate into the system, which together with
the resource requirement of served users, determine the de-
mand curve for the system resources. In the context of so-
cial welfare, pricing can be viewed as playing a dual role:
First, regulating the overall system load to match available
resources (or their operating costs), and second, inducing a
distribution of available resources among users which is com-
mensurate with their performance requirements and service
utilities.
As mentioned, the suggested model emphasizes the se-

quential nature of user arrivals, and the dependence of their
service times on the allocated resources. Accordingly, we de-
velop the model in some detail, while clarifying the required
assumptions. We then examine the social welfare under the
assumption that system resources are sufficient to fully ac-
commodate the socially optimal demand. Our main result
is twofold: First, we establish the existence and uniqueness
of the welfare maximizing solution (in terms of arrival rates
and allocated resources to each job type). Second, we prove
that there exists a unique price that induces this desired so-
lution. We further elaborate on the relation of our model
to the existing economic models. Some additional topics of
interest that have been dealt with within this model include
the issue of load constraints due to limited resources, con-
sideration of profit, and iterative (tatonnement-like) price
adjustment schemes that converge to the socially optimal
price. These issues have been omitted here for lack of space
and will appear in an extended version of this paper.
Let us briefly comment on related literature. Market-

oriented mechanisms have been long been considered a means
for resource allocation in shared computing systems, often
focusing on system-oriented performance objectives such as
average delay and throughput. A number of papers have
considered the user-centric approach, where the objective
is to maximize the aggregate service utility, using various
market-based mechanisms and concepts, including commod-
ity markets, bargaining, posted price models, contract based
models, bid-based proportional resource sharing models, bar-
tering, and various forms of auctions. Extensive surveys
may be found in [17, 3]. The monograph [8] surveys re-
lated literature from a queueing theory perspective, while
the monographs [12, 4] survey the use of pricing in telecom-
munications systems and communication networks.
A related body of work on bid-based resource allocation

has emerged in the communication networks literature, in
the context of capacity allocation and congestion control.
Recent surveys may be found in [14, 18]. These bidding
mechanisms may be viewed as adaptive, congestion-dependent

pricing schemes, whereby the available resources are com-
pletely divided among the present users in proportion to
their bids. An application of these concepts to a shared
(utility) computing environment has been considered in [19],
where users are identifies as persistent flows of jobs, and bid-
ding is employed to statically divide the computing resource
among them. Our model here is basically different as users
are associated with single jobs, which arrive sequentially and
are allocated resources upon arrival.

The highly relevant article [7] (observed after completion
of the present paper) considers a similar pricing framework
to ours. That work however does not consider operating
costs, but rather focuses on the effect of delay externalities
on the social utility.

This paper is organized as follows. Section 2 lays down
the basic system and user model. Section 3 considers the
individual optimization problem faced by arriving users. In
Section 4 we consider the social optimization problem and
show that it admits a unique solution. The next Section 5
establishes our central result, namely that that social opti-
mality is induced by fixed per-unit pricing, and characterizes
the optimal price. We discuss the economic context of our
results in Section 6, and conclude in Section 7.

2. SYSTEM AND USER MODEL
This section introduces our basic model, including the un-

derlying service system, and the users’ characteristics.

2.1 The Service System
We consider a shared computing facility to which jobs (or

software applications) are submitted sequentially by indi-
vidual users. We associate each job with a distinct user,
and employ the terms job and user interchangeably. Upon
arrival, each job is allocated a certain amount of service re-
sources, according to some resource allocation protocol, and
promptly enters service which proceeds to completion. Al-
ternatively, some potential arrivals may decide to balk (say,
due to high pricing), in which case they leave the system
without receiving any service.

We proceed to describe quantitatively the parameters of
this model.

User types: Arriving users may differ in their service re-
quirements and cost parameters. These are summarized by
a type identifier, denoted i, which may be considered as a
vector of real or discrete parameters. Let I denote the set
of possible types.

Arrival rates: Potential users arrive according to some
stochastic process, with specified rates for each type. with
a given rate distribution. More precisely, let Λ0(di) denote
a finite positive measure on I. Then, for any (measurable)
set I ⊂ I, the arrival rate of potential users with types
in I is Λ0(I). We impose no further requirement on the
arrival processes except that the average number of arrivals
converges in the long run to to specified averages1 (almost
surely), so that Little’s law can be applied [15]. An arriving
user may either choose to enter service, or else might balk
with some probability (to be determined by our decision
model). Thus, the effective arrival rates (sans the balking
users), denoted Λ(di), will generally be smaller than Λ0(di).

1This allows to consider fairly general processes, that in-
clude, for example, non-stationarity due to time-of-day vari-
ation, Markov-modulated arrival processes, and dependence
between the arrival processes of different types.
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Resources: Let zi ≥ 0 denote the quantity of service re-
sources allocated to a type-i user (or job) upon arrival. In
our context, zi may be thought of as the number of (virtual)
computing units allocated to this job. We shall assume here
that zi is a continuous variable; this may indeed be the case
in some systems, while for others it should be considered an
approximation to a discrete variable with fine granularity.
It is assumed that zi is fixed throughout the job’s execution
period.
Service duration: Let τi denote the execution (service)

time of some type-i job. As jobs are assumed to enter ser-
vice upon arrival, this coincides with the job’s sojourn time,
namely the total time spent in the system. Evidently, the
service time depends both on the service requirements of this
job (as determined by the job type i), as well as the resources
z allocated to that job. Thus, τi is a random variable with a
z-dependent distribution, assumed to have finite mean and
variance for any z > 0. We let Ti(z) = Ei,z(τi) denote the
mean service time for type i jobs using z resources.
It will be naturally assumed that each Ti(z) is a decreasing

(or at least non-increasing) function of z. This property,
along will some additional requirements on Ti(z), will be
formally stated in Subsection 2.6.

