
Accurate and Efficient Simulation of Bandwidth
Dynamics for Peer-To-Peer Overlay Networks

Alexandros Gkogkas
Royal Institute of Tech. (KTH)

gkogkas@kth.se

Roberto Roverso
Royal Institute of Tech. (KTH)

Peerialism Inc.
roverso@kth.se

Seif Haridi
Royal Institute of Tech. (KTH)

haridi@kth.se

ABSTRACT
When evaluating Peer-to-Peer content distribution systems
by means of simulation, it is of vital importance to correctly
mimic the bandwidth dynamics behaviour of the underlying
network. In this paper, we propose a scalable and accurate
flow-level network simulation model based on an evolution
of the classical progressive filling algorithm which follows
the max-min fairness idea. We build on top of the cur-
rent state of the art by applying an optimization to reduce
the cost of each bandwidth allocation/deallocation opera-
tion on a node-based directed network model. Unlike other
works, our evaluation of the chosen approach focuses both
on efficiency and on accuracy. Our experiments show that,
in terms of scalability, our bandwidth allocation algorithm
outperforms existing directed models when simulating large-
scale structured overlay networks. In terms of accuracy we
show that allocation dynamics of our proposed solution fol-
low those of the NS-2 packet-level simulator by a small and
nearly constant offset for the same scenarios. To the best of
our knowledge, this is the first time that an accuracy study
has been conducted on an improvement of the classical pro-
gressive filling algorithm.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems, Modeling techniques; C.2.4 [Computer Commu-
nication Networks]: Distributed Systems, Distributed ap-
plications

General Terms
Network Simulation, Peer-to-Peer system evaluation and test-
ing

Keywords
Bandwidth Dynamics simulation, Flow-level simulation, Peer-
to-Peer systems, Progressive filling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
It is common for existing P2P networks to create complex

interactions between thousands of participant peers. Each
peer usually has a very high inbound and outbound con-
nection degree [1] [23] [21]. Connections are used either for
signalling or content propagation. In the latter case, each
peer implements intricate multiplexing strategies to speed
up transmission of large chunks of data [4], thus creating
complex effects on the underlying physical network which
translate into varying transmission delays and packet loss
at the receiving side.

In order to study the complex interactions between over-
lays and physical networks, a proper performance evalua-
tion technique is required. Currently, no consensus has been
reached in the scientific community on a reference P2P test-
ing platform [15]. It is of a common practice to test a P2P
application in a simulator before real deployment in order
to enable controlled testing and evaluation. However, ac-
curate network simulators can usually scale up only to a
limited number of simulated peers. This limitation makes
it impossible to capture the behaviour and issues of a larger
P2P real-word deployment, such as the effect of network
congestion on segments of the overlay network. In order to
achieve scalability, most of the existing P2P simulators ab-
stract away network interactions by modeling only the struc-
tural dynamics of the overlay network [2] [10] [19] [14] [20]
and thus totally ignoring the impact of the actual network
on application performance.

Packet-level network simulation allows for in-depth study
of the influence of the network characteristics and the lower
level protocols on the performance of a P2P system. The
trade-off for this detailed analysis comes in scalability: a
single transfer can generate hundreds of low-level protocol
packets. In a large and complex network characterised by
links of high bandwidth capacity and intense in-line traffic,
the sheer number of events needed to simulate the transfers
require a prohibitive amount of computational and mem-
ory resources. As a result, only small sized networks can
be simulated efficiently. A number of packet-level network
simulation frameworks has been conceived in the last decade
[17] [22], being NS-2 [18] the most prominent among them.
In turn, a number of P2P network simulators have been de-
veloped on top of NS-2, e.g. P2PSim [7] and NDP2PSim
[12].

Flow-level simulation focuses instead on a transfer as a
whole rather than individual packets, introducing a viable
trade-off between accuracy and scalability. A flow abstracts
away the small time scale rate variation of a packet sequence

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VALUETOOLS 2011, May 16-20, Paris, France
Copyright © 2011 ICST 978-1-936968-09-1
DOI 10.4108/icst.valuetools.2011.245721

352

with a constant rate allocated at the sender/receiver’s band-
width. The rate remains allocated for an amount of time
which corresponds to the duration of the flow, i.e. the sim-
ulated packet sequence transmission time. This approach
reduces drastically the number of events to be simulated.
The driving force behind the event creation in flow-level
simulation is the interaction between the flows, since an up-
load/download link might have many flows happening at
the same time. A new or completed flow might cause a
rate change on other flows competing for that same link’s
capacity. For instance, in order for a link to accommodate
an extra flow, bandwidth needs to be allocated to it. This
might lead to a decrease of the bandwidth rates of other
competing flows. Similarly, when a flow is completed, more
bandwidth becomes available for the other flows to share.
A flow rate change may also propagate further in the sim-
ulated network graph. This phenomenon is known as ”the
ripple effect” and has been observed in a number of studies
[11] [6] . The impact of the ripple effect on the scalability
of the model is directly dependent on the efficiency of the
bandwidth allocation algorithm.

In this paper we provide a description of the current state
of the art in flow-level network bandwidth simulation in Sec-
tion 2. Later we present a concise description of our con-
tribution in Section 3, before delving into the details of the
proposed model in Section 4. We then discuss the results
of the scalability and accuracy evaluation of our implemen-
tation in Section 5 and, finally, in Section 6, we draw our
conclusions and discuss future work.

