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ABSTRACT
We apply stochastic comparisons in order to bound the tran-
sient behavior of G-networks with catastrophes. These net-
works belong to Gelenbe’s networks, with both positive and
negative customers (or signals). We consider catastrophes
where the signal deletes all customers in a queue. G-networks
have a known product form steady-state distribution, but it
is still impossible to obtain the transient distributions by
a closed form. In the present paper, we propose to define
smaller queueing systems providing bounds for subnetworks
of the G-network with catastrophes. We apply stochastic
comparisons by mapping functions to build bounding mod-
els. We derive transient performance measure bounds for
applications as malware software infections. For instance,
we obtain bounds for the first time of infection, or the num-
ber of times a station has been infected in a time interval.
We study the tradeoff between the size of the subnetwork
and the quality of the bounds with respect to parameters.

Keywords
G-Networks, transient behavior, analytical methods, stochas-
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1. INTRODUCTION
Since the seminal papers by Gelenbe in the early nineties [10,
11, 12], Generalized networks of queues have received consid-
erable attention. Currently, there are several hundred refer-
ences devoted to the subject, and a book [24] provides insight
into some of the research issues, developments and applica-
tions in the area of networks of queues with customers and
signals. Queueing models typically do not have provisions
for some customers being used to eliminate other customers,
or to redirect other customers among the queues. In other
words, customers in traditional queueing networks cannot
exert direct control on other customers. G-network models
∗partially supported by french research project ANR-
SETI06-02

overcome some of the limitations of conventional queueing
network models and still preserve the computationally at-
tractive product form property of some Markovian queueing
networks. They contain unusual customers such as negative
customers which eliminate normal customers, catastrophes
which flush all the customers out of a queue [12] and triggers
which move other customers from one queue to another [11]
or resets [15]. The first type of signal introduced by Gelenbe
was described as a negative customer [10]. A negative cus-
tomer deletes a positive customer in a queue at its arrival if it
is possible. Positive customers are usual customers in classi-
cal queueing networks. A negative customer is never queued.
Under typical assumptions (Poisson arrival for both types of
customers, exponential service time for positive customers,
Markovian routing, independence, open topology) Gelenbe
proved that such a network has a product form solution for
its steady-state behavior. Network of positive and negative
customers were introduced to model neural networks where
neurons exchange inhibitory and exciting signals [13]. G-
networks are also used to model complex operations such as
work deletion [1], or software virus infections [14].

Transient analysis of G-networks is very difficult as it is
quite impossible to derive a closed form expression of the
transient distribution. Stochastic comparisons provide in-
teresting solutions for this problem since they lead to build
bounds both on the stationary and the transient probability
distributions. Massey has introduced in [20] some stochas-
tic bounds for the transient tail distribution functions of the
size of any queue in Jackson networks. The bounding model
consists in independent M/M/1 queues for which the tran-
sient probability distribution can be computed as in [17].
In [5], this approach is generalized to build bounding sub-
networks for Jackson networks. In [23, 4], increasing set
formalism has been applied to bound tail distribution func-
tions of G-networks and G-networks with catastrophes by
means of independent M/M/1 queues. In this paper, we
apply bounding techniques with a different approach in or-
der to define more precise bounding systems. The bounding
systems are indeed queueing systems but their state space
sizes are smaller than the original one. In [4], the links are
cut between all the queues, thus each queue of the origi-
nal system is bounded by an M/M/1 queue. Since we do
not consider customer transfers between the queues, these
bounding systems may be too far from the exact system.
In the present paper, we follow the approach proposed in
[5] for Jackson networks and build bounds in the presence
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of negative customers. We bound the G-subnetwork under
study by a subnetwork of the same size but with different
rates that are obtained using stochastic comparisons. The
relevance of the approach is to keep the customer transfers
between the queues inside the subnetwork.