2.2 Steady State
We next consider the steady state load in the system for

given arrival rates and resource allocations. Recall that type
i users enter the system as a Poisson process with (effective)
rate Λ(di). Suppose that each type-i user is allocated a
positive quantity zi of resources. The service time is then
a random variable with finite mean Ti(zi). As a result, the
system may be viewed as a distribution over an independent
collection (indexed by i) of M/G/∞ queues, each of which
is obviously stable. We shall assume that this system is in
steady state. Using the sample-path version of Little’s law
[15], the long-term average number of jobs in service for a
queue with arrival rate λi and mean service time Ti(zi) is
given by Ni = λiTi(zi). Therefore, the long-term average
number of jobs is service (As a function of their type) is
distributed according to

N(di) = Λ(di)Ti(zi) .

As each type-i users occupies zi resources, the long-term
average of the total resource utilization is given by

Z =

∫
i

ziN(di) =

∫
i

ziTi(zi)Λ(di) . (1)

We will refer to Z as the load of the system.
It may be noted that the description above presumes that

the resource pool is unlimited, so that all arriving users are
admitted to service. We will relate to the issue of limited
resources later in Section ??.

2.3 Pricing
Users will be charged some usage cost for the rendered

service. We will focus here on fixed per-usage pricing, so
that the monetary charge Mi for a job that occupied zi
resources for τi time units is

Mi = Pziτi ,

where P is the per-unit price rate (in monetary units per
unit resource and unit time). Therefore, the expected charge

for a type-i job, given that it was allocated zi resource, will
be

E(Mi) = PziTi(zi) . (2)

The latter expression will form part of the individual user’s
utility function. We note that the expected service time is
used, which reflects the implicit assumption that an arriving
user does not know beforehand the exact execution time of
his job, but only its distribution.

2.4 Individual Utilities
An incoming user has two decisions to make upon arrival.

One is whether to join the system or balk. If he decides to
join, he further needs to determine the amount of resources
zi required for his job. These decisions are made individually
by each user, with the goal of maximizing his own utility.
We proceed to define the user utility function.

First, the utility of any balking user is taken to be zero.
Note that this is merely a convenience, as any other baseline
value can be used instead. As for users who join the system,
the utility function of a type i user can be written as:

Ui(zi) = Vi(zi)− E(Mi)

= Vi(zi)− PziTi(zi) , (3)

where Vi is the (expected) value that the user assigns to ex-
ecuting his job with resources zi, and E(mi) is his expected
charge as per (2).

The user value functions are assumed to satisfy to the
following properties.

Assumption 1. For each user type i,

(i) Vi(z) is continuously differentiable, and strictly con-
cave increasing in z ≥ 0, and bounded above.

(ii) Vi(0) < 0.

The concavity assumption is of course standard, implying
that the marginal improvement due to additional resources is
diminishing. Property (ii) simply guarantees that users will
prefer balking to joining the system with z = 0 resources.

Discussion and Elaboration: It is important to note that
the value Vi may reflect both the execution time of the job,
as well as other elements related to the quality of service
(QoS) experienced during the execution time. To make this
specific, one may consider the separable form

Vi(z) = V̆i(z)− Ez(ci(τi)) , (4)

where the second component is the cost associated with the
execution time, and the first represents the other quality
measures. Here τi is the actual job execution time, ci(·) is
a delay cost function, and the expected value is taken with
respect to the distribution of τi given zi = z. We can now
distinguish between two extreme cases:

• Batch jobs: Here a certain computation needs to be car-
ried out, and the computation time scales with the allocated
resources. Such jobs are common, for example, in scientific
and business computing. Here V̆i(z) = vi, independently of
the allocated resources, and the delay sensitivity is the im-
portant term. Mild delay sensitivity may be captured by lin-
ear delay costs, namely, ci(τi) = γiτi for some γi > 0. Then

Vi(z) = V̆i(z)−γiTi(z), where Ti(z) = Ez(τi) is the expected
service time of user i. Note that the assumed monotonicity
and concavity properties of Vi are equivalent here to Ti(z)
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being convex decreasing, which may be reasonably assumed
(see below). Other applications may have more critical time
constraints, which may be captured by a (convex increas-
ing) function ci(·) that becomes steep towards the required
completion time.
• Fixed duration applications: In certain application classes,

cloud resources may be secured for fixed periods of time.
This may be the case, for example, in interactive applica-
tions that are intended for web customer service. In that
case the delay term become irrelevant, and Vi(z) = V̆i(z)
captures the QoS offered to customers during that time pe-
riod.

2.5 Operating Costs
Let Cop denote the operating cost of the computing facility

per unit time. We assume that this cost depends on the
system resource utilization, namely

Cop = C0(Z) ,

where Z denotes the average resource utilization, as specified
in (1). We further assume the following.

Assumption 2. C0(Z) is continuously differentiable and
strictly convex increasing in Z ≥ 0.

Remarks
1. Large datacenters normally take advantage of the econ-

omy of scale offered by statistical multiplexing and resource
virtualization, so that the overall load on the system is
smaller than the sum of individual resource requirements.
The cost function C0 is assumed to take account of this ef-
fect.
2. In addition to the running costs of operation, the cost

term may take into account also also the required invest-
ment in infrastructure, computed for a certain period ahead.
Whether this is included depends of course on the time scale
considered, and whether investment in infrastructure is con-
sidered as part of the model.
3. Observe that the operating cost are assumed to depend

on the average resource utilization, rather than its temporal
distribution. This coarse-scale approximation is essential for
the results of this paper.

