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ABSTRACT
The method of stochastic state classes provides a means for quanti-
tative analysis of a rather wide class of non-Markovian models. As
a major and structural limitation, the approach cannot be applied
to models encompassing a preemptive policy, which in the practice
rules out the mechanism of suspension and resume usually applied
in many real-time systems.

We overcome here the limitation by proposing an approach that
faces the complexity issues introduced by the suspension/resume
mechanism in the structure of supports and distributions of remain-
ing times. In particular, these are distributed over a polyhedral sup-
port according to a multivariate joint density function with analytic
piecewise form over a partition into polyhedral subdomains. The
approach resorts to an imprecise analysis that extends distributions
over the tightest DBM zones enclosing polyhedral domains, and
approximates them with Bernstein Polynomials to obtain a global
(non-piecewise) analytic representation. Computational experience
is reported to show the different impact of errors due to the approx-
imation of supports and distributions.

Keywords
Quantitative evaluation, non-Markovian Stochastic Petri Nets, Gen-
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proximate state space representation, Difference Bounds Matrix,
Bernstein Polynomials.

1. INTRODUCTION
Quantitative evaluation of densely-timed models has largely ad-
dressed the case of concurrent systems with stochastic temporal
parameters, developing on the assumption of behaviors that do not
accept suspension and resume. However, this is an essential expres-
sive feature when dealing with real-time systems, which, almost
always, run under priority-driven preemptive scheduling [5].

In correctness verification, the case of systems with suspension has
been addressed by a few models, which notably include StopWatch

Automata [12], Petri Nets with hyper-arcs [22], Scheduling-TPNs
[21], and preemptive Time Petri Nets (pTPNs) [14]. The salient
and common trait of this class of models is that the mechanism of
suspension changes the order of complexity of the analysis, impair-
ing decidability and polynomial solution time of various problems.
To overcome the issue, various approaches resort to an approxima-
tion of timing domains. In particular, in [14], an approximation
of the state state-space maintains the efficient encoding of Differ-
ence Bounds Matrix (DBM) zones and supports exact identifica-
tion of feasible timings of selected behaviors through a clean-up
algorithm, enabling efficient verification of reachability properties
under real-time timing constraints.

In quantitative evaluation, the issue of suspension has been ad-
dressed by models encompassing the so-calledPreemptive Resume
(PRs) policy [3], also known asage policy [17], reaching a lim-
ited level of development with respect to models encompassing the
more conventionalPreemptive Repeat Different(PRD) policy [3],
also calledenabling memorypolicy [17]. In particular, analytical
approaches based on a continuous abstraction of time were pro-
posed in [6] for models with exponential and deterministic timers
(Deterministic and Stochastic Petri Nets - DSPNs), using Markov
Renewal Theory under the so-called enabling restriction that rules
out concurrent enabling of multiple generally distributed (GEN)
transitions. In [3], the approach is extended to manage a combined
use of different preemption polices. A wider extension that relaxes
both the enabling restriction limit and accepts any kind of GEN
distribution was implemented in the WebSPN Tool [4] through a
discrete approximation of time. In [16], a discrete-time variant of
Time Petri Nets (TPNs) [10] leverages a maximal step semantics of
concurrency to support the representation of preemptive behavior
and associate quantitative probabilities with timers and switches.
With the development of analysis methods that go beyond the lim-
its of the Markovian assumption and the enabling restriction, quan-
titative evaluation is increasingly applied to real-time systems. This
makes the need to encompass suspension crucial and thus largely
emphasizes the relevance of solution techniques that follow the PRs
semantics.

In this paper, we propose a symbolic approach to quantitative eval-
uation of densely-timed preemptive systems with non-Markovian
temporal parameters. To this end, we extend the model of stochas-
tic Time Petri Nets (sTPNs) (Section 2) and the method of stochas-
tic state classes [11], [20] (Section 3) to represent resource assign-
ments and to encompass the representation of suspension in the ad-
vancement of clocks. In particular, we characterize the complexi-
ties of an exact approach, which turns out to be practically impaired
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by the fact that timing domains take the form of linear convex poly-
hedra and state density functions have a piecewise representation
over a partition in polyhedral subdomains. We thus propose an im-
precise analysis technique that relies on the approximation of both
domains and state density functions, obtaining a relevant gain in
computational complexity without having a significant impact on
performance measures. Computational experience validates the ap-
proach on a model of notable complexity by comparing quantitative
measures against simulation results (Section 4). As a relevant trait,
the approach supports the definition of quantitative metrics to esti-
mate the impact of approximation of both domains and state density
functions, which comprises an important step ahead with respect to
non-deterministic analysis of preemptive models [14]. Conclusions
are finally drawn in Section 5. For the sake of readability, proof of
Theorem 3.1 is reported in the Appendix.

2. SPTPN
2.1 Syntax
A stochastic preemptive Time Petri Net(spTPN) is a tuple〈P ;T ;
A−;A+;A·;m0;EFT s;LFT s;F ; C; Res;Req;Prio〉.

The first 10 elements comprise the model of sTPNs, which are
the variant of non-Markovian Stochastic Petri Nets addressed in
[11], [20]. P is a set of places.T is a set of transitions disjoint
from P . A− ⊆ P × T , A+ ⊆ T × P , andA· ⊆ P × T are
sets of precondition, postcondition, and inhibitor arcs (a placep
is said to be aninput, an output, or an inhibitor place for tran-
sition t if 〈p, t〉 ∈ A−, 〈t, p〉 ∈ A+, or 〈p, t〉 ∈ A·, respec-
tively). m0 : P → N is the initial marking associating each place
with a non-negative number of tokens.EFT s : T → R

+
0 and

LFT s : T → R
+
0 × (R+

0 ∪ {∞}) associate each transition with
a staticEarliest Firing Timeand a (possibly infinite) staticLatest
Firing Time (EFT s(t) ≤ LFT s(t) ∀ t ∈ T ). F andC define a
measure of probability for non-deterministic choices:C : T → R

+

associates each transition with a positive weight andF : T →
F s
t () associates each transition with a static probability distribu-

tion supported in the static firing interval[EFT s(t), LFT s(t)]. If
EFT s(t) 6= LFT s(t), we assume thatF s

t () is absolutely contin-
uous and, thus, that there exists a density-functionfs

t () such that
F s
t (x) =

∫ x

0
fs
t (y)dy.

The last3 elements extend the model of sTPNs with a mecha-
nism of resource assignment that makes the progress of timed tran-
sitions dependent on the availability of a set of preemptable re-
sources.Res is a set of preemptable resources disjoint fromP and
T . Req : T → 2Res andPrio : T → N associate each transition
with a subset ofRes representing its resource request and with a
static priority level, respectively (low priority numbers run first).

2.2 Semantics
The stateof an spTPN is a pair〈m, τ 〉, wherem : P → N is a
marking andτ : T → R

+
0 associates each transition with a (dy-

namic) time-to-fire.