2. RELATED WORK
Flow-level network simulators implement algorithms which

mimic the bandwidth dynamics happening in the transport
protocol layer used of the real network. Bertsekas and Gal-
lager [3] introduce the concept of max-min fairness for mod-
eling Additive-Increase Multiplicative-Decrease congestion
control protocols like TCP. Max-min fairness tries to max-
imize the bandwidth allocated to the flows with minimum
share thus guaranteeing that no flow can increase its rate at
the cost of a flow with a lower rate. In every network exists
a unique max-min fair bandwidth allocation and can be cal-
culated using the progressive filling algorithm [3]. The basic
idea behind this algorithm is to start from a situation where
all flow rates are zero and then progressively increment each
rate equally until reaching the link’s capacity, i.e. the sum of
all flow rates of a link equals its capacity. In this algorithm,
the network, including its internal structure, e.g. routers
and backbone links, is modelled as an undirected graph. A
recent accuracy study [5] showed that this approach offers a
good approximation of the actual network behaviour. Nev-
ertheless, having to simulate the flow interactions that take
place on the internal network links, magnifies the impact of
the ripple effect on the algorithm’s scalability by making the
simulation significantly slower.

In order to gain more scalability, the GPS P2P simula-
tor [24] uses a technique called minimum-share allocation,
defined in [8], which avoids the propagation of rate changes
through the network. Instead, only the flow rates of the di-
rectly affected nodes are updated, i.e. only the flow rates of
the uploading and downloading nodes of the flow triggering
the reallocation. Not considering the cross-traffic effects of
the flows obviously has a positive impact on the simulation
time but makes also the model highly inaccurate.

Narses [8] uses the same technique as GPS but it further
promotes scalability by ignoring the internal network topol-
ogy considering only the bandwidth capacity of the access
links of the participating peers. The result is what we call
an end-to-end network overlay where the backbone network
is completely abstracted away from the modeling and rate
changes happen between pairs of peers. This is a reasonable
abstraction if we consider that the bottlenecks on a P2P
network usually appear in the ”last mile” rather than the
Internet backbone. In doing so, the number of events simu-
lated is further reduced, however in this case the inaccuracy
remains since only the end-to-end effects are taken into ac-
count while the cascading effect on other nodes, as modelled
by max-min fair allocation, is completely overlooked.

There exists two bandwidth allocation algorithms in the
state of the art which apply the progressive filling idea on
end-to-end network models, thus keeping the advantages of
simulating only access links but still considering the effects
and propagation of rate changes throughout the peer inter-
connections. The first algorithm proposed by F. Lo Piccolo
et Al. [13] models the end-to-end network as an undirected
graph. In each iteration, the algorithm finds the bottleneck
nodes in the network, the nodes with the minimum fair
bandwidth share available to their flows. Then it proceeds
to allocate the calculated minimum fair share to their flows.
The algorithm iterates until all nodes are found saturated
or a rate is assigned to all their flows.

The main disadvantage of this node-based max-min fair
bandwidth allocation algorithm lies in the modeling of the
network as an undirected graph. In order to simulate a
network with separate upload and download capacities, two
node instances are required per actual network peer. The
memory footprint is therefore larger than the one needed to
model a direct network graph. Another weakness is that the
computational complexity of this approach depends directly
on the cardinality of the node set.

An alternative edge-based max-min bandwidth allocation
algorithm is given by Anh Tuan Nguyen et al. [16]. It
is an edge-based algorithm which uses a directed network
model, differently from the approaches we introduced till
now. In one iteration, the algorithm calculates the minimum
fair share of the two ends of every unassigned flow. Then,
on the same iteration and based on the previously calculated
shares, the algorithm finds the bottleneck nodes, derives the
flows’ rates and applies them. The algorithm iterates until
all flows have a rate assigned. It is important to underline
that during the second phase of each iteration, the algorithm
might find one or multiple bottleneck nodes, thus assigning
rates to the flows of multiple nodes at the same iteration.

This edge-based max-min fair bandwidth allocation al-
gorithm addresses the shortcomings of the undirected net-
work modeling. However, the algorithm performance’s de-
pendence on the edge-set size constitutes a major drawback,
since each iteration requires the calculation of the minimum
fair share for each unassigned flow. In addition, a further
iteration of the node set is required in order to find the sat-
urated nodes. As we will see, this hidden complexity makes
it unsuitable for simulating large networks with high adja-
cency.

It is common in large simulated networks for a new or
finished flow to only affect the rates of a subset of the exist-
ing network flows, as the propagation of a rate change does
not reach all nodes in the network but rather few of them.

353

Based on this observation, F. Lo Piccolo et Al. [13] par-
tially outline an affected subgraph discovery algorithm that
can be applied on an undirected network graph. Starting
from the end nodes of the flow triggering the reallocation,
the algorithm traverses the segment of the network graph
that is affected by the change. In fact, this is an attempt to
trace the aforementioned ripple effect. The traverse contin-
ues through affected flows/edges until all the affected net-
work subgraph is visited. The nodes reached by the traversal
are treated based on the parity of the hop distance (odd or
even) from any of the two root nodes, i.e. the initiators
of the allocation/deallocation. Depending on the parity, a
different subset of their flows is affected. The traverse con-
tinues until no new nodes are affected. Since a node can
be reached in an odd or even hop distance from a root, a
node can be visited maximum twice during a traverse. This
results in a linear complexity with respect to the node set
cardinality, assuming that a node is not reconsidered when
reached again in the same distance from a root.

Using this optimization algorithm before applying an undi-
rected node-based max-min fair bandwidth allocation algo-
rithm leads to a large performance gain. Unfortunately, F.
Lo Piccolo et Al. apply this only on an undirected net-
work model. Moreover, the authors provide only a sketch
of the affected subgraph idea rather than a state-complete
algorithm.

In general, the aforementioned works which propose an
improvement to the classical progressive filling focus their
evaluation of the algorithms on performance while completely
overlooking the accuracy of their approaches.