We focus on a subnetwork of the G-networks with catas-
trophes, and we define bounding systems with the same
size from which we compute performance measure bounds.
Bounding systems are defined by cutting the links between
the subnetwork and the rest of the network. The impact of
the queues which are not in the subnetwork are taken into
account by means of additional external flows of positive
and negative customers to the subnetwork. These additional
flows are differently defined for the upper bound and for
the lower bound. Intuitively speaking, in the upper bound
we have more positive customers and less flushes of queues,
while in the lower bound we have more flushes of queues and
less positive customers. By enlarging the size of the bound-
ing subnetwork, we can have a a tradeoff between the size
of the subnetwork and the quality of the bounds. However,
stochastic comparisons used in this paper are not easy to
establish because of the complex dynamics of G-networks.
In fact, G-networks are not monotone due to synchronized
departure of customers, and if we keep this event in the
bounding systems, then they could be also not monotone.
So the comparison of the processes will be checked for each
comparable states x and y such x ! y [22, 21].

We apply stochastic comparisons by mapping functions [9]
on a smaller state space in order to define the bounding
systems. These techniques are similar to the bounding ag-
gregations [3], but in our case the aggregated state space
is not a subset of the whole state space, but another state
space that is smaller than the original one. Moreover, the
algorithm in [3] could not applied as G-networks are not
monotone. In the case of totally ordered state spaces, the
lumpability and stochastic comparisons have been combined
to derive bounding Markov chains [26]. In our study, we de-
fine the partial order component by component on the state
space in order to compare queues by queues the processes.
Bounding aggregations are defined by mapping functions in
another state space, which is smaller than the original one.
This approach could be interesting if we want to study only
a part of the network. The best known stochastic ordering is
the strong stochastic ordering (denoted by !st) correspond-
ing to sample-path comparisons [22, 25]. We apply the cou-
pling method to establish the stochastic comparison of the
processes, This corresponds indeed to compare the evolu-
tion of the processes due to the events [19]. The coupling of
the processes can be also done by means of compensation of
jumps for the processes such that realizations stay in a set K
[16]. In [9], the coupling technique for stochastic comparison
of functions of Continuous Time Markov Chains (CTMCs)
is presented and conditions are generated such that the cou-
pled process stays in the given set K. Application of stochas-
tic comparisons to G-networks requires some subtleties. In
fact, we have to consider positive and negative customers,
with several kinds of events. We apply the general coupling
technique for the definition of bounding systems.

The paper is organized as following. In section 2, we in-
troduce more formally the model of G-networks with catas-

trophes. In section 3, we give main definitions of stochastic
comparisons of Markov processes using the coupling method.
In section 4, we apply the coupling by mapping functions in
order to define bounding systems for a subnetwork of the
G-Network with catastrophes. We give the main transient
measures that could be derived from bounding systems. In
section 5, we consider an application of software virus in-
fection and we give performance measure bounds. Finally,
achieved results are discussed in the conclusion and com-
ments about further research items are given.

2. G-NETWORKSWITH CATASTROPHES
We assume that the arrivals of new positive customers fol-
low independent Poisson processes with rate λ+

i at queue
i. Similarly, the arrivals of negative customers (or signals)
follow independent Poisson processes with rate λ−

i at queue
i. Positive customers wait in the queue and eventually re-
ceive service if they are not deleted by a signal. The service
are exponential with rate µi at queue i. Signals are not
queued. When they enter a queue, they flush all the cus-
tomers out of the queue. At the completion of its service
at queue i, a positive customer moves to queue j either as
a positive customer or as signal depending of a Markovian
routing. The routing matrices are P+ and P− to describe
the movement of positive customer from queue i to queue j
and the probability that a customer leaving queue i arrives
at queue j as a signal. Finally di is the probability that a
positive customer leaves queue i at the completion of its ser-
vice. As usual with G-networks, we assume that there is no
self-loops in the routing matrices: i.e. for all i, P+(i, i) = 0
and P−(i, i) = 0. Finally the total probability law gives that
for all queue i:

Pn
j=1 P+(i, j)+

Pn
j=1 P−(i, j)+ di = 1. We

denote by {X(t), t ≥ 0} the CTMC with infinitesimal gen-
erator Q, representing the evolution of the G-Network with
catastrophes. From state x ∈ Nn the transitions are:

• x → x + ei with rate λ+
i , 1 ≤ i ≤ n.

• x → x − xiei with rate λ−
i , xi > 0, 1 ≤ i ≤ n.

• x → x − ei with rate µidi, if xi > 0, 1 ≤ i ≤ n.

• x → x − ej + ei with rate µjP
+(j, i), if xj > 0, 1 ≤

i, j ≤ n, where i '= j.