Firability. A transition isenabledif each of its input places con-
tains at least one token and none of its inhibitor places contains
any token. An enabled transition isprogressingif every resource
it requires is not requested by any other enabled transition with a
higher level of priority; otherwise, it issuspended. A progressing
transition t0 is firable if its time-to-fire τ (t0) is not higher than
that of any other enabled transition. When multiple transitions are
firable, the choice is resolved by a random switch determined byC

Prob{t0 is selected} = C(t0)/
∑

ti∈Tf (s) C(ti), whereT f (s) is
the set of transitions that are firable in states. Since the treatment
does not include immediate (IMM) and deterministic (DET) tran-
sitions,C turns out to be irrelevant for the purposes of the analysis
[11], but it is essential in the semantics formulation to associate
each choice with a measure of probability [9].

Firing. When a transitiont0 fires, the state〈m,τ 〉 is replaced by a

new states′ = 〈m′, τ ′〉, which we write ass
t0→ s′. Markingm′

is derived fromm by removing a token from each input place oft0
and by adding a token to each output place oft0:

mtmp(p) = m(p)− 1 ∀ p . 〈p, t0〉 ∈ A−,
m′(p) = mtmp(p)− 1 ∀ p . 〈t0, p〉 ∈ A+.

(1)

Transitions that are enabled both by the intermediate markingmtmp

and bym′ are saidpersistent, while those that are enabled bym′

but not bymtmp are saidnewly-enabled. If t0 is still enabled after
its own firing, it is always regarded as newly enabled [7], [10].

For any transitionta newly-enabled after the firing oft0, the time-
to-fire takes a random value sampled in the static firing interval
according to the static probability distributionF s

ta():

EFT s(ta) ≤ τ ′(ta) ≤ LFT s(ta),
P rob{τ ′(ta) ≤ x} = F a

ta(x).
(2)

For any transitionti that was progressing in the previous state and
is persistent after the firing oft0, the time-to-fire is reduced by the
time elapsed in the previous state (which is equal to the time-to-fire
of t0 measured at the entrance in the previous state):

τ ′(ti) = τ (ti)− τ (t0). (3)

For any transitiontx that was suspended in the previous state and is
persistent after the firing oft0, the time-to-fire remains unchanged:

τ ′(tx) = τ (tx). (4)

3. A SYMBOLIC APPROACH TO THE
ANALYSIS OF SPTPN MODELS

The introduction of suspension in the model semantics requires that
the analysis method of stochastic state classes be extended. This
impacts in relevant manner both on the structure of supports and
density functions. We formulate here an exact calculus and propose
an approximated approach that makes the analysis viable.

3.1 Stochastic state classes
A stochastic state class(stochastic class for short) is a triple〈m,Dτ ,
fτ 〉 wherem is a marking,τ is the vector of times-to-fire of transi-
tions enabled bym, andfτ is a probability density function forτ
supported overDτ [11], [20].

DEFINITION 3.1. A stochastic classΣ′ = 〈m′, D′
τ ′ , fτ ′()〉 is

a successor of stochastic classΣ = 〈m,Dτ , fτ ()〉 throught0 with

probabilityµ, which we writeΣ
to,µ
=⇒ Σ′, iff the following property

holds: if the marking of the net ism and the vector of times to fire
of transitions enabled bym is a random variableτ with support
Dτ and densityfτ (), then the firing oft0 occurs with probability
µ > 0 and leads to a new markingm′ and a new vector of times to
fire τ ′ with supportD′

τ ′ and densityfτ ′().
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Given an initial stochastic class, the transitive closure of
t,µ
⇒ defines

astochastic class graph(stochastic graph for short), where vertexes
are stochastic classes and edges are labeled with a transitiont and
a probabilityµ.

3.2 Initial class
We address models where transitions have expolynomial distribu-
tion [1], [2] and, furthermore, those with unbounded support are
all distributed over[0,∞) with negative exponential distribution.
We assume that the state density function of the initial class is an
expolynomial function with global analytic representation over a
DBM domain, expressed as the product of two factors separating
general and exponential timers:

Dτ = D〈τG,τE〉 = DτG
×DτE

,

DτG
=























τβg1
−τβg2

≤ bβg1βg2
(g1g2)

τβg1
−τ∗ ≤ bβg1∗

(g1∗)
τ∗ −τβg1

≤ b∗βg1
(∗g1)

∀ g1, g2 ∈ [0, G − 1] . g1 6= g2,

DτE
=







τ∗ −τγe ≤ 0 (∗e)

∀ e ∈ [0, E − 1],

fτ (x) = f〈τG,τE〉(xG, xE) = fτG
(xG) · fτE

(xE),

fτG
(xG) =

Z
∑

z=0

cz

G−1
∏

g=0

x
αzβg

βg
e−λzβg

xβg ,

fτE
(xE) =

E−1
∏

e=0

λγee
−λγexγe ,

(5)
where the vector of times-to-fire of enabled transitions is decom-
posed into two subvectorsτ = 〈τG, τE〉 encoding the times-to-fire
of generally distributed and exponentially distributed transitions,
respectively;G andE denote the sizes ofτG and τE , respectively;
βg andγe denote the indexes of theg-th generally distributed tran-
sition and thee-th exponentially distributed transition, respectively
(i.e., τG = 〈τβ0 , ..., τβG−1〉 andτE = 〈τγ0 , ..., τγE−1〉); and,τ∗
represents the ground time at which the class was entered. The
DBM representation has a normal form where coefficientsbβg1βg2

coincide with the maximum value that can be attained by the dif-
ferenceτβg1

− τβg2
. The normal form exists uniquely, can be

computed in timeO(G3) or evenO(G2), and is univocally identi-
fied by the conditionbβg1βg2

≤ bβg1βg3
+ bβg3βg2

∀ g1, g2, g3 ∈
[0, G− 1] ∪ {∗} with g1 6= g2 6= g3 6= g1 andβ∗ = ∗ [10].

The product form is easily verified in the initial class, where the
times-to-fire of all enabled transitions are independent random vari-
ables distributed according to their respective static density func-
tions, as if they were newly-enabled. We will illustrate that the
property is maintained in all the successor classes.

3.3 Successor detection
The firing of a transition, say a general transitiontβ0 , is apossible
outcoming eventfrom a classΣ = 〈m,Dτ , fτ ()〉 iff tβ0 is pro-
gressing inΣ andDτ accepts solutions such thattβ0 has a time-
to-fire not higher than that of any other enabled transition. This
occurs iff there is a non-empty set of solutions for therestricted

firing domainDtβ0
:

Dtβ0
= Dτ ∩ {(τβ0 ≤ τβg ) ∧ (τβ0 ≤ τγe),∀ g ∈ [1, G− 1],

∀ e ∈ [0, E − 1] . tβg andtγe are progressing inΣ}.
(6)

As in [11], [20], the probabilityµtβ0
that tβ0 is the outcoming

event from classΣ is the joint probability thatτ belongs toDtβ0

and tβ0 is selected in the random switch among all progressing
transitions that share the same time-to-fire oftβ0 . SinceF s

t () is
absolutely continuous∀ t ∈ T , the probability thattβ0 has the
same time-to-fire of any other progressing transition is equal to0.
Hence,µtβ0

is equal to the probability thatτ belongs toDtβ0
:

µtβ0
=

∫

Dtβ0

fτ (x)dx. (7)

3.4 Successor derivation
The steps of derivation of a successor class require a different de-
velopment depending on whether the firing transition is generally
distributed or exponentially distributed.