3. CONTRIBUTION
We propose a scalable and efficient flow-level simulator

which leverages the benefits of the affected subgraph opti-
mization on a directed network model. We give a state-
complete description of the subgraph optimization intro-
duced by F. Lo Piccolo et Al. and we evaluate its per-
formance gain when used in combination with our max-min
fair bandwidth allocation algorithm. The result is an algo-
rithm whose computational complexity is independent of the
edge set size. Experimental results show that our solution
constantly outperforms the edge-based algorithm proposed
by Anh Tuan Nguyen et al. for large-scale and structured
network overlays. Finally, we conduct a detailed accuracy
study where we compare the simulated transfer times of our
proposed solution with the ones obtained using NS-2 for the
same realistic scenarios. We show that the bandwidth allo-
cation follows the trends of the actual packet-level simulated
bandwidth dynamics.

4. PROPOSED SOLUTION
We model the network as a directed graph G = (U,F),

where the vertex set U represents the set of end nodes and
the edge set F represents the set of directed flows between
pairs of end nodes. We define as cui and cdi the uploading and
downloading capacities of node i which belongs to the node
set U . The rate of a flow fij is denoted as rij where i, j ∈ U
and i 6= j. The existence of a flow from i to j does not imply
the existence of a flow from j to i. As a result, every node
i ∈ U has two separate sets of flows, Fu

i for the outgoing,
and F d

i for the incoming. Finally, r∗iu and r∗id are the fair
shares of the upload and download capacity respectively of

Algorithm 1: Node-based max-min fair bandwidth al-
location

input : A set of nodes U with their upload and
download bandwidth capacities cui , c

d
i ,∀i ∈ U ,

and their corresponding flow sets Fu
i , F d

i .
output: The Max-Min fair rate allocation ~r of the

bandwidth capacities to the flows.

1 begin
2 SatUp← ∅; SatDown← ∅;
3 while F 6= ∅ do

4 SatUp← {su|r∗su = mini∈U,cui 6=0
cui
|Fu

i |
};

5 SatDown← {sd|r∗sd = mini∈U,cdi 6=0
cdi
|Fd

i |
};

6 r∗ = min(r∗su , r
∗
sd);

7 if r∗su > r∗sd then
8 SatUp← ∅;
9 else if r∗su < r∗sd then

10 SatDown← ∅;
11 if SatUp 6= ∅ then
12 foreach i ∈ SatUp do
13 foreach fij ∈ Fu

i do
14 rij = r∗;

15 cdj = cdj − r∗;

16 F d
j ← F d

j − {fij};
17 cui = 0; Fu

i ← ∅;

18 if SatDown 6= ∅ then
19 foreach i ∈ SatDown do
20 foreach fji ∈ F d

i do
21 rji = r∗;
22 cuj = cuj − r∗;
23 Fu

j ← Fu
j − {fji};

24 cdi = 0; F d
i ← ∅;

a node i ∈ U . A fair share is the equal division of a node’s
upload or download capacity to its flows.

4.1 Bandwidth allocation
We now present the first part of our solution: our node-

based max-min fair bandwidth allocation in Algorithm 1.
The algorithm iterates until all flows have a rate assigned.

Each iteration has two phases. In the first, we find the
node(s) which provide the minimum fair share r∗ (lines 4-
10). The process happens as follows: we calculate the fair
share of the upload and the download capacity of each node.
Then, we find the nodes that provide the minimum upload
fair share r∗su and the minimum download fair share r∗sd and
add them to node set SatUp, SatDown respectively (lines
4-5). The smallest rate between r∗su and r∗sd is set as the
minimum fair share r∗ and the nodes of the corresponding
set are considered saturated (line 6-10), i.e. they constitute
the bottleneck of the network in this iteration. In the case
where r∗sd = r∗sd , then all nodes in SatUp and SatDown are
considered saturated.

In the second phase, we allocate the minimum fair share r∗

to the flows of each saturated node, either to their download-
ing or uploading side (lines 11-24). The available bandwidth

354

Figure 1: An example of the max-min bandwidth
allocation algorithm.

on the other end of each flow (cuj for a downloading flow or

cdj for an uploading flow) is reduced and the assigned flows
are removed from the flow sets (lines 15-16, 22-23). The sat-
urated nodes have no available capacity left on their affected
side (downloading/uploading) and their corresponding flow
sets are empty (17, 24).

An example of how our max-min fair allocation algorithm
works is shown in Figure 1. We consider the network graph
shown in Figure 1.a. In the first iteration, the minimum
fair share in the graph is found to be 10, this is provided
by the upload capacities of nodes 2 and 4. The state of
the graph after the allocation of the minimum fair share to
flows f2,3, f2,6 and f4,1 is shown in Figure 1.b. In the second
iteration, the minimum fair share is 20 and is provided by
the upload side of node 1, as well as the downloading side of
node 4 and node 6. The minimum fair share is assigned to
flows f1,2, f1,3, f3,4 and f3,6, which results to the network
state shown in Figure 1.c. Finally, in the last iteration, the
download side of node 5 provides the minimum fair share of
50, which is allocated to its downloading flow f3,5. The final
rate allocation for this network graph is shown in Figure 1.d.

The complexity of the algorithm is O(N2) since at least
one node side is found saturated in each iteration. In order
to improve scalability, we adapt the affected subgraph dis-
covery algorithm for use with directed end-to-end network
models.

4.2 Affected subgraph discovery
This optimization is essentially an affected subgraph dis-

covery algorithm. Given a flow that triggers a bandwidth re-
allocation, the algorithm initiates two graph traversals that
each one has as root one of the flow’s end nodes. In each hop
of a traversal we find the affected flows of the last reached
nodes and continue the traverse to their other ends. This
procedure continues until no newly affected nodes are dis-
covered by any of the two traversals. We characterize the
nodes reached by one of these traversals based on three crite-
ria: (1) the parity of the distance in hops from the root node,
i.e. odd or even; (2) the type of the root node from which
the traversal originates, i.e. the uploading or downloading

Figure 2: An example of the affected subgraph dis-
covery.

end of the triggering flow; and (3) the type of the triggering
event, i.e. new or finished flow.