• x → x− ej −xiei with rate µjP−(j, i), if xj > 0, xi >
0, 1 ≤ i, j ≤ n, where i '= j.

Under these assumptions, it is proved in [12] that the G-
networks have a product form steady-state distribution. Since
the model in [12] is based on the destruction of batches of
customer by signals, it is more general and the queue flush-
ing considered here is associated to an infinite batch. It
is also (and independently) proved that G-networks with
catastrophes have product form solution in [6]. The tran-
sient behavior of this system is very difficult to study. We
propose to use stochastic comparisons by defining bounding
systems such that the transient probability distribution is
easier to compute. In the simple case where the subnetwork
of the bounding system is represented by only one queue,
then the transient probability distribution can be computed
as it has been presented in the literature (see for instance
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[17, 7] and references therein). In the general case of multidi-
mensional CMTCs, mathematical analysis and simulations
could be applied for the computation of the transient prob-
ability distribution [2]. Furthermore, for large state space
size, transient solutions are very difficult to obtain. Numer-
ical methods allow to derive only approximations of the tran-
sient probability distributions. The relevance of this paper
is to define bounding systems with a smaller size in order to
derive easily transient probability distributions. These prob-
ability distributions represent bounds for the exact transient
probability distribution on the considered subnetwork. All
the computations are obtained from simulations. Next we
present stochastic comparisons by mapping functions, using
the coupling method.

3. STOCHASTIC COMPARISONS
We present some theorems and definitions about stochastic
orderings used in this paper. Two formalisms can be used
for the definitions: increasing functions [22, 25] or increasing
sets [21]. Stochastic orderings are defined only on discrete
and countable state space A, where a binary relation ! rep-
resents at least a preorder (a reflexive and transitive binary
relation [22]). Let us remark that a total or a partial order
are also preorder relations. For instance, on A = N, ≤ is
a total order, and on A = Nn, the component-wise order is
a partial order, which are both also preorders. In the se-
quel of the paper, we suppose that random variables and
stochastic processes take values on a state space A endowed
with a preorder !. A stochastic ordering corresponds to
an order relation between random variables or probability
measures. The !st-ordering is the best known stochastic
ordering, it is equivalent to the sample path ordering (see
Strassen’s theorem [22]). The !st-ordering can be defined
using real increasing functions [22]:

Definition 1. X !st Y ⇔ E[(f(X))] ≤ E[(f(Y ))] ∀f :
A → R+, !-increasing whenever the expectations exist.

These concepts are extended to the comparison of stochas-
tic processes. Let {X(t), t ≥ 0} and {Y (t), t ≥ 0} be Con-
tinuous Time Markov Chains (CTMC)s defined on A. The
stochastic comparison of CTMCs is equivalent to the com-
parison ∀ t ≥ 0 of the processes [22].

Definition 2. We say that :

{X(t), t ≥ 0} !st {Y (t), t ≥ 0} if X(t) !st Y (t),∀t ≥ 0

When the processes are defined on different state spaces, we
can compare them on a common state space using mapping
functions. This concept could be very interesting to reduce
the state space by defining bounding aggregations [26, 3].
Let X(t) (resp. Y (t)) defined on A (resp. B), g be a many-
to-one mapping from A to B. We suppose that state space B
is endowed with the preorder !. We compare the mapping
of the process X(t), denoted g(X(t)) with the process Y (t)
on the common state space B. The stochastic comparisons
of processes by mapping functions is defined as follows [9]:

Definition 3. We say that:

{g(X(t)), t ≥ 0} !st {Y (t), t ≥ 0} ifg(X(t)) !st Y (t),∀t ≥ 0.

The monotonicity is an interesting property because it sim-
plifies the stochastic comparisons of CTMCs. It is defined
as an increasing or decreasing in time [22]:

Definition 4. {X(t), t ≥ 0} is said to be !st −monotone
if X(t) !st (*st)X(t + τ),∀t ≥ 0, ∀τ ≥ 0 .

In this paper, we focus on the coupling method, used for
the stochastic comparison in the sense of the !st-ordering
(called the !st-comparison).