3.4.1 Firing of a general transition

Conditioning. The assumption that a general transitiontβ0 is
the next transition to fire conditionsτ and yields a new random
variableτa = 〈τ | (τβ0 ≤ τβi

) ∧ (τβ0 ≤ τγh), ∀ i ∈ [1, I − 1],
∀ h ∈ [0, H − 1]〉, whereβ0, ..., βI−1 andγ0, ..., γH−1 denote
the indexes of generally distributed transitions and exponentially
distributed transitions, respectively, that are progressing inΣ and
persistent inΣ′. The vectorτa is distributed over:

Dτa = D〈τG,τE〉 ∩ {(τβ0 ≤ τβi
) ∧ (τβ0 ≤ τγh),

∀ i ∈ [1, I − 1], ∀ h ∈ [0, H − 1]}
(8)

according to:

fτa(xG, xE) =
f〈τG,τE〉(xG, xE)

µtβ0

. (9)

In particular, if coefficientsB denote the maximum value attained
by the difference between any two generally distributed timers (in-
cluding the fictitious ground reference), the normal form ofDτa

can be represented as:

Dτa =























































































τa
βg1

− τa
βg2

≤ Bβg1βg2
(g1g2)

τa
βg1

− τa
∗ ≤ Bβg1∗ (g1∗)

τa
∗ − τa

βg1
≤ B∗βg1

(∗g1)

τa
βg1

− τa
β0

≤ Bβg1β0 (g10)

τa
β0

− τa
βg1

≤ Bβ0βg1
(0g1)

τa
∗ − τa

γh
≤ B∗β0 (∗h)

τa
∗ − τa

γk
≤ 0 (∗k)

τa
β0

− τa
γh

≤ 0 (0h)

∀ g1, g2 ∈ [1, G− 1], g1 6= g2,
∀ h ∈ [0, H − 1],
∀ k ∈ [H,E − 1],

(10)

where: the maximum value attained byτa
∗ − τa

γh
is equal toB∗β0

sinceτa
∗ − τa

γh
= τa

∗ − τa
β0

+ τa
β0

− τa
γh

≤ min{0, B∗β0} and
min{0, B∗β0} = B∗β0 , beingB∗β0 ≤ 0; the maximum values
attained byτa

∗ − τa
γk

andτa
γk

− τa
βg1

are equal to0 and∞, respec-
tively, since constraints added byDτa to Dτ do not perturb coef-
ficients related to suspended exponentially distributed transitions;
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and, constraints onτβg1
− τγh are not made explicit since they are

directly implied by constraints(g10) and(0h), i.e.,τβg1
− τγh =

τβg1
− τa

β0
+ τa

β0
− τγh ≤ Bβg1β0 .

Time advancement.At the firing of tβ0 , times-to-fire of pro-
gressing transitions are reduced by the value ofτa

β0
while those of

suspended transitions remain unchanged. This yields a new random
variableτ b = 〈τa

β0
, τa

β1
−τa

β0
, ..., τa

βI−1
−τa

β0
, τa

βI
, ..., τa

βG−1
, τa

γ0−

τa
β0
, ..., τa

γH−1
−τa

β0
, τa

γH
..., τγE−1〉 distributed over a domainDτb

that can be represented as the product of two factors separating gen-
erally distributed and exponential timers:

Dτb = Dτb
G
×Dτb

E
, (11)

whereDτb
G

is made by DBM constraints andDτb
E
= [0,∞)E.

The density functionfτb() of τ b is obtained fromfτa() by shifting
the components of progressing transitions byxβ0 :

fτb(xG, xE) = fτa(xβ0 , xβ1 + xβ0 , ..., xβI−1 + xβ0 , xβI
,

..., xβG−1 , xγ0 + xβ0 , ..., xγH−1 + xβ0 , xγH , ..., xγE )

=
fτG

(xβ0 , xβ1 + xβ0 , ..., xβI−1 + xβ0 , xβI
, ..., xβG−1)

µtβ0

·
H−1
∏

h=0

e−λγh
xβ0 ·

E−1
∏

e=0

λγee
−λγexγe .

(12)
According to this, the density function ofτ b can be expressed as
the product of two factorsfτb(xG, xE) = fτb

G
(xG) · fτb

E
(xE)

separating generally distributed and exponential timers:

fτb
G
(xG) =

H−1
∏

h=0

e−λγh
xβ0

·
fτG

(xβ0 , xβ1 + xβ0 , ..., xβI−1 + xβ0 , xβI
, ..., xβG−1)

µtβ0

,

fτb
E
(xE) =

E−1
∏

e=0

λγee
−λγexγe .

(13)

The time-to-fire oftβ0 is then eliminated fromτ b, yielding a new
random variableτc = 〈τ b

β1
, ...τ b

βG−1
, τ b

γ0
, ..., τ b

γE−1
〉, which is

distributed over the projection ofDτb that eliminatesτβ0 :

Dτc = Dτb ↓β0=
(

Dτb
G
↓β0

)

×Dτb
E

(14)

according to:

fτc (xc
G, xE) =

∫

D
τb

fτb(xG, xE) dxβ0

=

∫

D
β0

τb
G

(xc
G
)

fτb
G
(xG) dxβ0 · fτb

E
(xE),

(15)

wherexc
G = 〈xβ1 , ..., xβG−1〉; Dτb ↓β0

def
= {xc

G ∈ R
G−1 | ∃ xβ0 ∈

R such that〈xβ0 , x
c
G〉 ∈ Dτb}; and, the supportDβ0

τb
G

(xc
G)

def
=

{xβ0 ∈ R | ∃ xc
G ∈ R

G−1 such that〈xβ0 , x
c
G〉 ∈ Dτb} repre-

sents all possible values ofτβ0 . According to this, the subvector
τ c
G = 〈τ c

β1
, ..., τ c

βG−1
〉 is distributed overDτc

G
= Dτb

G
↓β0 ac-

cording tofτc
G
(xc

G) =
∫

D
β0

τb
G

(xc
G
)
fτb

G
(xG) dxβ0 and the subvec-

tor τ c
E = 〈τ c

γ0 , ..., τ
c
γE−1

〉 is distributed overDτc
E

= [0,∞)E

according tofτc
E
(xE) = fτb

E
(xE), with Dτc = Dτc

G
×Dτc

E
and

fτc(x) = fτc
G
(xg) · fτc

E
(xE).