2.6 Service Time
As mentioned, the service time, or job execution time,

generally depends on the resources z allocated to it. Recall
that Ti(z) denotes the mean service time function for type-i
jobs. We discuss here some specific forms for these functions,
and then state our general assumptions.
With the exception of fixed-duration applications, we rea-

sonably expect the mean service time to be strictly decreas-
ing in z. A common assumption in the processor-sharing
queueing literature is that of proportional speedup, namely
T (z) = D/z. This basic model is arguably overly optimistic
regarding the benefits of scale in parallel computation, as it
ignores factors such as setup time and parallelization over-
head that should impede further reduction in T beyond a
certain point. A slightly modified model that can accommo-
date such effects is given by

T (z) = a+
D

z
. (5)

Here a > 0 presents the non-scalable part of the job execu-
tion. Obviously, now T (∞) = a > 0. This model has the

same form as Amdahl’s law, which is often used to model
possible speedup in parallel computing (e.g., [9]).

Our general requirements on Ti(z) are given below, and
involve the user value functions Vi(z) as well. We will subse-
quently state more specific conditions on Ti that imply this
assumption.

Assumption 3. For each user type i, Ti(z) satisfies the
following properties:

(i) Ti(z) is a continuously differentiable and (weakly) de-
creasing function of z ≥ 0, with
limz→∞ Ti(z) > 0.

(ii) The ratio
V ′
i (z)

(zTi(z))′
is strictly decreasing in z. Here Vi

is the user utility function, and the primes denote dif-
ferentiation with respect to z.

Observe that these conditions are satisfied for the model
in (5). In that case, zTi(z) = az + D and (zTi(z))

′ = a, a
positive constant, so that (ii) is equivalent to concavity of
Vi(z) (which is indeed included in our assumptions). The
case of a fixed execution time is of course a special case with
D = 0. More generally, property (ii) holds whenever zTi(z)
is a convex increasing function of z, as this implies that the
denominator is non-decreasing and positive.

Convexity of zTi(z) is however not a necessary condition
for Assumption 3 to hold. As an important example, prop-
erty (ii) above can be established for certain types of delay-
sensitive utility functions, provided that the expected service
time satisfies some reasonable additional conditions on the
service rates. We summarize this observation in the follow-
ing lemma.

Lemma 1. Let µi(z) = 1/Ti(z) denote the service rate
function. Suppose that

(i) µi(z) is a differentiable, strictly concave and strictly
increasing function of z ≥ 0, with µi(0) = 0 and
µi(∞) < ∞.

(ii) Vi(z) = vi − ci(Ti(z)), where ci is an increasing and
convex function of z.

Then Assumption 3 is satisfied.

Proof. Item (i) of the assumption is obvious by the stated

properties of µi. Let f(z)
△
= V̄ ′(z)

(zT (z))′ (where we omit the in-

dex i). Substituting V (z) = v− c(T (z)) and T (z) = µ(z)−1,
we obtain

f(z) =
c′(µ(z)−1)µ′(z)

µ(z)− zµ′(z)

△
=

N(z)

D(z)
.

Item (ii) now follows by showing that N(z) is positive de-
creasing and D(z) is positive increasing (with both mono-
tonicity properties being strict). The first claim follows since
µ(z)−1 is strictly decreasing, c′(·) is positive increasing, and
µ′(z) is positive strictly decreasing (by the assumed concav-
ity of µ). Monotonicity of D(z) follows by observing that
D′(z) = −zµ′′(z) > 0 for z > 0 (where one-sided derivatives
may be used if necessary), and positivity now follows since
D(0) = 0.

To illustrate, T (z) = a+ D√
z
does not satisfy convexity of

zT (z), but condition (i) of the last lemma is easily seen to
hold.
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2.7 The Finite Class Model
The model as described above allows a continuum of user

types, with different performance and utility characteristics
for each type. While possible to continue the analysis at this
level of generality, we find it useful to consider here a finite
dimensional model, that is amenable to explicit computa-
tions and avoids technicalities associated with measurability
issues. The first such model that comes to mind is restricted
to a finite number of user types, each with a positive mass
of arrivals. However, such a model suffers from a couple of
shortcoming, both related to the admission decisions of the
users:
(1) Discontinuous demand: Consider the variation in the

arrival rate as the price is increased. As all users of a given
type share identical parameters, they will all change their
admission decisions (from join to balk) at the same price
level. This will lead to jumps in the demand, in response to
some small changes in price. Such discontinuities can hardly
be expected in practice.
(2) Mixed decisions: Due to the above-mentioned discon-

tinuities, equilibrium conditions will generally require users
of one or more types to choose probabilistically between join
or balk. As such users are necessarily neutral with respect to
these choices, the precise mechanism through which a given
user comes to choose between them with a given probability
remains exogenous to the model.
To mitigate these shortcomings, we will consider a finite-

class model that goes beyond the simple finite-type case.
Here users are grouped into a finite set of user-classes, each
sharing the same characteristics except for a continuously-
distributed bias is their service utility. As we shall see, this
addition will indeed induce smooth demand variation, and
avoid randomized decisions. The main characteristics of this
model are borrowed from [11], where a similar utility model
was used in a queueing context.
Let the set I of user types be divides into a finite set of

classes, denoted S = {1, . . . , S}, with elements s ∈ S. We
use the notation i ∈ s to indicate that a type i belongs to
class s. All jobs of a given class s have similar service time
characteristics, namely

Ti(z) ≡ Ts(z) , for all i ∈ s .

Furthermore, the service value functions Vi(z) are taken to
have the additive form2

Vi(z) = vi + Vs(z) , i ∈ s . (6)

Thus, the dependence on the resource z is the same for all
users of a given class. To that, a type-dependent bias vi is
added which creates intra-class variation. We refer to vi as
the user taste parameter.
Combining the above with (3) and (2), the utility function

of a served user is

Ui(z, P ) = vi + Vs(z)− PzTi(z) . (7)

The user type i may now be identified with the pair (s, v),
namely the users’ class and his taste parameter. Recall that
the potential arrival rates are specified through a positive
measure Λ0(di) on the set of types I. With i = (s, v), we
may express Λ0(di) as Λ0(s, dv); here Λ0(s, ·) is the distri-
bution of the taste v for class s users. Let λmax

s = Λ0(s, IR)
2To avoid notational clutter, here and in the following
we distinguish between some type-specific and class-specific
quantities (such as Vi as Vs) through their index only.

denote the total arrival rate of potential users of class s.
Some further requirements regarding these distributions will
be specified in Assumption 5 below.