Furthermore, the flows of a node i are distinguished be-
tween locally bottlenecked, Li, and remotely bottlenecked,
Ri. A node’s flow is referred as locally bottlenecked if its
own capacity is restricting the bandwidth rate of the flow.
In contrast, a node’s flow is referred as remotely bottlenecked
if the node at the other end of the flow is the one restricting
its bandwidth rate. For example, the flow f4,1 in Figure 1.d
is locally bottlenecked for node 4 since it is its upload ca-
pacity that restricts the flow’s rate. In contrast, for node 1
the flow is considered remotely bottlenecked since its rate is
restricted by the capacity available to the node on the other
end of the flow.

A node can be affected in two different ways. First, it
might need to accommodate a new flow or a rate increase
of an already existing flow. Second, it might have some of
its bandwidth freed due to a finished flow or a flow that has
decreased its rate. Since we distinguish between the upload
and download side of a node, we have a total of four different
ways in which a node can be affected:

• upload rate increase
A node in this category is asked for a rate increase.
The criteria configurations which correspond to this
group of nodes are {even, uploading, new} and {odd,
downloading, finished}. This means that such a node
will have all its locally bottlenecked uploading flows
affected since they will need to reduce their rates in
order to accommodate a new flow or a bandwidth in-
crease. Moreover, it might happen that some or all
of its remotely bottlenecked outgoing flows might turn
into locally bottlenecked. We can find the remotely
affected bottlenecked flows of a node x by evaluating
the following expression, as proposed by [13]:

A : ri <
cux −

∑i−1
j=1 rj

|Fu
x | − i + 1

, i ∈ |Ru
x |, (1)

cux is the upload capacity of x, and ri, where i ∈ Ru
x ,

the rate of a remotely bottlenecked uploading flow i

355

Algorithm 2: Affected subgraph discovery

input : A set of nodes U with their upload and
download capacities cui , c

d
i ∀i ∈ U , their flow

sets Fu
i , F d

i and a triggering flow fr1,r2 .
output: The subsets AU and AF of U and F

respectively, that correspond to the affected
network subgraph.

1 begin
2 hop← 0; AU ← ∅; AF ← ∅;
3 if fr1,r2 ∈ F then
4 AF ← AF ∪ {fr1,r2};
5 SAU ← {r1}; DAU ← {r2};
6 while SAU 6= DAU 6= ∅ do
7 AU ← AU ∪ SAU ∪DAU ;
8 SAU ′ ← ∅; DAU ′ ← ∅;
9 foreach i ∈ SAU do

10 if (hop mod 2 6= 0 and fr1,r2 ∈ F) or
(step mod 2 == 0 and fr1,r2 /∈ F) then

11 SAU ′ ← SAU ′ ∪DownDecrease(i);

12 else if (hop mod 2 6= 0 and fr1,r2 /∈ F) or
(hop mod 2 == 0 and fr1,r2 ∈ F) then

13 SAU ′ ← SAU ′ ∪DownIncrease(i);

14 foreach i ∈ DAU do
15 if (hop mod 2 6= 0 and fr1,r2 ∈ F) or

(hop mod 2 == 0 and fr1,r2 /∈ F) then
16 DAU ′ ← DAU ′ ∪ UpDecrease(i);

17 else if (hop mod 2 6= 0 and fr1,r2 /∈ F) or
(hop mod 2 == 0 and fr1,r2 ∈ F) then

18 DAU ′ ← DAU ′ ∪ UpIncrease(i);

19 SAU ← SAU ′; DAU ← DAU ′;
20 hop← hop + 1;

of x. We consider the remotely bottlenecked flows or-
dered by increasing rate: r1 ≤ r2 ≤ · · · ≤ r|Ru

x |. The
above condition is evaluated starting from i = 1 until
it is either true for all i ∈ Ru

x or becomes false for a
certain i. In the first case all remotely bottlenecked
flows remain unaffected. In the second case the flows
with rates ri, ri+1, ..., r|Ru

x | might turn into locally bot-
tlenecked by the rate increase and thus should be con-
sidered as affected.

• upload rate decrease
The nodes included in this category got affected due
to a rate decrease of one of their uploading flows. The
criteria configurations for these nodes are {odd, down-
loading, new} and {even, uploading, finished}. Nodes
falling into this category need to allocate a released
amount of upload/download bandwidth to their cur-
rently active flows. This leads all their locally bottle-
necked outgoing flows to be affected by the operation.

• download rate increase
These nodes are affected by a rate increase in the same
manner as the ones in the first category but by means
of a downloading flow. The criteria configurations cor-
responding to this node category are {even, download-
ing, new} and {odd, uploading, finished}.

Procedure ”UpDecrease(node)” returns the nodes
reached by means of locally bottlenecked uploading flows.

input : A node i.
output: The set of nodes reached by the affected

locally bottlenecked uploading flows of i.

1 begin
2 AF ← AF ∪ {fij |fij ∈ Fu

i and fij ∈ Lu
i };

3 return {j|fij ∈ Fu
i and j unaffected by download

increase and fij ∈ Lu
i };

Procedure ”UpIncrease(node)” returns the nodes
reached by means of locally and remotely bottlenecked
uploading flows.

input : A node i.
output: The set of nodes reached by affected locally

and remotely bottlenecked uploading flows of i.