Disabling. Whentβ0 fires, one or more transitions may be dis-
abled. If a generally distributed transition, saytβG−1 , is disabled,
its elimination yields a new vector of times-to-fireτd = 〈τ c

β1
, ...,

τ c
βG−2

, τc
E〉, distributed over:

Dτd = (Dτc
G
↓βG−1)×Dτc

E
(16)

according to:

fτd(xd
G, x

c
E) =

∫

Dτc

fτc
G
(xc

G)dxβG−1 · fτc
E
(xE), (17)

wherexd
G = 〈xβ1 , ..., xβG−2〉. In a similar manner, the elimina-

tion of an exponentially distributed transition, saytγE−1 , yields
the new random variableτd = 〈τc

G, τ
c
γ0 , ..., τ

c
γE−2

〉, distributed

over Dτd = Dτc
G

× [0,∞)E−2 according tofτd(xc
G, x

d
E) =

fτc(xc
G) ·

∏E−2
e=0 λγee

−λγexγe , wherexd
E = 〈xγ0 , ..., xγE−2〉.

When multiple generally distributed or exponentially distributed
transitions are disabled, the step is repeated for each of them.

As in [20], the step of disabling may partition the subdomain of
generally distributed timers into a finite set of DBM subdomains,
over each of which the state density function accepts an analytic
representation. To resort to the representation of Eq.(5), the state
density function is approximated through Bernstein Polynomials
[18], [23] as it will be illustrated in Section 3.5.

Newly enabling.If transitionstδ0 , ..., tδN−1 are newly enabled,
the vectorτ ′ = 〈τd, τδ0 , ..., τδN−1〉 of times-to-fire of transitions
enabled in the destination classΣ′ is distributed over:

D′ = Dτd ×
N−1
∏

i=0

[EFT s(tδi), LFT s(tδi)] (18)

according to:

fτ ′(xd
G, x

d
E, xδ0 , ..., xδN−1) = fτd(xd

G, x
d
E) ·

N−1
∏

i=0

fs
tδi

(xδi),

(19)
preserving the product decomposition of state density functions.
Note that this is the step where the form of state density functions
is determined by static density functions associated with transitions
in the model.

3.4.2 Firing of an exponential transition
The assumption that the firing transition is an exponential transi-
tion, saytγ0 , gives rise to two subcases.

If no general transition is progressing, then the steps of condition-
ing and time advancement eliminate the factor pertaining totγ0
from both the class domain and the state density function, without
involving the other persistent transitions. In fact, the assumption
thattγ0 is the next transition to fire conditions the vector of times-
to-fire τ and yields a new random variableτa = 〈τG, τE | τγ0 ≤
τγh , ∀ h ∈ [1,H−1]〉, distributed overDτa = (DτG

×[0,∞)E)∩
{τγ0 ≤ τγh , ∀ h ∈ [1, H − 1]} according tofτa(xG, xE) =

fτG
(xG)·fτE

(xE)/µγ0 = fτG
(xG)·

∏E−1
e=0 λγee

−λγexγe ·Λ/λγ0 ,
whereΛ =

∑H−1
h=0 λγh . The step of time advancement yields a
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new vector of times-to-fireτ b = 〈τa
βI
, ..., τa

βG−1
, τa

γ0 , τ
a
γ1−τa

γ0 , ...,

τa
γH−1

− τa
γ0 , τ

a
γH

, ..., τa
γE−1

〉, distributed overDτb = Dτa ac-
cording tofτb(xG, xE) = fτa(xG, xγ0 , xγ1 + xγ0 , ..., xγH−1 +

xγ0 , xγH , ..., xγE−1) = fτG
(xG) · Λ / λγ0 · λγ0e

−Λxγ0

·
∏E−1

e=1 λγee
−λγexγe = fτG

(xG)·Λ·e
−Λxγ0 ·

∏E−1
e=1 λγee

−λγexγe .
The projection that eliminatestγ0 yields the vector of times-to-
fire τc = 〈τ b

βI
, ..., τ b

βG−1
, τ b

γ1 , ..., τ
b
γE−1

〉, distributed overDτc =

DτG
× [0,∞)E−1 according to fτc(xG, xγ1 , ..., xγE−1) =

fτG
(xG) ·

∏E−1
e=1 λγee

−λγexγe . Finally, the elimination of dis-
abled transitions and the addition of newly enabled transitions is
performed as described in Section 3.4.1.

If at least a general transition is progressing, then the condition-
ing of the vector of times-to-fireτ yields a new random variable
τa = 〈τG, τE | (τγ0 ≤ τβi

) ∧ (τγ0 ≤ τγh),∀ i ∈ [0, I −
1], ∀ h ∈ [1, H−1]〉, distributed overDτa = D〈τG,τE〉∩{(τγ0 ≤
τβi

) ∧ (τγ0 ≤ τγh), ∀ i ∈ [0, I − 1], ∀ h ∈ [1, H − 1]} accord-
ing to fτa(xG, xE) = f〈τG,τE〉(xG, xE)/µtγ0

. In so doing,τγ0
turns out to be distributed over[0,mini∈[0,H−1] Bβi∗] according to
fτa

γ0
(xγ0) = λγ0e

−λγ0xγ0 /µtγ0
and, thus,tγ0 can be regarded as

a general transition. According to this,tγ0 is inserted in the set of
general transitions and successor derivation proceeds from the step
of time advancement described in Section 3.4.1 through the steps
of disabling and newly enabling.

3.5 Successor approximation
The step of time advancement described in Section 3.4.1 subtends
notable complexities both in the derivation of the firing domain and
in the computation of the state density function. We characterize
here the complexities of exact analysis and propose an imprecise
approach that approximates both domains and state density func-
tions, obtaining a relevant gain in computational complexity with-
out significantly affecting the accuracy of performance measures.

3.5.1 Approximation of class domains
In the derivation of the timing domain, the elimination ofτβ0 from
Dτb

G
yields a domainDτc

G
[14] which includes constraints in DBM

form but also linear constraints with more than two unknown val-
ues. According to this,Dτc

G
is not in DBM form and, thus, the

space of DBM firing domains is not closed with respect to the suc-
cession relation induced by the semantics of spTPNs. In particular,
Dτc

G
takes the form of a linear convex polyhedron which gets more

and more complex as the succession transformation is repeatedly
applied, yielding a number of inequalities which is exponential in
the number of generally distributed enabled transitions. According
to this, the derivation of the exact form ofDτc

G
becomes a general

linear programming problem [13], which can be solved with at least
polynomial complexity in the number of domain inequalities and,
thus, exponential complexity in the number of generally distributed
enabled transitions.