We observe that Assumptions 1 and 3 regarding Vi and
Ti are in effect, and these imply similar properties for the
class quantities Ts and Vs. We summarize these properties
below.

Assumption 4. For each user class s,

(i) Vs(z) is continuously differentiable, strictly concave in-
creasing for z > 0, and bounded above.

(ii) Vs(0+) = −∞.

(iii) Ts(z) is a continuously differentiable and decreasing
function of z ≥ 0, with
limz→∞ Ts(z) > 0.

(iv) The ratio
V ′
s (z)

(zTs(z))′
is strictly decreasing in z.

Property (ii) ensures that Assumption 1(ii) is satisfied for
any taste parameter vi.

2.8 Aggregate Utility
Given the utility function in (7), we obtain the following

demand function

λs(z, P ) = λmax
s Prob{v + Vs(z)− PzTi(z) ≥ 0} ,

where the probability is taken over v according to its class
distribution Λs(s, dv). Thus, λs(z, P ) is the arrival rate
of users whose utility is non-negative when allocated z re-
sources at price P . More important for our purpose, how-
ever, will be the aggregate utility obtained at a given arrival
rate. Suppose that, out of the potential arrivals of class s,
only those users with higher taste parameter v are admit-
ted up to rate λs ∈ [0, λmax

s ], and each of those is allocated
zs > 0 resources. The aggregate value of service for these
admitted users (per unit time) will be

Vs(λs, zs) = V̄s(λs) + λsVs(zs) , (8)

where

V̄s(λs) = sup
{ev∈[0,1]}

{∫
vevΛ0(s, dv) :

∫
evΛ0(s, dv) = λs

}
.

(9)
Thus, V̄s(λs) is the sum over the higher-percentile tastes of
users of class s, up to rate λs. We refer to V̄s as the (taste)
aggregate utility. A more explicit expression is obtained as
follows. For each λs, let v0 and p ∈ [0, 1) be so that

λs =

∫
v>v0

Λ0(s, dv) + pΛ0(s, v0) (10)

(note that p ̸= 0 is required only if Λ0(s, ·) has a point mass
at v0). Then

V̄s(λs) =

∫
v>v0

vΛ0(s, dv) + pv0Λ0(s, v0) . (11)

We next discuss some properties of the aggregate utility
functions V̄s(λs). It is easily verified that V̄s(0) = 0, and V̄s

is (weakly) concave. With some additional assumptions it
satisfies stricter properties (cf. [11]).

Lemma 2. For each class s, consider the function V̄s(λ)
defined in (9). Suppose that the measure Λ0(s, dv) over v
is absolutely continuous (relative to the Lesbegue measure),
with a density function gs(v). Then
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(i) V̄s(λ) is strictly concave in λ ∈ [0, λmax
s ].

(ii) Suppose gs(v) > 0 in some neighborhood of v0. Then
V̄s(λ) is continuously differentiable around λ0 =

∫
v≥v0

gs(v)dv, with the derivative V̄ ′
s

△
= dV̄s

dλ
given by V̄ ′

s (λ0) =
v0.

(iii) If gs(v) > 0 for all −∞ < v < ∞, then V̄s(λ) is
continuously differentiable for all λ ∈ [0, λmax

s ], and
limλ→0 V̄

′
s (λ) = ∞, limλ→λmax

s
V̄ ′
s (λ) = −∞.

Proof. (i) Given the existence of density, (10)-(11) takes
the form

λ =

∫
v≥v0

gs(v)dv , (12)

V̄s(λ) =

∫
v≥v0

vgs(v)dv . (13)

In fact, for every λ ∈ (0, λmax
s ) there exists a some v0 = v0(λ)

that satisfies (12). This follows by noting that the right-hand
side is continuous in v0 and (weakly) decreasing from λmax

s

to 0 as v is increased from −∞ to ∞. Now, using (13), we
have that for every λ and ϵ > 0,

V̄s(λ+ ϵ)− V̄s(λ) =

∫ v0(λ)

v0(λ+ϵ)

vgs(v)dv

> v0(λ)

∫ v0(λ)

v0(λ+ϵ)

gs(v)dv

= v0(λ)ϵ = v0(λ)

∫ v0(λ−ϵ)

v0(λ)

gs(v)dv

> V̄s(λ)− V̄s(λ− ϵ) ,

which implies strict concavity.
(ii) From gs(v) > 0, it follows that v0 = v0(λ) that sat-

isfied (12) is continuous and strictly decreasing in λ around
λ0. Observe now from (12)-(13) that dλ

dv0
= −gs(v0) and

dV̄s
dv0

= −v0gs(v0), so that dV̄s
dλ

= v0(λ) around λ0. Since

v0(λ) is continuous there, then so is the latter derivative.
(iii) The first part follows from (ii). The limits follow from

V ′
s (λ) = v0(λ), as (12) implies that v0(λ) → ∞ as λ → 0,

and that v0(λ) → −∞ as λ → λmax
s .

We will henceforth adopt the following assumption.

Assumption 5. The conditions of Lemma 2 are satisfied.
That is, for each class s, the taste distribution Λ0(s, dv) ad-
mits a finite density gs, with gs(v) > 0 for all3 −∞ < v <
∞.

We finally note that, under the same conditions that lead
to (8), the average load of equation (1) can be expressed as

Z =
∑
s

λszsTs(zs) . (14)

3The infinite support of gs is a modeling convenience, as it
ensures that at any price level there will be some users which
choose to enter service, and some others who choose to balk.
In reality, we need this property to hold only for prices in a
reasonable range.