3.1 The coupling method
The coupling method is a well known method for compar-
isons of probability measures and Markov processes (see
Lindvall [19]). First, we introduce the coupling of random
variables. The coupling for the !st-comparison of random
variables is equivalent to the definition of a coupled version
with a point-wise comparison:

Theorem 1. For random variables X and Y with distri-
bution functions FX and FY , the following statements are
equivalent:

1. X !st Y

2. there is a coupling ( bX, bY ) of X and Y , and the proba-

bility space (Ω,A,P) where bX and bY are defined on it
with the distribution functions FX and FY , such that:

bX[ω] ! bY [ω], ∀ω ∈ Ω

In [16], the coupling is given between probability measures.
If we denote by P (resp. P ′) the probability measure of X
(resp. Y ), then:

P !st P ′

if and only if there exists a probability measure on the state
space A × A with support in:

K = {(x, y) ∈ A × A | x ! y}

with first marginal P , and second marginal P ′. It is a special
case of Strassen’s theorem [22]. The coupling method can
be also applied for the !st-stochastic comparison of Markov
processes. It is equivalent to the definition of a coupled
version of the processes in order to compare their sample
paths. For the coupling of {X(t), t ≥ 0} and {Y (t), t ≥ 0},
we define two other Markov processes on A:

n
bX(t), t ≥ 0

o

and
n

bY (t), t ≥ 0
o

such that
n

bX(t), t ≥ 0
o

has the same in-

finitesimal generator as {X(t), t ≥ 0}, and
n

bY (t), t ≥ 0
o

the

same infinitesimal generator as {Y (t), t ≥ 0}. The coupling
for the !st-comparison of Markov processes is given in the
following theorem (see Lindvall [19, 22]):

Theorem 2. The following propositions are equivalent:

1. {X(t), t ≥ 0} !st {Y (t), t ≥ 0}
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2. there exists the coupling {( bX(t), bY (t)), t ≥ 0} such that
∀t > 0,ω ∈ Ω :

bX(0)[ω] ! bY (0)[ω] ⇒ bX(t)[ω] ! bY (t)[ω]

3. there exists the Markov process {Z(t) = ( bX(t), bY (t)), t ≥
0} taking values in

K = {(x, y) ∈ A × A, x ! y}

Note that the !st-comparison of Markov processes can be
also established by means of inequalities between rows of the
underlying generators [16, 22]. The coupling is a method for
the !st-comparison of Markov processes based on the com-
parison of the evolution of sample paths due to events, which
induces the comparison of transition rates of the processes.
In the case where the processes are not defined on the same
state space, we can apply the coupling by mapping functions
[9]. Let X(t) (resp. Y (t) ) defined on A (resp. B), with
infinitesimal generator QX (resp. QY ), and g be a many-to-
one mapping from A to B. Next, we give the theorem which
states the coupling with the set K, and the inequalities on
transition rates for the comparison of Markov processes by
mapping functions [9, 21]:

Theorem 3. The following propositions are equivalent:

1. {g(X(t)), t ≥ 0} !st {Y (t), t ≥ 0}

2. ∀Γ ∈ Φst(B), ∀g(x) ! y | g(x), y ∈ Γ or g(x), y /∈ Γ,
we have:

X

g(z)∈B

QX(x, z) ≤
X

z∈B

QY (y, z)

3. there exists the Markov process {Z(t) = ( bX(t), bY (t)), t ≥
0} taking values in:

K = {(x, y) ∈ A × B, g(x) ! y}

where Γ is an increasing set of states in Φst(B) which is the
family of all increasing sets of B [21, 22]. Note that this
theorem can be also applied to check if

{Y (t), t ≥ 0} !st {g(X(t), t ≥ 0}

by reversing the inequalities. In [9], the authors introduce
the infinitesimal generator Q of Z(t), and they define the
coupling process in order to obtain explicit conditions for
stochastic comparisons. The Markov process Z(t) stays al-
ways in K after reaching K if and only if the rates between
K and its complementary set, Kc are null:

Q[(x, y), (x′, y′)] = 0, ∀(x, y) ∈ K, ∀(x′, y′) ∈ Kc

The idea of the coupling is the following: if we are going out
of K by a jump of the first coordinate, we must balance it by
a jump of the second coordinate in such a way that the final
point is in K. In [9] necessary and sufficient conditions on
the transition rates are derived for the stochastic comparison
of Markov processes by mapping functions, using the cou-
pling process Z(t) associated to K. The coupling can be also
used to establish the strong monotonicity. For {X(t), t ≥ 0},

we apply the coupling of the process with itself ( see Lind-

vall [19]). So we define two processes: { bX(t), t ≥ 0} and

{cX′(t), t ≥ 0} governed by the same infinitesimal generator
matrix as {X(t), t ≥ 0}, representing different realizations
of {X(t), t ≥ 0} with different initial conditions. The theo-
rem of the monotonicity using the coupling is as follows (see
Lindvall [19, 18]):