We overcome space and time complexities of representation and
manipulation of polyhedral constraints by replacing the subdomain
of general transitions with its approximatioñDτc

G
that discards in-

equalities that are not in DBM form [14]. Since all inequalities of
D̃τc

G
are included inDτc

G
, D̃τc

G
admits any solution admitted by

Dτc
G

plus additional solutions that would not be feasible for the ex-
act representation of the firing domain, which we callfalse behav-
iors. In [14], D̃τc

G
is proven to be the tightest possible embedding

DBM of Dτc
G

and an algorithm is provided for the clean-up of false
behaviors and the tight estimation of the timing profile of feasible

behaviors. In particular,Dτc
G

is actually a linear convex polyhe-
dron iff the parent class includes both progressing and suspended
transitions that are persistent after the firing of a transition taking
a non-deterministic time-to-fire; otherwise, it preserves the DBM
representation and does not require any approximation. This en-
ables straightforward identification of classes where approximation
errors are actually introduced and supports techniques that leverage
structural properties of a model to confine the effects of approxima-
tion.

3.5.2 Approximation of state density functions
In the derivation of the state density function, the supportDβ0

τb
G

(xc
G)

of Eq.(15) is an intervalDβ0

τb
G

(xc
G) = [Eβ0

τb
G

(xc
G), L

β0

τb
G

(xc
G)], with:

Eβ0

τb
G

(xc
G) = max

i ∈ [1, I − 1]
x ∈ [I, G − 1]

{−B∗β0 ,−Bβxβi
+ xβx − xβi

,
−B∗βi

− xβi
,−Bβxβ0 + xβx}

(a)

Lβ0

τb
G

(xc
G) = min

i ∈ [1, I − 1]
x ∈ [I, G − 1]

{Bβ0∗, Bβiβx + xβx − xβi
,

Bβi∗ − xβi
, Bβ0βx + xβx}.

(b)

(20)
Eq.(20) partitionsDτc

G
into a finite set of polyhedral subdomains

within each of whichEβ0

τb
G

() andLβ0

τb
G

() accept analytic represen-

tation. The density functionfτc
G
() accepts a continuous piecewise

representation over this partition, since static density functions of
transitions in the model are continuous functions and the steps of
conditioning and time-advancement preserve the property of con-
tinuity of state density functions. The derivation of the exact rep-
resentation offτc

G
() thus requires exponential complexity in the

number of generally distributed enabled transitions.

Theorem 3.1. Integration boundsEβ0

τb
G

(xc
G) andLβ0

τb
G

(xc
G) are

piecewise continuous functions with analytic representation over
each element of a partition ofDτc

G
in polyhedral subdomainsRixjy ,

with i, j ∈ [0, I−1] andx, y ∈ [I,G−1]. Within each subdomain
Rixjy , the two integration bounds are either constants, or mono-
variate linear functions of a single component of the vectorxc

G, or
bivariate linear functions of two components of the vectorxc

G. In
particular, if xc

G ∈ Rixjy , then:

Eβ0

τb
G

(xc
G) =















−B∗β0

−B∗βi
− xβi

−Bβxβ0 + xβx

−Bβxβi
+ xβx − xβi

iff i = 0, x = I
iff i > 0, x = I
iff i = 0, x > I
iff i > 0, x > I

Lβ0

τb
G

(xc
G) =















Bβ0∗

Bβj∗ − xβj

Bβ0βy + xβy

Bβjβy + xβy − xβj

iff j = 0, y = I
iff j > 0, y = I
iff j = 0, y > I
iff j > 0, y > I

(21)

Note that, when domainDτc
G

maintains the DBM representation,

the integration boundsEβ0

τb
G

(xG) andLβ0

τb
G

(xG) become:

Eβ0

τb
G

(xG) = max
i∈[1,G−1]

{−B∗β0 ,−B∗βi
− xβi

},

Lβ0

τb
G

(xG) = min
i∈[1,G−1]

{Bβ0∗, Bβi∗ − xβi
},

(22)

which partitionsDτc
G

into a finite set of DBM subdomainsRij

with i, j ∈ [1, G− 1], within each of whichEβ0

τb
G

() andLβ0

τb
G

() are
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either constants or monovariate functions of a single component of
the vectorxc

G [20]. In particular, ifxc
G ∈ Rij , then:

Eβ0

τb
G

(xG) =

{

−B∗0

−B0i + xi

iff i = 0
iff i > 0

Lβ0

τb
G

(xG) =

{

B0∗

Bj0 + xj

iff j = 0
iff j > 0

(23)

As a consequence of this, the density functionfτc
G
() accepts piece-

wise representation over a partition ofDτc
G

in DBM subdomains.

We cope with the complexity of derivation of state density func-
tions by employing global approximant functions. Sincefτc

G
() is

a continuous function over the bounded and thus compact support
Dτc

G
, according to Weierstrass theoremfτc

G
() is bounded and can

be arbitrarily well approximated by polynomials.

We employ multivariate Bernstein Polynomials [18], [23], which
were successfully used in the approximation of state density func-
tions of models that do not encompass preemptive behavior [20].
Bernstein Polynomials approximate a function defined over a com-
pact hyper-rectangle by weighting a kernel of multivariate mono-
mials according to the samples of the approximated function taken
over a regular grid. Ifbij denote the coefficients of the normal
form of D̃τc

G
, then the Bernstein approximant̃fτc

G
() of fτc

G
() that

is defined over the minimum embedding hyper-rectangleRτc
G

=
∏G−1

g=1 [−b∗βg , bβg∗] of D̃τc
G

and takesKg samples for each vari-
ablexβg is:

f̃τc
G
(xc

G) =
∑

kg ∈ [0, Kg − 1]

g ∈ [1, G − 1]

fτc
G

(

− b∗β1 +
k1(bβ1∗ − (−b∗β1))

K1 − 1
, ...,

− b∗βG−1 +
kG−1(bβG−1∗ − (−b∗βG−1))

KG−1 − 1

)

·
G−1
∏

g=1

(

Kg − 1

kg

)

(xβg − (−b∗βg ))
kg (bβg∗ − xβg )

Kg−1−kg

(bβg∗ − (−b∗βg ))
Kg−1

,

(24)
where

∑

kg∈[0,Kg−1], g∈[1,G−1] denotes the multiple summation
∑K1−1

k1=0

∑K2−1
k2=0 ...

∑KG−1−1

kG−1=0 andfτc
G
() is extended over the en-

tire hyper-rectangle by assigning null value to samples belonging
toRτc

G
but not toDτc

G
, i.e.,fτc

G
(y) = 0 if y ∈ Rτc

G
\Dτc

G
. Note

that samples offτc
G
() belonging toDτc

G
are derived in a straight-

forward manner by resolving Eq.(15), since, for a giveny ∈ Dτc
G

,
the integrand functionfτb

G
(xβ0 , y) is a monovariate function of

xβ0 and the integration boundsEβ0

τb
G

(y) and Lβ0

τb
G

(y) are constant

values (obtained as the maximum and the minimum value of the
two sets defined in Eq.(20), respectively, whose elements are all
constant for assigned values of variablesxβ1 , ..., xβG−1 ).