1 begin
2 AF ← AF ∪ {fij |fij ∈ Fu

i and (fij ∈ Lu
i or

(fij ∈ Ru
i and (1) false for rij))};

3 return {j|fij ∈ Fu
i and j unaffected by download

decrease and (fij ∈ Lu
i or (fij ∈ Ru

i and (1) false
for rij))};

• download rate decrease
Like the nodes of the second category, these nodes ex-
perience a rate decrease but this time caused by a
downloading flow. The criteria configurations which
represent this category are {odd, uploading, new} and
{even, downloading, finished}.

During the affected subgraph discovery, a node side can
be reached both by a request to increase and by a request
to decrease its flow rates. This makes for a clear conflict.
In the original algorithm, the conflict is resolved by ignoring
the change request that affects less children nodes from the
current node’s point of view. The approach clearly intro-
duces inaccuracy since the propagation of a rate change is
stopped abruptly. In our solution, we do not discriminate
between the way by which a node is affected. However, this
might introduce loops along the traversal path. In order
to avoid this situation, we stop the traversal if a node gets
affected twice in the same way, e.g. if it gets an increase
request from its uploading flows twice in the same affected
subgraph discovery.

The state-complete algorithm is shown in Algorithm 2
and Procedures UpIncrease and UpDecrease. We do not
show procedures DownIncrease and DownDecrease since
they are the complement of UpIncrease and UpDecrease.
The algorithm begins by checking the type of the trigger-
ing event. In the case that it is a new flow fr1,r2 , it is
added to the affected flow set AF (lines 3-4). A traversal
is then initiated from each of the two root nodes, r1, r2.
Two sets SAU and DAU containing the last reached nodes,
for the traversals originating from r1 and r2 respectively,
are updated at each hop. Initially, both sets contain only
the root node (line 5). At each iteration, we check the last
reached nodes and classify them based on the proposed cat-

356

Figure 3: Simulation times of a random network
overlay. 1000 nodes network size and varying num-
ber of outgoing flows per node.

egorization (lines 9-18). Depending on the parity of the
hop distance, the root node (uploading/downloading) and
the type of the triggering event (new or finished flow), we
define which nodes will be affected in the next iteration us-
ing Procedures UpIncrease, UpDecrease, DownIncrease
and DownDecrease. As a result, two sets of newly affected
nodes are produced after the iteration: one set (SAU ′) for
the traversal originating from the uploading side of the trig-
gering flow and one (DAU ′) for the traversal originating
from the downloading side of the triggering flow. These node
sets will be provided as input to the next iteration of the
algorithm. The traversal continues until no more affected
nodes are found (line 6). The complexity of the algorithm
is O(N) since each node can be reached in a maximum of 4
different ways.

In order to illustrate the affected subgraph discovery al-
gorithm, we extend the annotation used in [13] in order to
show both the direction and the bottleneck side of a flow.
The source of a flow is depicted with a circle and the des-
tination with an arrow. Their color shows the end of the
flow that constitutes the bottleneck on a pairwise fashion.
We denote with a white circle or arrow the restrictive end,
i.e. the flow is locally bottlenecked. In contrast, we denote
as a black circle or arrow the remotely bottlenecked end of
a flow. If we use this annotation on the previous network
graph example in Figure 1.d, we obtain the graph shown in
Figure 2.a.

Lets consider the case of a new flow from node 2 to node 1.
The algorithm firsts checks the outgoing flows of the upload-
ing root node 2 and the incoming flows of the downloading
root node 1 to find the affected ones, Figure 2.b. Since
the triggering flow is a new one, all the locally and proba-
bly some remotely bottlenecked flows of its end nodes are
affected. The uploading root node 2 has two locally bottle-
necked uploading flows, f2,3 and f2,6, that are affected. The
downloading root node 1 has only one remotely bottlenecked
downloading flow f4,1 which is not affected since (1) is true
for its rate. In the next hop, the download flows of nodes
3 and 6 are checked, Figure 2.c. Since they are in an odd
hop distance from the uploading side of a new transfer, only
their locally bottlenecked downloading flows will be affected
by means of a download decrease. Node 3 has no locally
bottlenecked downloading flows while node 6 has only one,

Figure 4: Simulation times for a DHT-like struc-
tured network overlay. 1000 nodes and varying num-
ber of outgoing flows per node.

f3,6. The next hop of the traversal reaches node 3 again, this
time at an even hop distance from the uploading side of new
flow which should affect all his locally and maybe some of
his remotely bottlenecked uploading flows, Figure 2.d. Node
3 has only remotely bottlenecked uploading flows and one
of them, f3,5, has a rate for which (1) is evaluated as false.
This flow is considered thus as affected. Finally, since node
5 has no unaffected flows, the algorithm terminates.

5. EVALUATION

5.1 Methodology
We focus the evaluation of our proposed solution on the

two most important characteristics of a P2P network sim-
ulator: scalability and accuracy. In our scenarios, we con-
sider two main parameters: the size of the node set and the
number of outgoing flows per node. The destination of the
flows is chosen either randomly or following a specific struc-
ture, i.e. a DHT-based one. The nodes enter the system
in groups at defined time intervals. The starting times of a
joined node’s flows are distributed uniformly in that same
time interval. The node’s bandwidth capacities are either
symmetric, asymmetric or mixed depending on the experi-
ment. Finally, the amount of transferred bytes per flow is
also a parameter.

For our accuracy study we implemented the same scenario
both on our simulator and on the NS-2 packet-level simula-
tor. In NS-2, we use a simple star topology, similar to the
one used in [5] [9]. Each node has a single access link which
we configure with corresponding upload and download ca-
pacities. All flows pass from the source access link to the
destination access link through a central node with infinite
bandwidth capacity. We use the TCP Reno implementation
with a packet size of 1460 Bytes. The queue mechanism used
is Drop Tail and all links have 2ms delay, resulting in a 8ms
RTT. Finally, the TCP queue and the maximum window
sizes are defined taking into consideration the bandwidth
delay product.