3. INDIVIDUALLY OPTIMAL DECISIONS
We proceed to examine the optimization problem faced by

an individual user. Given the advertised per-unit price P ,
an arriving user needs to decide whether to execute his job
at the considered facility, and if so, the amount of resources
to acquire for that purpose.

Consider a user i of class s and taste vi. Recall that this
user’s utility function is given by (7) if he joins service, and
set to 0 if he chooses to balk. In this section we consider a
fixed price P > 0. We therefore omit P from our notation
and write Ui(z) for Ui(z, P ), etc. The maximal utility for
this user will be

Umax
i = max{0,max

z≥0
Ui(z)} , (15)

= max{0, vi + U∗
s } (16)

where

U∗
s = max

z≥0
{Vs(z)− PzTs(z)} . (17)

As we show below, the optimization problem in (17) ad-
mits a unique maximum. Recall that a scalar function the
real line is strictly quasiconcave if it is strictly increasing up
to a certain point, and strictly decreasing thereafter.

Proposition 3. The utility function Us(z)
△
= Vs(z) −

PzTs(z) is strictly quasiconcave, and admits a unique max-
imizer zs > 0, which satisfies the following first-order con-
ditions

V ′
s (zs)− P (zsTs(zs))

′ = 0 . (18)

Proof. We first observe that Us(z) has at most one sta-
tionary point z where U ′

s(z) = 0. Indeed the latter is equiv-
alent to

V ′
s (z)

(zTs(z))′
= P.

But Us(0+) = −∞ by Assumption 4(ii), and Us(z) is even-
tually decreasing since limz→∞ zTs(z) = ∞ by Assumption
3(i), while Vs is bounded from above. Consequently, there
must exist a maximum point at some finite z > 0, which
clearly must satisfy U ′

s(z) = 0, namely (18). Since there is
no other stationary point, the assertion follows.

We may summarize user i′s decision process as follows.
First, he computes the optimal resource allocation zs and
maximal utility U∗

s = Us(zs) by solving (17). Next, if
vi + Us(zs) < 0 he balks, if > 0 he enters service using
zs resources, and in case of equality he is neutral between
these two options. For concreteness we shall choose the enter
option in this case.4

We can now obtain the effective arrival rate λs of each user
class. As noted, users of class s who join service are those
with tastes vi ≥ −Us(zs), where Us(z) = Vs(z)− P ∗zTs(z).
Then λs is given by (10) with vs = −Us(zs), and, observing
Lemma 2(ii), V̄ ′

s (λs) = vs, or

V̄ ′
s (λs) + Vs(zs)− P ∗zsTs(zs) = 0 . (19)

Since V̄ ′
s is a strictly increasing function, this equation uniquely

determines λs.

4As the set of neutral users will always have zero measure
under our type assumptions, this choice does not affect our
results.
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We finally establish some plausible monotonicity proper-
ties, that will be be needed later on. Let zs(P ) and λs(P )
denote the individually optimal resource allocation and ef-
fective arrival rate under price P .

Lemma 4. zs(P ), zs(P )Ts(zs(P )) and λs(P ) are all con-
tinuous and strictly decreasing functions of P . Consequently,
so is Z(P ) =

∑
s λszsTs(zs).

Proof. Fixing s, we remove the class index from Vs,
zs(P ), etc. in the remainder of this proof. Considering z(P ),
we write (26) as

P =
V ′(z)

(zT (z))′
. (20)

But the right-hand side is continuous and strictly decreases
in z (by Assumption 4), so that P = P (z) is strictly decreas-
ing in z. This implies that the inverse function zs = zs(P ) is
a well-defined continuous function which is strictly decreas-
ing in P .
Turning to z(P )T (z(P )), note that (zT (z))′ > 0 at any

solution z = z(P ) of (20), since V ′ > 0 (Assumption 4) and

P > 0. Therefore h(z)
△
= zT (z) is strictly increasing in z at

these points. But we have just shown that z(P ) is strictly
decreasing in P , and therefore so is h(z(P ). Continuity of
the latter follows from that of z(P ) and T (z).
Finally, consider λ(P ). By (25),

V̄ ′(λ) = −V (z) + P T (z)z
△
= k(z) ,

so that V̄ ′(λ(P )) = k(z(P )). Recall that V̄ ′(λ) is continuous
and strictly decreasing in λ by Lemma 2. Therefore, the
required properties of λ(P ) would follow by showing that
k(z(P )) is continuous and strictly increasing in P . But

dk(z(P ))

dP
=

∂k

∂z

dz

dP
+

∂k

∂P
=

∂k

∂P
= T (z(P ))z(P ) > 0

where we have used (26) to conclude that ∂k
∂z

= 0 (which
is of course related to the Envelope Theorem [16]). This
concludes the proof.

The last lemma shows that, sensibly, as the price P is
increased, users will acquire less resources zs, and their ar-
rival rates λs will decrease. Further, The multiple zsTs(zs)
that represents the total resource usage over time by each
user is decreasing as well (even though the execution time
Ts(zs) increases under our assumptions), as does the average
system load Z.

4. THE OPTIMAL SOCIAL WELFARE
The social welfare, or social utility, is defined as the sum

of utilities of all individual entities that are considered part
of the society. In our model these are the individual users
together with the service provider. We consider here the so-
cially optimal assignment of arrivals and resource allocation,
which is intended to maximize the social welfare. We allow
this assignment to be managed by an omniscient central con-
troller, that has full knowledge of the the system parameters
as well as individual customer types and preferences. This is
not a realistic scenario of course, and is used only to identify
the social optimum. Later we will show that this optimum
can be achieved by appropriate pricing.
We proceed to present the social welfare function that

is to be maximized, and characterize its optimal solution.