On the one hand, approximation based on Bernstein Polynomials
exhibits a set of favorable properties that nicely fit the needs of our
application context: the approximant isglobal, in the sense that it
has analytic representation over the entire domain of the approxi-
mated function; the approximant ispositive, since all polynomials
in the kernel and the samples of state density functions are posi-
tive; the approximant issimple to derive, since it is obtained in a
straightforward manner from the the samples of the approximated
function; and, the approximantconvergesuniformly to the approxi-
mated function as the number of samples is increased, provided that
the approximated function is continuous (which is the case of our
state density functions), with an approximation error bounded by a

Lipschitz inequality [18]. On the other hand, Bernstein Polynomi-
als do not preserve the integral of the approximated function. For
this reason, the approximant function is normalized with respect to
its own integral over̃Dτc

G
to guarantee unit-measure.

3.6 Equivalence between stochastic classes
As in [20], the test of equivalence between state density functions
is relaxed by assuming that two classesΣ = 〈m,Dτ , fτ ()〉 and
Σ′ = 〈m′, D′

τ ′ , f ′
τ ′()〉, with fτ = fτG

·fτE
andf ′

τ ′ = f ′
τ ′
G
·f ′

τ ′
E

,
are equivalent as soon asi) they have the same underling state class
(i.e., m = m′ andDτ = D′

τ ′ ); ii) they have the same rate of
exponential transitions (i.e.,λγi = λ′

γi
∀ i ∈ [0, E − 1]); and

iii) the distance betweenfτG
() andf ′

τ ′
G
() measured according to

a metrics|| · ||d is below a given threshold of toleranceδ (i.e.,
||fτG

()−f ′
τ ′
G
()||d = 1

DτG

∫

DτG

|fτG
(xG)−f ′

τ ′
G
(xG)|dxG ≤ δ).

The metrics|| · ||d is approximated in discrete form by evaluating it
in correspondence with samples taken over the regular grid of Bern-
stein approximants and taking into account border effects [20]:

||fτ ()||d ≃

∑

0≤kg≤Kg−1

g∈[0,G−1]

A(k0, ..., kG−1) ·

∣

∣

∣

∣

fτ

(

k0
K0

, ...,
kG−1

KG−1

)∣

∣

∣

∣

∑

0≤kg≤Kg−1

g∈[0,G−1]

A(k0, ..., kG−1)

(25)

whereA(k0, ..., kG−1) = 1/2border(k0,...,kG−1) andborder(k0, ...,
kG−1) denotes the number of elements of〈k0, ..., kG−1〉 that are
equal to 0 orKg .

4. COMPUTATIONAL EXPERIENCE
The accuracy maintained in the enumeration of the stochastic class
graph was evaluated by estimating the impact of errors due to the
approximation of domains and state density functions, respectively.
On the one hand, the error due to the replacement of polyhedral
subdomains of general transitions with their tightest embedding
DBM was estimated through the portion of points over a regular
grid that belong to the DBM zone but not to the polyhedron, which
comprises a qualitative measure of false behaviors introduced in
the approximation of domains. Detected false behaviors were then
weighted according to the samples of the approximated state den-
sity function taken over the grid, yielding a quantitative measure of
false behaviors introduced in the approximation of domains. We
derived the number of classes including false behaviors, together
with the average and the maximum values of the percentage and the
probability of false behaviors in one of these classes. On the other
hand, the error due to the approximation of the factor of state den-
sity functions associated with general transitions was evaluated by
estimating the distance between approximated functions and their
approximant functions through the metrics||.||d. We derived the
number of classes with non-null d-distance together with the av-
erage and the maximum value of the d-distance in one of these
classes, both after the step of time-advancement and after the step
of disabling. All accuracy metrics were evaluated over a regular
grid that takes10 samples for each variable associated with a gen-
eral transition.

The overall approach was then validated by evaluating steady state
probabilities of reachable markings in the Discrete Time Markov
Chain embedded in the stochastic class graph [11], [20] and by
comparing them against simulation results. In particular, we com-
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pared the overall fit, together with the average and maximum dif-
ference in the probability of the same marking. Both analysis and
simulation results were obtained through a preliminary implemen-
tation in the Oris Tool [15].

In Sects.4.1 and 4.2, we discuss the application of approximated
analysis on two examples: the former includes a low number of
markings but is still sufficient to illustrate the complexities of the
approach, while the latter is a model of notable complexity.

4.1 The M/G/2/3/3 queue
Fig. 1 shows the model of an M/G/2/3/3 queue. The system is a
closed queue with3 customers and2 servers: transitionst10, t20,
andt30 model the arrivals of customer1, 2, and3, respectively, and
have exponentially distributed firing times with rate0.003; transi-
tionst11, t21, andt31 represent the completion of jobs of customer
1, 2, and3, respectively, by server1, 1, and2, respectively, and they
have uniformly distributed firing times on the interval[100, 200].
The queue has a preemptive service in such a way that a job of cus-
tomer2 is preempted as soon as a new job of customer1 eventually
arrives at the server, and it is resumed as soon as the server becomes
available again, i.e., the service time of the recovered job is equal
to the residual service time of the preempted job. This is obtained
by associatingt10 andt20 with the same resource request, i.e.,t10
andt20 require resourcer1, but with different priority levels, i.e.,
t10 andt20 have priority level1 and2, respectively.

Figure 1: An spTPN representing an M/G/2/3/3 queue.

In general, the semantics of spTPNs combines thePreemptive Re-
peat Different(PRD) and thePreemptive Resume(PRs) policies of
[3], [6]: when a transition is disabled by the lack of a token in any
input place, its time-to-fire is reset; when a transition is suspended
by the lack of any required resource, its time-to-fire is maintained
and resumed when the transition is assigned the resource again. In
the formulation of [3], [6], instead, the clock of a transition dis-
abled by the lack of a token is reset or maintained if the transition
is associated with PRD or PRs policy, respectively. With respect to
the model of [3], [6], spTPNs make the progress of times to fire de-
pendent on both the presence of tokens into input places and on the
availability of preemptable resources, enabling separate represen-
tation of inter-process communication mechanisms from real-time
concurrency on resources. This impacts on modeling convenience,
facilitating the representation of task-sets [8], [19] as usually en-
countered in the practice of real-time systems. To illustrate the
concept and facilitate comparison, Fig. 2 shows the model of the
M/G/2/3/3 queue using the semantics and the graphical notation
from [4], [7]. Note that in this case the inhibitor arc from placep11
to transitiont21 accounts for the preemption. Also note that the ex-

ample extends the case of the preemptive M/D/1/2/2 queue of [6]
in two aspects: DET timers are replaced with a GEN distribution
with non-pointlike support; the number of servers and customers is
extended to 2 and 3, respectively, so as to stress the complexity of
the analysis by including classes with polyhedral domain.

p10 p11

p20 p21

p30 p31

t10

[0,∞]

t11

[100,200]

t20

[0,∞]

t21

[100,200]

t30

[0,∞]

t31

[100,200]

(prs) (prs)

(prs) (prs)

(prs) (prs)

Figure 2: The M/G/2/3/3 queue of Fig. 1 represented according
to the formulation of [3].