Theorem 4. {X(t), t ≥ 0} is said to be !st -monotone if

and only if there exists the coupling {( bX(t), cX′(t)), t ≥ 0}
such that:

bX(0)[ω] ! cX ′(0)[ω] ⇒ bX(t)[ω] ! cX′(t)[ω], ∀t > 0 (1)

Next, we give a simple example of the coupling by mapping
functions in order to define an upper bounding process.

3.2 Example
Let take the following example of a queueing network mod-
elled by 3 queues. For each queue 1 ≤ i ≤ 3, the ar-
rivals are Poisson with rates λi, the service times exponen-
tial with parameter µi. The non null routing probabilities
are : P (1, 3) = 0.5, P (2, 3) = 0.5, and the probabilities
to go out from queues d1 = 0.5, and d2 = 0.5. This sys-
tem can be represented by a CTMC {X(t), t ≥ 0}, with
infinitesimal generator Q. We propose to define the CTMC
{Xu(t), t ≥ 0}, with infinitesimal generator Qu, such that
: g(X(t)) ≤st Xu(t) where g is many-to-one mapping func-
tion : g : N3 → N, such that g(x1, x2, x3) = x1 + x2 + x3,
representing the total number of customers in the system.
We will define Qu such that (g(X(t)),Xu(t)) stays in the set
K = {(x, y) ∈ N3 × N | g(x) ≤ y}. Obviously, we have two
cases where g(x) can be modified : it increases if we have an
arrival in any queue i, and decreases if we have a service in
any queue i. We will study now the jumps of the processes,
and we define the inequalities between the transition rates
in order to have the coupled process staying in set K.

1. If we have an arrival in any queue, then x evolves to x′

such that g(x′) = g(x)+1. As we could have g(x)+1 >
y (if x1+x2+x3 = y), then we must have also an arrival
in the second component y in order to compensate it
by a jump from y to y+1, such that g(x)+1 ≤ y+1. So
the first component must increase less then the second
one, and we derive the following inequality :

X

g(x′)=g(x)+1

Q(x, x′) ≤ Qu(y, y′).

Since
P

g(x′)=g(x)+1 Q(x, x′) = λ1 + λ2 + λ3, then we

take Qu(y, y′) = λ1 + λ2 + λ3.

2. if we have a service in {Xu(t), t ≥ 0}, then y evolves
to y′ such that y′ = y − 1. So we must have a transit
from x to x′ where g(x′) = g(x) − 1. We see that the
first component must decrease more than the second
one in order to obtain an upper bounding system.

X

g(x′)=g(x)−1

Q(x, x′) ≥ Qu(y, y′).
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Since
P

g(x′)=g(x)−1 Q(x, x′) =
P3

i=1 µidi1xi>0, then

we take Qu(y, y′) = min1≤i≤3 µidi.

So {Xu(t), t ≥ 0} is a birth and death process with birth
rates λ1 + λ2 + λ3, and death rates min1≤i≤n µidi, repre-
senting an upper bound for the total number of customers
in the studied system. Next, we explain how to apply these
techniques in order to define bounding systems on subnet-
works.

4. BOUNDING SYSTEMS
The application of bounding techniques is difficult as we
have many kinds of transitions for the process due to positive
and negative customers. In order to define the bounding
systems, first we define the many-to-one mapping function,
and we study the behavior of the subnetwork in the whole
system.