We start by presenting a general expression for the social
welfare, which we then specialize to the finite-class model.
The last subsection establishes existence and uniqueness of
the optimal solution.

4.1 The Social Welfare
The controller’s decisions may be expressed in terms of

the following variables:

1. ei ∈ [0, 1], where ei = 1 means that users of type i
are admitted to service, ei = 0 means rejection, and
ei ∈ (0, 1) means randomization between these two
options.5

2. zi ≥ 0, the amount of resources to assign to users of
type i (which is relevant only if ei > 0).

Recall that the potential arrival rate distribution is spec-
ified by Λ0(di). The social welfare is now given by the sum
of user utilities minus the system operating expenses:

Wsoc =

∫
i

Vi(zi)eiΛ0(di)− C0(Z) (21)

where

Z =

∫
i

ziTi(zi)eiΛ0(di) .

Note that this expresses the steady-state expected social sur-
plus per unit time, or equivalently its long-term average.
Our goal is to maximize Wsoc over all (measurable) selec-
tions of decision variables. Let W ∗

soc denote this maximal
value.

4.2 Aggregate Utility Form
Specializing to the finite-class (but infinite-taste) model,

we proceed to formulate the above optimization problem as
a finite dimensional mathematical program. Suppose within
each class s only users with higher tastes are admitted, up
to rate λs, and each of these is allocated resources zs. Then,
observing (8) and (14), the social welfare rate is given by

W (λ, z) =
∑
s

(
V̄s(λs) + λsVs(zs)

)
− C0

(∑
s

λsTs(zs)zs
)
,

(22)
where λ = (λ1, . . . , λS), z = (z1, . . . , zs). Recalling the
definition of V̄s, this can be interpreted as the social welfare
obtained when admitting class-s users with higher tastes up
to rate λs, and allocating zs resources to each. Consider the
following optimization problem:

maximizeW (λ, z) (23)

subject to λs ∈ [0, λmax
s ] , s ∈ S,

zs ≥ 0 , s ∈ S.

Proposition 5. The maximal value W ∗
soc of the social

welfare (21) coincides with the optimal value of the program
(23).

5We assume that all users of the same type are subject the
the same control decisions. This can be argued to be opti-
mal; however we will not bother with that here since under a
continuum of types assumption the chances of obtaining two
users of the same type are null. Furthermore, randomized
decisions will not be required in this case.
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Proof. We first argue that all users of a given class can
be allocated identical resources. This is most easily demon-
strated using the first variation of (21). Consider the max-
imization of (21) over (zi)i∈s for a single class s, with all
other decision variables fixed. Substituting an ϵ-variation
zϵi = zi + ϵz̃i, we obtain after some calculation

Wsoc(z
ϵ) = Wsoc(z)+

ϵ

∫
i∈s

[V ′
s (zi)− C′

0(Z)(ziT (zi))
′]z̃ieiΛ(di) + o(ϵ) .

Note that we substituted V ′
i = V ′

s , which follows from (6).
In any maximum the variation term must be non-positive.
Now, for zi > 0, z̃i can have arbitrary sign, so that

V ′
s (zi)− C′

0(Z)(ziT (zi))
′ = 0, zi > 0

must hold for eiΛ(di)-almost every i ∈ s. If zi = 0 then z̃i
is non-negative (assuming ϵ > 0), and we similarly obtain

V ′
s (zi)− C′

0(Z)(ziT (zi))
′ ≤ 0, zi = 0 .

Noting that C′
0 > 0 by Assumption 2, if follows as in Propo-

sition 3 that the last two equations have a unique solution
zi ≡ zs, which is valid for all i ∈ s with ei > 0 (i.e., which
are admitted to service). We can therefore restrict atten-
tion to zi ≡ zs for all i ∈ s. Substituting in (21) gives, after
noting (6) and (14),

Wsoc =

∫
i=(s,v)

[v + Vs(zs)]eiΛ0(di)C0

(∑
s

λszsTs(zs)

)

=
∑
s

(∫
v

ve(s,v)Λ0(s, dv) + λsVs(zs)

)

− C0

(∑
s

λszsTs(zs)

)
where λs =

∫
i∈s

eiΛ0(di) =
∫
v
e(s,v)Λ0(s, dv) is the effective

arrival rate of class i.
Consider now the maximization of the last expression for

Wsoc over {ei ≡ e(s,v)}. For given λs, the only term that
is sensitive to the choice of e(s,v) is the first one, and its
maximum is clearly obtained by V̄ (λs) in (9). With this
substitution, Wsoc reduces to the expression in (22).

4.3 Existence and Uniqueness
We proceed to show existence and uniqueness of the solu-

tion to the social optimization problem (22)-(23), and char-
acterize this solution in terms of the first-order optimality
conditions. We note that this program is not a concave one,
even under the convexity properties imposed in our model
assumptions. In fact, it is readily seen that this program
is a convex one in λ alone (with z held fixed), and the the
optimization problem over z can be transformed into a con-
vex one (as discussed in Section 6). However, the problem
is essentially not jointly convex in λ and z, due to the mul-
tiplicative terms λsVs(zs) and λsTs(zs)zs. Hence, we resort
to problem-specific analysis that relies on monotonicity ar-
guments.
We start with the following characterization of the (pos-

sibly local) maxima of our optimization problem.

Lemma 6. Let λ = (λ1, . . . , λS), z = (z1, . . . , zS) be a
local maximum point of (23), and define

η ≡ η(λ, z) = C′
0

(∑
s

λszsTs(zs)
)
. (24)

Then λs ∈ (0, λmax
s ), zs > 0, and

V̄ ′
s (λs) + Vs(zs)− η Ts(zs)zs = 0 , s ∈ S , (25)

V ′
s (zs)− η

[
zsTs(zs)

]′
= 0, s ∈ S . (26)

Proof. If follows from Lemma 2(iii) that λs is internal,
namely λs ̸∈ {0, λmax

s }. Differentiating (22) with respect to
λs yields (25). Now, λs > 0 implies that zs > 0 upon not-
ing Assumption 4(ii). Thus, the maximizing zs is interior.
Equating the derivative of (22) with respect to zs to zero
and cancelling λs yields (26).