Approximated analysis with thresholdδ equal to0.0001 and Bern-
stein degree equal to4 enumerates68 stochastic classes, covered
by 8 markings, in nearly10 seconds. Approximation of timing
domains may affect any class wheret10, t20, and t30 are con-
currently enabled (sincet10 andt30 are progressing, whilet20 is
suspended) and, in particular, this occurs in3 classes, as shown in
Table 1. Although the portion of false behaviors in any of these
classes seems to be relevant, with average and maximum percent-
age equal to17.01 % and25.44 %, respectively, their probability is
extremely low, with average and maximum values equal to0.0124
and0.0180, respectively.

Metrics on domains average max # classes

% false behaviors 17.01 % 25.44 %
3

prob. false behaviors 0.0124 0.0180

Table 1: M/G/2/3/3 queue: Errors due to the approximation of
class domains.

Approximation of state density functions affects a higher number
of classes, since it may be applied both at the end of time advance-
ment, when the state density function accepts a piecewise repre-
sentation over a partition in polyhedral subdomains, and at the end
of disabling, when the state density function accepts a piecewise
representation over a partition in DBM subdomains. As shown in
Table 2, in our example, state density functions are approximated
after the steps of time advancement and disabling in36 and 30
classes, respectively, yielding a d-norm distance with average value
of 7.7 · 10−7 and4.487 · 10−4, respectively, and maximum value
of 1.62 · 10−5 and1.9278 · 10−3, respectively.

Fig. 3 compares steady state probabilities of reachable marking ob-
tained by approximated analysis with simulation results obtained
after200000 firings. The overall fit together with average and max-
imum error, equal to0.00252 and0.00510, respectively, evidence
that analysis results agree with simulation results.
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Metrics on densities average max # classes

d-norm distance
0.0000077 0.0000162 36

(time advancement)
d-norm distance

0.0004487 0.0019278 30
(disabling)

Table 2: M/G/2/3/3 queue: Errors due to the approximation of
state density functions.
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Figure 3: M/G/2/3/3 queue: Measures of steady state marking
probabilities obtained by simulation (with 200000 firings) and
approximated analysis (with thresholdδ = 0.0001 and Bern-
stein degree4).

4.2 A complex example
Fig. 4 depicts a variant of the Three-Tasks model introduced in [20],
calledThree-Synchronizing-Tasks, which represents three concur-
rent tasks that perform three computations at each activation and
share three mutually exclusive resources. The three tasks are made
by transitionst1x, t2x, andt3x, respectively: transitionstx0model
tasks arrival; transitionstx2, tx3 andtx5 represent three compu-
tations performed at each task activation; transitionstx1 andtx4
model the acquisition of a mutually exclusive resource which is
necessary to perform the subsequent computationstx2 and tx5,
respectively. In particular, these mutually exclusive resources are
represented by placesR12, R23, andR13. Times-to-fire of transi-
tionstx0 are exponentially distributed over[0,∞] with rate0.003;
times-to-fire of transitionstx1 and tx4 are expolynomially dis-
tributed over[0, 100] according tof(x) = k x e−0.003x ; times-
to-fire of transitionstx2 and tx5 are uniformly distributed over
[200, 400]; and, time-to-fire of transitionstx3 are uniformly dis-
tributed over[100, 200]. The first and the third task require re-
sourcer1 with priority level 1 and2, respectively; the second task
requires resourcer2 with priority level1; all tasks require resource
r3 whenever they need to access one of the three mutually exclu-
sive resourcesR12, R23, andR13, raising their own priority to the
highest priority level of any task that may access the resource.

Approximated analysis enumerates537 stochastic classes, covered
by 180 markings, in nearly2 minutes. Approximation of domains
affects14 classes, as shown in Table 3: also in this case, although
the estimated average and maximum portion of false behaviors in
any of these classes is a notable quantity, equal to26.14 % and

Figure 4: Three-Synchronizing-Tasks model: An spTPN model
representing three recurrent tasks sharing three resources.

47.00 %, respectively, their probability is quite low and, thus, does
not impair performance measures on the model.

Metrics on domains average max # classes

% false behaviors 26.14 % 47.00 %
14

prob. false behaviors 0.0240 0.0512

Table 3: Three-Synchronizing-Tasks model: Errors due to the
approximation of class domains.

As illustrated in Table 4, approximation of state density functions
affects a consistent number of classes (i.e.,201 after time advance-
ment and149 after disabling), yielding average and maximum er-
rors under acceptable limits (5.7·10−6 and3.09·10−5 , 3.376·10−4

and1.9885 · 10−3, for time advancement and disabling steps, re-
spectively).

Metrics on densities average max # classes

d-norm distance
0.0000057 0.0000309 201

(time advancement)
d-norm distance

0.0003376 0.0019885 149
(disabling)

Table 4: Three-Synchronizing-Tasks model: Errors due to the
approximation of state density functions.

Fig. 5 reports results obtained on steady state marking probabili-
ties, evidencing acceptable errors with respect to simulation results,
with average and maximum error equal to0.00023 and0.00211,
respectively.

Experiments were repeated with different values of the approxima-
tion thresholdδ (i.e., 0.001 and 0.00001) and the Bernstein de-
gree (i.e.,3 and5). Approximated analysis is substantially insensi-
tive to the threshold and, instead, yields more accurate quantitative
measures as the Bernstein degree increases. In particular, with de-
gree3: average and maximum probability of false behaviors are
equal to0.0329 and0.0649, respectively; average and maximum
d-norm distance after time-advancement are equal to0.0000066
and0.0000343, respectively; average and maximum d-norm dis-
tance after disabling are equal to0.0004057 and0.0019314, re-
spectively. With degree5: average and maximum probability of
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Figure 5: Three-Tasks model: Measures of steady state mark-
ing probabilities obtained by simulation (with 200000 firings)
and approximated analysis (with thresholdδ = 0.0001 and
Bernstein degree4).

false behaviors are equal to0.0179 and0.0413, respectively; av-
erage and maximum d-norm distance after time-advancement are
equal to0.0000050 and0.0000286, respectively; average and max-
imum d-norm distance after disabling are equal to0.00029023 and
0.0013614, respectively.