We repeat each experiment a number of times with dif-
ferent random seeds and we take the average value of the
resulting measurements. In the scalability study, we con-
sider the average simulation time of the runs, while in the
accuracy study we analyze the average deviation between

357

Figure 5: Simulation time for varying sizes of a ran-
dom overlay networks with a fixed 20 outgoing flows
per node.

Figure 6: Simulation time for different sizes of a
structured overlay networks with fixed 20 outgoing
flows per node.

the NS-2 data transfers and the corresponding flows’ time
modeled in our simulator. The machine used for this evalu-
ation has a dual core processor with 2.1GHz per core, 3MB
cache and 3GB RAM.

5.2 Scalability
In our scalability evaluation, we vary the size of node sets,

in the scale of thousands, and the number of outgoing flows
per node, in increments of tens. Both random and struc-
tured overlays are characterized by a specific degree of inter-
flow dependency. We can define the latter as how many flows
on average are affected by a new or finished flow. i.e. the
average ripple effect’s scope. In the random scenario, it is
more likely for the destination of the flow not being satu-
rated, whereas in the structured, we guarantee a minimum
level of saturation at each receiving end.

The rest of the scenario parameters are set as follows: the
size of each flow is 2MB plus the size of TCP headers. Nodes
join in groups of 50 every 20 seconds. The starting times of
the flows of a newly joined node are uniformly distributed on
the interval period. The bandwidth capacities of a node are
chosen randomly from the set: {100Mbps/100Mbps,24Mbps
/10Mbps,10Mbps/10Mbps,4Mbps/2Mbps,2Mbps/500Kbps}
with corresponding probabilities of {20%,40%,10%,10%}.

Figure 7: Performance improvement when using the
affected subgraph discovery algorithm on random
network overlays with 1000 nodes and different num-
ber of outgoing flows per node.

Figure 8: Performance improvement when using the
affected subgraph discovery algorithm on random
network overlays with varying size and 20 outgoing
flows per node.

We first compare our proposed node-based max-min fair
bandwidth allocation algorithm with the edge-based pro-
posed by [16]. The simulation times required by both al-
gorithms for a random scenario of networks with 1000 nodes
and varying number outgoing flows per node are shown in
Figure 3. The edge-based algorithm appears to perform
slightly better than our solution. This is expected since the
edge-based algorithm finds more saturated nodes per itera-
tion, as mentioned in Section 2.

We run the same scenarios but this time selecting the
destination nodes of the flows in a more structured manner.
The selection is done in such a way that nodes form a circle
where each node’s outgoing flows are directed to the near-
est neighbours in a clockwise fashion. The simulation times
required by both algorithms for this scenario are shown in
Figure 4. It is clear that the edge-based algorithm is sig-
nificantly slower than our proposed algorithm in this case.
This because the higher computational complexity of the
edge-based algorithm emerges in those cases where stronger
relations between the flows exist.

We next study the simulation times when dealing with
larger size networks. We fix each node’s outgoing flows to

358

Figure 9: Performance improvement when using the
affected subgraph discovery algorithm on structured
network overlays with 1000 nodes and different num-
ber of outgoing flows per node.

20 and vary the node set size between 1000 and 10000 nodes.
The results for the random and structured overlay scenarios
are shown in Figure 5 and Figure 6 respectively. When ran-
dom overlays are considered, we observe that, as the node
set gets bigger, the edge-based algorithm performance de-
teriorates and is outperformed by our proposed algorithm.
This can be explained by the fact that the edge-based algo-
rithm includes an extra check of the complete node set per
each iteration. This may not have a big impact when con-
sidering relatively small networks, but it might constitute a
performance bottleneck for large scale simulations. The im-
pact of this bottleneck becomes more apparent in the case
of structured overlays where less nodes are found saturated
at every iteration.

Based on these results, we can state that our proposed
max-min fair bandwidth allocation algorithm performs bet-
ter when simulating large and strongly connected networks
with high inter-flow dependency. An other important con-
clusion drawn from these results is that the number of con-
nections per node has a bigger impact in the performance
of the simulation models rather than the node set size. For
example, the simulation of a random overlay of 1000 nodes
with 70 outgoing flows requires a similar simulation time to
a 10000 nodes random overlay having 20 outgoing flows per
node.

We also would like to point out that the performance gain
when using flow-level simulation instead of packet-level is
paramount. In order to simulate a random scenario of 1000
nodes with 10 flows each, a time of three orders of magnitude
longer is required.

We run the same overlay scenarios using the directed af-
fected subgraph discovery defined in Algorithm 2 before run-
ning the max-min fair bandwidth allocation algorithm. The
results are shown in Figures 7-10. It is clear that the opti-
mization reduces significantly the simulation time. In Fig-
ures 7 and 9 we can see that the required time is one order
of magnitude lower when simulating network overlays with
the same size but different number of outgoing flows per
node. The performance improvement is much higher, three
orders of magnitude, when we increase the network size and
keep the number of flows per node fixed, as shown in Fig-
ures 8 and 10. This can be explained by the fact that the

Figure 10: Performance improvement when using
the affected subgraph discovery algorithm on struc-
tured network overlays with varying size and 20 out-
going flows per node.

affected subgraph discovery size, on which a max-min fair
bandwidth allocation algorithm is applied, mainly depends
on the connectivity of the network. It should be also pointed
out that the performance is similar for both our and the
edge-based max-min bandwidth allocation algorithms when
they are used together with the affected subgraph discov-
ery algorithm. This is because the affected subgraphs in
these cases are not big enough to point out the performance
differences between the two algorithms.