We next shown that equations (24)–(26) admit a unique
solution. This will follow by showing that equations (25)–
(26) imply that {λs, zs} are decreasing in η, while the right-
hand side of (24) is increasing in these variables. The re-
quired monotonicity properties of {λs, zs} are summarized
in the next lemma.

Lemma 7. Consider equations (25)–(26), with fixed η >
0.

(i) For any η > 0, there exists a unique solution {λs, zs} to
equations (25)–(26). Denote this solution by {λs(η), zs(η)}.

(ii) The functions zs(η), zs(η)Ts(zs(η)) and λs(η) are all
continuous and strictly decreasing in η.

Proof. (i) Fix η > 0 and s. Existence and uniqueness
of a solution zs to equation (26) follows as in Proposition 3.
Existence and uniqueness of a corresponding solution λs to
(25) now follows by the properties of V̄s in Lemma 2, items
(i) and (iii).

(ii) The proof is identical to that of Lemma 4.

Lemma 8. There exists a unique solution {λ∗
s , z

∗
s} to the

system of equations (24)–(26).

Proof. Consider the right-hand side of equation (24) as
a function of η > 0, with zs = zs(η) and λs = λs(η) as
specified in Lemma 7. By the results of that lemma, the
argument of C′

0 is strictly decreasing in η, and since C′
0 is

a strictly increasing function (by the assumed convexity of
C0(Z)) it follows that C′

0(
∑

s λszsTs(zs)) is strictly decreas-
ing in η. Since it is also positive, it follow that (24) has
a unique solution η∗, with corresponding z∗s = zs(η

∗) and
λ∗
s = λs(η

∗).

We finally need to show that the maximum of (23) is
obtained in a compact set, namely not for zs → ∞.

Lemma 9. The global maximum of (23) is attained at a
finite point.

Proof. We show that W (λ, z) is decreasing in zs, for zs
large enough. Observe that

∂W (λ, z)

∂zs
=λs(V

′
s (zs)− C′

0(Z)(Ts(zs)zs)
′)

≤λs(V
′
s (zs)− C′

0(0)(Ts(zs)zs)
′) .

Since Vs is bounded and increasing, then V ′
s → 0 as zs →

∞, while our assumption that Ts(+∞) > 0 implies that
lim infzs→∞(Ts(zs)zs)

′ > 0. Therefore, there exists some z̃s
so that ∂W

∂zs
< 0 for zs > z̃s, independently of other variables.

This immediately implies that the supremum of W (λ, z) is
attained for {zs ≤ z̃s}. But this defines a compact region
and W (λ, z) is continuous, so that the maximum is attained
there.
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This leads us to the main result of this section.

Theorem 10. There exists a unique solution {λ∗
s , z

∗
s} to

the social optimization problem (23). This optimal solution
is internal (0 < λ∗

s < λmax
s , z∗s > 0) and obeys the first order

conditions (25)-(24).

Proof. By the last lemma, the maximum is attained at
a finite point. But Lemmas 6 and 8 that there exists at most
one local maximum, which is therefore the global maximum.
The second part follows from Lemma 6.

5. SOCIALLY-OPTIMAL PRICING
Having identified the socially optimal solution, we are

faced with the task of implementing this solution. Ideally,
such an implementation should not allow the central con-
troller access to private information of the users, which in
particular includes their service utility and preferences. In
this section we show that the simple per-unit pricing mecha-
nism, with the same price to all, suffices to induce the social
optimum.
Let {λ∗

s , z
∗
s} be the unique socially-optimal solution (23).

We set the per-unit price to be

P = C′
0

(∑
s

λ∗
sz

∗
sTs(z

∗
s )
) △
= P ∗ . (27)

Recall that each user maximizes his individual utility given
this price, as described in Section 3. The main result of this
paper is the following one.

Theorem 11. Let the per-unit price be P ∗, as defined in
(27). Then individual optimality leads to the socially optimal
solution {λ∗

s , z
∗
s}.

Proof. We will show that the individual optimality con-
ditions coincide with the conditions for social optimum. Let
{λs, zs} denote the arrival rate and resource allocations that
are obtained through individual optimality with price P ∗.
Observe that zs is uniquely determined by equation (18),
whereas λs is given by (19). Comparing equations (24)–
(26) with equations (27), (18) and (19), it may be seen that
both {λ∗

s , z
∗
s} and {λs, zs} satisfy equations (25)–(26), with

η = P ∗. But by Lemma 7 the solution to these equations is
unique, so that {λs, zs} = {λ∗

s , z
∗
s}.

We next consider the social welfare as a function of the
price, and establish its unimodality. Besides its own interest,
this property will also be useful below.

Proposition 12. Let W (P ) denote the social welfare W (λ, z)
obtained under price P . Then W (P ) is strictly increasing in
P for P < P ∗, and strictly decreasing for P > P ∗.

Proof. Differentiating W (P ) from (22), we obtain

dW (P )

dP
=
∑
s

(
∂W (λ, z)

∂λs

dλs

dP
+

∂W (λ, z)

∂zs

dzs
dP

)
=
∑
s

(
V̄ ′
s (λs) + Vs(zs)− Ts(zs)zsC

′
0(Z)

)dλs

dP

+
∑
s

(
λsV

′
s (zs)− λs(zsTs(zs))

′C′
0(Z)

)dzs
dP

.

Observing (18) and (19), this gives after some calculation
(which we omit here)

dW (P )

dP
= (P − C′

0(Z))
dZ

dP
.