5. CONCLUSIONS
We proposed an analytical approach for quantitative evaluation of
systems with multiple concurrently enabled GEN timers running
under fixed-priority preemptive scheduling. The approach extends
the theory of stochastic state classes so as to deal with models that
combine Preemptive Repeat Different (PRD) and Preemptive Re-
sume (PRs) policies. The expressive extension exacerbates the
complexity of analysis, as it requires to deal with timer vectors
distributed in piecewise form over linear convex polyhedra. To
reduce complexity, the approach approximates exact distributions
with global Bernstein approximants supported over DBM zones.
Computational experience illustrates application on a relatively com-
plex model that combines usual patterns of real-time concurrency
and non-Markovian temporal parameters, showing that the approach
attains a significant reduction of complexity while suffering a lim-
ited impact on the accuracy of quantitative measures.

The representation of preemptive behavior is a relevant issue also
in non-deterministic analysis, where approximation seems to be the
only viable approach to manage this class of models as well. In
stochastic analysis, the problem becomes even more complex both
in the theory and in the practical implementation. However, quan-
titative measures also provide a notable leverage to restrain the im-
pact of approximation, since false behaviors are associated with a
measure of probability. Experimental results show that while the
enlargement of domains can be significant, its impact on perfor-
mance measures is still limited.

Appendix: Theorem Proof
Theorem 3.1. Integration boundsEβ0

τb
G

(xc
G) and Lβ0

τb
G

(xc
G) are

piecewise continuous functions with analytic representation over
each element of a partition ofDτc

G
in polyhedral subdomainsRixjy ,

with i, j ∈ [0, I−1] andx, y ∈ [I,G−1]. Within each subdomain
Rixjy , the two integration bounds are either constants, or mono-
variate linear functions of a single component of the vectorxc

G, or
bivariate linear functions of two components of the vectorxc

G. In
particular, ifxc

G ∈ Rixjy , then:

Eβ0

τb
G

(xc
G) =















−B∗β0

−B∗βi
− xβi

−Bβxβ0 + xβx

−Bβxβi
+ xβx − xβi

iff i = 0, x = I
iff i > 0, x = I
iff i = 0, x > I
iff i > 0, x > I

Lβ0

τb
G

(xc
G) =















Bβ0∗

Bβj∗ − xβj

Bβ0βy + xβy

Bβjβy + xβy − xβj

iff j = 0, y = I
iff j > 0, y = I
iff j = 0, y > I
iff j > 0, y > I

(26)

PROOF. Let {R̄ix} with i ∈ [0, I − 1] andx ∈ [I,G − 1] be
subsets ofDτc

G
defined as:

R̄0I
def
= Dτc

G

⋂

{x | xβi
≤ B∗βi

+B∗β0 ∀ i ∈ [1, I − 1]
∧ − xβx ≤ B∗β0 −Bβxβ0 ∀ x ∈ [I,G− 1]
∧ xβi

− xβx ≤ B∗β0 +Bβxβi

∀ i ∈ [1, I − 1], ∀ x ∈ [I,G − 1]},

R̄iI
def
= Dτc

G

⋂

{x | − xβi
≤ B∗βi

−B∗β0

∧ xβj
− xβi

≤ B∗βi
−B∗βj

∀ j ∈ [1, I − 1] . j 6= i
∧ − xβi

− xβx ≤ B∗βi
−Bβxβ0 ∀ x ∈ [I,G − 1]

∧ xβi
+ xβj

− xβx ≤ B∗βi
−Bβxβj

∀ j ∈ [1, I − 1] . j 6= i, ∀ x ∈ [I,G− 1]},

R̄0x
def
= Dτc

G

⋂

{x | xβx ≤ Bβxβ0 −B∗β0

∧ xβx + xβi
≤ Bβxβ0 −B∗βi

∀ i ∈ [1, G− 1] . i 6= j
∧ xβx − xβy ≤ Bβxβ0 −Bβyβ0 ∀ y ∈ [I,G− 1] . y 6= x
∧ xβx − xβy + xβi

≤ Bβxβ0 −Bβyβi

∀ i ∈ [1, H − 1], ∀ y ∈ [I,G − 1] . y 6= x},

R̄ix
def
= Dτc

G

⋂

{x | xβx − xβi
≤ Bβxβi

−B∗β0

∧ xβx − xβi
+ xβj

≤ Bβxβi
−Bβ∗j

∀ j ∈ [I,G− 1] . j 6= i
∧ xβx − xβi

− xβy ≤ Bβxβi
−Bβyβ0

∀ y ∈ [I,G− 1] . y 6= x
∧ xβx − xβi

− xβy + xβj
≤ Bβxβi

−Bβyβj

∀ j ∈ [1, I − 1] . j 6= i, ∀ y ∈ [I,G− 1] . y 6= x}.
(27)
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According to Eq.(20-a):

Eβ0

τb
G

(x) =















−B∗β0

−B∗βi
− xβi

−Bβxβ0 + xβx

−Bβxβi
+ xβx − xβi

iff x ∈ R̄0I

iff x ∈ R̄iI

iff x ∈ R̄0x

iff x ∈ R̄ix.

(28)

RegionsR̄ixjy are convex polyhedral zones, being the restriction of
a convex polyhedron through linear constraints that may not be in
DBM form; they are disjoint by construction; their union isDτc

G
;

and, within each of them,Eβ0

τb
G

(x) is either constant (i.e.,−B∗β0 ,

in R̄0I ), or a monovariate linear function (i.e.,−B∗βi
− xβi

or
xβx − Bβxβ0 , in R̄iI or R̄0x, respectively), or a bivariate linear
function (i.e.,xβx − Bβxβi

− xβi
, in R̄ix). In a similar manner,

Eq.(20-b) partitionsDτc
G

into a finite set of polyhedral subdomains
{R̄jy} with j ∈ [0, I−1] andy ∈ [I,G−1], within each of which
Lβ0

τb
G

(x) accepts analytic representation. The intersection of the

two partitions defines a set of polyhedral subdomainsRixjy with
i, j ∈ [0, I − 1] andx, y ∈ [I,G − 1], within each of which both
Eβ0

τb
G

(x) andLβ0

τb
G

(x) have analytic representation.

Given a pointx̂ at the border between two regions, sayR̄ix and
R̄jy , Eqs.(27) and (28) imply that:

x̂βx − x̂βi
−Bβxβi

= x̂βy − x̂βj
−Bβyβj

lim
x→x̂,x∈R̄ix

Eβ0

τb
G

(x) = lim
x→x̂

x̂βx −Bβxβi
− x̂βi

= x̂βy −Bβyβj
− x̂βj

lim
x→x̂,x∈R̄jy

Eβ0

τb
G

(x) = lim
x→x̂

x̂βy −Bβyβj
− x̂βj

= x̂βx −Bβxβi
− x̂βi

(29)

According to this,Eβ0

τb
G

(x) is continuous along subdomains borders

and, since it is analytic within each subdomainRixyj, it is a glob-
ally continuous function overDτc

G
. The same steps can be applied

to demonstrate thatLβ0

τb
G

(x) is a globally continuous function.
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