5.3 Accuracy
The goal of this study is to find out how accurately the

bandwidth capacity is allocated to competing flows with
respect to a packet-level simulator, such as NS-2. Unfor-
tunately, the size of our experiments is limited by the low
scalability of NS-2. We run a scenario with 100 nodes joined
at the start of the simulation. The destination of the nodes’
outgoing flows is random, the size of each flow is 4MB and
their number vary between 10 and 50 per node.

As in [5], we use the relative error in transfer times as
our accuracy metric. Let tNS−2 be the time at which a
flow terminates in NS-2 and tmax−min the time at which
our max-min fair flow terminates. The relative error is then
given by:

RE =
tflow − tNS−2

tNS−2
(2)

In our flow simulation, we ignore any segmentation or re-
transmission of packets. The packet header overhead intro-
duced by the packet level simulation is added to the flow
size.

We fist consider the case where the access link’s capacities
are symmetric, i.e. same upload and download capacity that
we set to 10Mbps. Results for different number of outgoing
flows per node are shown in Table 1. The standard and
average deviation of the relative error of the transfer times
are given for each of the scenarios.

We can see that the deviation is smaller when the network
is more under stress, i.e. more outgoing flows per node. In
these situations, TCP converges quicker causing the trans-
fer times to deviate less. Moreover, since both sides of every
flow have the same bandwidth capacity, the share that they
provide should be similar. This leads to an oscillation of the

359

cu/cd flows std. deviation avg. deviation

10/10

10 9.6±0.6% 7.9±0.6%
20 7.3±0.3% 5.9±0.2%
30 6.1±0.3% 5±0.2%
40 5.1±0.3% 4±0.3%
50 4.4±0.2% 3.6±0.2%

10/10, 20/20

10 12.7±1.0% 10.5±0.9%
20 13.7±0.4% 11.3±0.4%
30 12.6±0.3% 10.8±0.4%
40 13.1±0.4% 11.4±0.5%
50 13.2±0.3% 11.5±0.4%

Table 1: Deviation of simulated transfer times in the
presence of symmetric node capacities.

window size that translates into an extra transfer time de-
viation. However, while the absolute of the deviation varies
with the number of links, we can still assert that the devi-
ation is nearly constant, e.g. max 0.5%, between different
iterations of the same experiment and different flows in the
same experiment, for each one of the experiments conducted.
In terms of absolute deviation, a flow-level simulator cannot
compete with a packet-level because of the different level of
abstraction. But we can safely state that, if the deviation
is constant, the flow-level simulation follows the behavior of
the packet-level simulation by the amount of that constant
value, which is the desired effect of the simulator.

In the next experiment, we show the impact of the ca-
pacity size as well as the interaction between nodes with
different symmetric capacities. For this purpose, we run the
same scenario but this time setting half of the nodes in the
network to symmetric bandwidth capacities of 20Mbps. The
results are shown in Table 1. The introduction of nodes with
higher capacity speeds up the transfer times, thus providing
less time for TCP to converge. This effect leads to more de-
viation. We observe that the number of the outgoing flows
per node does not affect the deviation. This might be be-
cause the impact of the higher bandwidth capacities to the
time deviation is larger. Again, we can assert that the flow-
level simulation follows the behavior of the packet-level one
by a nearly constant degree.

Next we consider the case of asymmetric bandwidth ca-
pacities. We assign to every node 20Mbps of download ca-
pacity and 10Mbps of upload capacity. The results for dif-
ferent number of outgoing flows per node are shown in Table
2. It appears that the deviation is significantly smaller and
not affected by the per node outgoing flows comparing to
the previous symmetric scenario. This can be explained by
the absence of oscillation and quicker TCP convergence due
to the larger download capacity.

Finally, we investigate the deviation when both symmetric
and asymmetric node capacities are used. We set half of
the nodes with a symmetric 10Mbps capacity and the rest
with asymmetric capacity of 20Mbps download and 10Mbps
upload. The results are given in Table 2. We can see that
the presence of the symmetric capacities affects negatively
the transfer time deviation. The negative impact is more
visible when fewer outgoing flows per node are used. When
the links are less congested, the slower convergence of the
flow rates of the nodes with smaller symmetric capacities is
more apparent.

In the last two experiments, as in the first two, we mea-

cu/cd flows std. deviation avg. deviation

20/10

10 3.8±0.4% 3±0.4%
20 3.9±0.2% 3.1±0.1%
30 4.1±0.3% 3.3±0.2%
40 3.4±0.2% 2.8±0.2%
50 3±0.1% 2.5±0.2%

20/10,10/10

10 6.4±0.4% 5±0.4%
20 6±0.4% 4.9±0.3%
30 4.8±0.4% 3.9±0.3%
40 3.4±0.9% 3.2±0.3%
50 3.5±0.2% 2.8±0.2%

Table 2: Deviation of simulated transfer times in the
presence of asymmetric node capacities.

sured a deviation from the NS-2 packet-level simulation but
our max-min fair simulation followed the trends of the ones
provided by NS-2 by an almost constant deviation factor.

6. CONCLUSION & FUTURE WORK
In this paper we presented a scalable and efficient flow-

level network simulation model based on the max-min fair-
ness idea. We evaluated our solution in terms of scalability
by showing that it outperforms the existing state-of-the-art
for large-scale and structured network overlays where a di-
rected network is used for the modeling. In terms of accu-
racy we showed that our approach follows the trends of the
NS-2 packet-level simulator network by a nearly constant
factor throughout the experiments.

Our ongoing work includes the improvement of the model’s
accuracy by considering the time period that a flow requires
to converge to a new rate, and also the use of time-stepping
aggregation to achieve higher performance with minimum
cost in accuracy.

7. REFERENCES
[1] A. Al Hamra, A. Legout, and C. Barakat.

Understanding the properties of the bittorrent overlay.
Technical report, INRIA, 2007.