Now, Z =
∑

s λszsTs(zs) is decreasing in P by Lemma 4.
Thus, C′

0(Z) is decreasing in P , while the equality P =
C′

0(Z) holds at P ∗. Therefore P − C′
0(Z) < 0 for P < P ∗

and P −C′
0(Z) > 0 for P > P ∗. This induces opposite signs

for dW
dP

.

6. ECONOMIC CONTEXT
The cloud computing environment examined in this paper

is that of a dynamic service system with sequential arrivals
of users, and variable service time that depends on the user
choices. The main issues examined, evolving around the no-
tion of social welfare and its maximization, are fundamen-
tal ones in microeconomic theory. It will thus be useful to
elaborate further on the economic context, and compare the
standard models with the ones considered here.

The economic setup of this paper is basically that of a
monopoly, namely a single firm that can set market prices.
The textbook version of this problem [16], restricted to a sin-
gle continuous product, considers a finite set I of consumers,
with vi(xi) denoting the value of consumer i for consuming
quantity xi ≥ 0 of the product, and C(x) being the cost
of production of quantity x. The social welfare is therefore
W (x) =

∑
i v(xi)−C(

∑
i xi). With linear pricing, each user

is maximizing Vi(xi)− Pxi, and (under standard convexity
assumptions) the social optimum is defined by marginal cost
pricing, so that P = C′(

∑
i xi) holds at the optimal point.

Comparing with (3) and (21), it may be seen that the
the role of the quantity xi is taken up in our model by the
quantity-time multiple ziTi. That is, the product being of-
fered here is not measured in terms of the resource quantity
zi itself, but rather in terms of quantity multiplied by usage
time. And indeed, the proposed pricing scheme (and the
socially optimal one in particular) are linear in the latter
measure. This is of course quite reasonable; however, it is
important to realize that this structure is not assumed a-
priori, but rather arises out of our model once we determine
that that operation cost C0 is a function of the average load,
and employ Little’s law to describe the effect of demand on
the system load. We will briefly comment on other possibil-
ities below.

Let us consider further the use of x = zT (z) (with the type
index removed for convenience) as the basic decision variable

in place of z. Assume for simplicity that x(z)
△
= zT (z)

is strictly increasing in z, so that the inverse z(x) is well
defined (this is indeed the case for T (z) = a+ D

z
, as in (5)).

The individual utility (3) can now be expressed as a function
of x as

Ũ(x)
△
= U(z(x)) = V (z(x))− Px .

It is now easy to verify that condition (ii) of Assumption 3
is equivalent to strict convexity of V (z(x)) in x. Therefore,
under our assumptions, the individual utility function U is
convex when considered as a function of x. In the present
paper we have chosen to work with z throughout, motivated
by cloud applications where the user actually chooses the
resources z explicitly, with the computing time T (z) being
determined as a result. We note that working with the
resource-time multiple x directly, rather than z, may be
natural is other applications when resources are automat-
ically adjusted by the manager according to the application
needs. We leave further elaboration of this approach for
future study.
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An important point to make is the relation between the
structure of the operating cost term C0 and the form of
the price tariff. In this paper we have assumed that C0 =
C0(Z) is a function of the average load Z =

∑
s λszsTs(zs),

which indeed we believe to be the dominant term. Con-
sider, however, the addition of a cost term C1 which de-
pends only on the average number of users in the system
(rather the resources utilized, namely C1 = C1(N), with
N =

∑
s λsTs(zs). This can represent, for example, the

accounting overhead associated with each user. Then, using
similar reasoning as before, we are led to consider a two-part
tariff of the form PzT + QT . We conjecture that a proper
choice of the price coefficients P , Q will lead the system to
social optimality; again, this is left for further study.
Finally, we comment on our assumption of a continuum of

user types. As noted, the textbook model described above
considers a finite population I of users. A variant of the
model due to Aumann [2] (and see [5]) considers a continuum
of infinitesimal users, so that the social welfare, for example,
takes the form W (x) =

∫
i
v(xi)m(di)−C(

∫
i
xim(di)). This

is indeed mathematically akin to (21). However, we note
that this similarity is only mathematical. In our model, the
users are of finite size, and their number is countable; what
is assumed continuous is the pool of possible user types,
from which the type of each user is drawn. Therefore, what
makes the effect of each user negligible is not this minia-
ture size, but rather the consideration of the average system
utility over a long (infinite) time horizon. This is again a
distinguishing aspect of the dynamic model considered here,
as compared with the standard economic setup.

7. CONCLUSION
This paper considered the resource allocation problem in

a cloud computing facility, where the underlying objective
is to maximize the social utility through a simple pricing
scheme. We showed that the socially optimal operating
point is unique, and can be sustained by a linear, usage-
based tariff, which charges a fixed price per unit resource
and unit time.
Besides the analytical results, a major contribution of the

paper is in the modeling aspect. The proposed model, which
is well suited for economic analysis, incorporates several
novel features that pertain to the cloud computing environ-
ment, including:
– Incorporating temporal aspects into the model.
–Flexible dependence of the computation time on the ap-
plied resources, which can be used to take account of setup
and parallelization overheads.
– User heterogeneity, in terms of both utility and job pro-
cessing requirements.
– A flexible finite-class, continuous-type model that allows
smooth demand functions along with finite-dimensional prob-
lem formulation.
– Variable arrival rates, which is shaped by user balking, in
addition to their choice of resources.
The essential model developed here may provide a basis

for additional work on economic aspects of cloud comput-
ing, considering further aspects of revenue, profit and com-
petition among clouds. Interesting extensions to the model
include the allocation of multiple resource types, or resource
bundles, rather than the single resource type considered
here, as well as the consideration of discrete resources, and
more a detailed analysis of resources allocations that are

time-varying according to the application’s needs. Finally,
it should be of interest to study possible effects of conges-
tion, which were assumed here to be negligible due to proper
management. We hope that the model presented in this pa-
per will provide a convenient starting point to study these
important problems.
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