[2] I. Baumgart, B. Heep, and S. Krause. Oversim: A
flexible overlay network simulation framework. In GI
’07: Proceedings of 10th IEEE Global Internet
Symposium, pages 79–84, Anchorage, AL, USA, May
2007.

[3] D. Bertsekas and R. Gallager. Data Networks.
Prentice Hall, second edition, 1992.

[4] B. Cohen. Incentives Build Robustness in BitTorrent.
In Econ ’04: Proceedings of the Workshop on
Economics of Peer-to-Peer Systems, Berkley, CA,
USA, June 2003.

[5] A. Dandoush and A. Jean-Marie. Flow-level modeling
of parallel download in distributed systems. In CTRQ
’10: Third International Conference on
Communication Theory, Reliability, and Quality of
Service, pages 92 –97, 2010.

[6] D. R. Figueiredo, B. Liu, Y. Guo, J. F. Kurose, and
D. F. Towsley. On the efficiency of fluid simulation of
networks. Computer Networks, 50(12):1974–1994,
2006.

[7] T. M. Gil, F. Kaashoek, J. Li, R. Morris, and
J. Stribling. p2psim: a simulator for peer-to-peer

360

(p2p) protocols. http://pdos.csail.mit.edu/p2psim/,
October 2006.

[8] T. J. Giuli and M. Baker. Narses: A scalable
flow-based network simulator. Computing Research
Repository, cs.PF/0211024, 2002.

[9] T. Hossfeld, A. Binzenhofer, D. Schlosser, K. Eger,
J. Oberender, I. Dedinski, and G. Kunzmann.
Towards efficient simulation of large scale p2p
networks. Technical Report 371, University of
Wurzburg, Institute of Computer Science, Am
Hubland, 97074 Wurzburg, Germany, October 2005.

[10] S. Joseph. An extendible open source p2p simulator.
P2P Journal, 0:1–15, 2003.

[11] G. Kesidis, A. Singh, D. Cheung, and W. Kwok.
Feasibility of fluid event-driven simulation for atm
networks. In GLOBECOM ’96: Proceedings of the
Global Communications Conference, volume 3, pages
2013 –2017, November 1996.

[12] W. Kun, D. Han, Y. Zhang, S. Lu, D. Chen, , and
L. Xie. Ndp2psim: A ns2-based platform for
peer-to-peer network simulations. In ISPA ’05:
Proceedings of Parallel and Distributed Processing and
Applications, Workshops, volume 3759, pages 520–529.
Springer Berlin / Heidelberg, November 2005.

[13] F. Lo Piccolo, G. Bianchi, and S. Cassella. Efficient
simulation of bandwidth allocation dynamics in p2p
networks. In GLOBECOM ’06: Proceedings of the
49th Global Telecommunications Conference, pages
1–6, San Franscisco, California, November 2006.

[14] A. M. Mark Jelasity and O. Babaoglu. A modular
paradigm for building self-organizing peer-to-peer
applications. In Engineering Self-Organising Systems,
pages 265–282, 2003.

[15] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai,
I. Wakeman, and D. Chalmers. The state of
peer-to-peer simulators and simulations. SIGCOMM
Computer Communication Review, 37(2):95–98, 2007.

[16] A. T. Nguyen and F. Eliassen. An efficient solution for
max-min fair rate allocation in p2p simulation. In
ICUMT ’09: Proceedings of the International
Conference on Ultra Modern Telecommunications
Workshops, pages 1 –5, St. Petersburg, Russia,
October 2009.

[17] D. M. Nicol, J. Liu, M. Liljenstam, and G. Yan.
Simulation of large scale networks i: simulation of
large-scale networks using ssf. In WSC ’03:
Proceedings of the 35th Conference on Winter
simulation, pages 650–657. Winter Simulation
Conference, December 2003.

[18] The network simulator ns-2.
http://www.isi.edu/nsnam/ns/, October 2010.

[19] J. Pujol-Ahullo, P. Garcia-Lopez, M. Sanchez-Artigas,
and M. Arrufat-Arias. An extensible simulation tool
for overlay networks and services. In SAC ’09:
Proceedings of the 24th ACM Symposium on Applied
Computing, pages 2072–2076, New York, NY, USA,
March 2009. ACM.

[20] N. S. Ting and R. Deters. 3ls - a peer-to-peer network
simulator. In P2P ’03: Proceedings of the 3rd
International Conference on Peer-to-Peer Computing,
page 212. IEEE Computer Society, August 2003.

[21] G. Urvoy-Keller and P. Michiardi. Impact of inner

parameters and overlay structure on the performance
of bittorrent. In INFOCOM ’06: Proceedings of the
25th Conference on Computer Communications, 2006.

[22] A. Varga and R. Hornig. An overview of the omnet++
simulation environment. In Simutools ’08: Proceedings
of the 1st International Conference on Simulation
Tools and Techniques for Communications, Networks
and Systems & Workshops, pages 1–10, Brussels,
Belgium, Belgium, 2008. ICST (Institute for
Computer Sciences, Social-Informatics and
Telecommunications Engineering).

[23] C. Wu, B. Li, and S. Zhao. Magellan: Charting
large-scale peer-to-peer live streaming topologies. In
ICDCS ’07: Proceedings of the 27th International
Conference on Distributed Computing Systems,
page 62, Washington, DC, USA, 2007. IEEE
Computer Society.

[24] W. Yang and N. Abu-Ghazaleh. Gps: a general
peer-to-peer simulator and its use for modeling
bittorrent. In MASCOTS ’05: Proceedings of 13th
IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and
Telecommunication Systems, pages 425–432, Atlanta,
Georgia, USA, September 2005.

361