4.1 Subnetwork analysis
Let E = {1, . . . n} be the index set for the nodes of the
queueing system. We propose to partition the index set into
disjoint index sets. In this paper, we take a partition of two
index sets : I which contains the nodes of the subnetwork
used for the performance study, and J is the complemen-
tary J = E − I . In order to simplify the notation, we sup-
pose that the queues of the network are numbered beginning
with the queues of the subnetwork I . Thus if the number
of queues in the subnetwork I is k ≤ n, then I = {1, . . . k},
and J = {k + 1, . . . , n} is the rest of the network. We pro-
pose to define a many-to-one mapping function g, such that
∀x ∈ Nn, g(x) = z, where z represents the state of the sub-
network I , so z ∈ Nk. Similarly to ei ∈ Nn, we denote by
vi ∈ Nk the vector with components null except the com-
ponent i which equals 1. We apply Theorem 3 in order to
define the bounding systems. First, we study the mapping
g of the process {X(t), t ≥ 0}, denoted {g(X(t)), t ≥ 0},
in order to apply stochastic comparison by mapping func-
tions. Due to an event (arrival in a queue of a positive or a
negative customer, a service, a transfer from a queue to an-
other queue), the original model {X(t), t ≥ 0} evolves from
state x ∈ Nn to a state x′ ∈ Nn. We distinguish two cases
depending on whether the events modify the subnetwork I
or not. If the event does not affect queues in I , then map-
ping g(x) = g(x′). Otherwise g(x′) must take into account
the modification of queues of I due to these events. As an
example, let us consider the following two cases from state
x:

1. an arrival of a positive customer in queue i, then x′ =
x+ei and we have the following cases for the mapping
g(x′):

(a) if queue i /∈ I then as queue i is not in the sub-
network, g(x′) = g(x).

(b) if queue i ∈ I then g(x′) = g(x) + vi (where 1 ≤
i ≤ k) as queue i is in the subnetwork. So this
event has an impact on g(X(t)) because g(x +
ei) '= g(x).

2. a transition of a positive customer from queue i to
queue j if xi > 0, then x′ = x − ei + ej , and we have
the following cases for the mapping g(x′):

(a) if i /∈ I and j /∈ I : g(x′) = g(x).

(b) if i /∈ I and j ∈ I : g(x′) = g(x) + vj .

(c) if i ∈ I and j /∈ I : g(x′) = g(x) − vi.

(d) if i ∈ I and j ∈ I : g(x′) = g(x) − vi + vj .

3. a service to the outside from queue i if xi > 0: x′ =
x − ei, and we have the following cases for g(x′):

(a) if i /∈ I g(x′) = g(x).

(b) if i ∈ I : g(x′) = g(x) − vi.

4. an arrival of a negative customer to queue i if xi > 0:
x′ = x − xiei, and we have for g(x′):

(a) if i /∈ I : g(x′) = g(x).

(b) if i ∈ I : g(x′) = g(x) − xivi.

5. a transition of a negative customer from a queue i to
a queue j if xi > 0 : x′ = x − ei − xjej if xj > 0,
otherwise x′ = x − ei, and we have for g(x′):

(a) if i /∈ I and j /∈ I :g(x′) = g(x)

(b) if i '∈ I and j ∈ I :g(x′) = g(x) − xjvj if xj > 0.

(c) if i ∈ I and j /∈ I :g(x′) = g(x) − vi.

(d) if i ∈ I and j ∈ I : g(x′) = g(x) − vi − xjvj if
xj > 0, otherwise : g(x′) = g(x) − vi.

We can now deduce how the process g(X(t)) evolve. In cases
(1)-(a), (2)-(a), (3)-(a), (4)-(a), (5)-(a), as the events have
no influence on the subnetwork then g(x′) = g(x).The events
having an impact for queues in I are the following:

• an arrival in queue i ∈ I case (1)-(b), or a transition
from queue j /∈ I to queue i ∈ I case (2)-(b) then
g(x′) = g(x) + vi. The transition rate is then summed
for cases (1)-(b) and (2)-(b):

X

x′|g(x′)=g(x)+vi

Q(x, x′) = λ+
i +

X

j /∈I

µj P+(j, i)1xj>0

(2)

• a transfer of a positive customer from queue i ∈ I to
queue j ∈ I (case (2)-(d)), then g(x′) = g(x)− vi + vj .
The transition rate of this case is then:

X

x′|g(x′)=g(x)−vi+vj

Q(x, x′) = µi P+(i, j) (3)

• a departure of a postive customer from queue i ∈ I to
the outside (case (3)-(b) ) or a transfer of a positive or
a negative customer from queue i ∈ I to queue j /∈ I
(cases (2)-(c) and (5)-(c)), then g(x′) = g(x)−vi. The
transition rate is then summed for these cases:

X

x′|g(x′)=g(x)−vi

Q(x, x′) = µidi +
X

j /∈I

µiP
+(i, j)

+
X

j /∈I

µiP
−(i, j) (4)
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• an arrival of a negative customer from the outside to
queue i ∈ I (case (4)-(b)) or a transfer from queue
j /∈ I to queue i (case (5)-(b)) then we have g(x′) =
g(x) − xivi. The transition rate is then summed:

X

x′|g(x′)=g(x)−xivi

Q(x, x′) = λ−
i +

X

j /∈I

µjP
−(j, i)1xj>0

(5)

• a transition of a negative customer from queue j ∈ I to
queue i ∈ I (case (5)-(d)), then g(x′) = g(x)−vj−xivi,
where xi ≥ 0. The transition rate is :

X

x′|g(x′)=g(x)−vj−xivi

Q(x, x′) = µj P−(j, i) (6)

We propose now to define bounding systems using the map-
ping function g on the process X(t). These bounding pro-
cesses are defined on a smaller state space, so their analysis
are easier than that of the original model. We propose to
use the component-wise partial ordering denoted by ! on
this state space:

∀x, y ∈ Nn, x ! y ⇔ xi ≤ yi,∀i = 1, . . . , n

This order is widely used for multidimensional state spaces
as it allows us to compare queue by queue the behavior of
queueing networks. We apply the coupling by mapping func-
tions and Theorem 3 in order to define the process {Y u(t), t ≥
0} representing an upper bound for the subnetwork I :

{g(X(t)), t ≥ 0} !st {Y u(t), t ≥ 0} (7)

and the process {Y l(t), t ≥ 0} representing a lower bound:

{Y l(t), t ≥ 0} !st {g(X(t)), t ≥ 0} (8)

It is clear that G-Networks (and also G-Networks with catas-
trophes) are not !st-monotone due to transitions of nega-
tive customers between queues. As an example, we suppose
a network of two queues, and we try to apply the coupling
of the process with itself (see theorem 4) from two compa-
rable states x = (0, 1) and y = (1, 1) where for each of them
the first component (resp. the second component) repre-
sents the number of customers in queue 1 (resp. in queue
2). If we suppose the order component by component, then
(0, 1) ! (1, 1). If we consider as an example the event of
a flushing from queue 1 to queue 2. Then from state (0, 1)
we stay in the state (0, 1), while from (1, 1) we transit to
(0, 0). So the order will be reversed, and the process is not
monotone. As the bounding systems will be defined as G-
Networks with a smaller size, then the process could be also
not monotone. Therefore we could not apply the stochastic
comparison by comparing the transition from the same state
x. We propose to use the general coupling method.

4.2 Upper bound
We use the general coupling method by studying the coupled
process Z(t) = ( bX(t), bY u(t)), such that the realizations stay
in:

K = {(x, y) ∈ Nn × Nk | g(x) ! y}.

where bX(t) and bY u(t) are also Markov processes with in-
finitesimal generators Q and Qu. The process Z(t) is called
a coupling process associated to K. Outside of K, the two

coordinates may move independently, but in K the jumps
of the two coordinates cannot be independent if we want to
remain in K. As an example, if we go out of K by a jump
with the first component, then we must compensate it with
the jump of the second component to remain in K. For
states (x, y) ∈ K, if x transits to x′ such that (x′, y) /∈ K (if
g(x′) '! y), then the second component y must compensate
by a transit to y′ such that (x′, y′) ∈ K (g(x′) ! y′). Sim-
ilarly, we have to consider how we go out of K by a jump
with the second component. Note that states (x, y) ∈ K
where the transition from x to x′ is such that (x′, y) /∈ K,
or a transition from y to y′ such that (x, y′) /∈ K can occur
are called the frontier states. So the frontier states are the
states (x, y) ∈ K such that xi = yi, i ∈ {1, · · · , k}. By
taking into account the events happening in {X(t), t ≥ 0},
triggering a transition from x to x′ we compute the transi-
tion rates of {Y u(t), t ≥ 0} such that the transitions of the
coupled process {Z(t), t ≥ 0} remain in K. The transition
rates of Qu are then computed using the coupling by the
mapping function g and the set K.

Next, we present depending on events how a jump of a com-
ponent must be compensated by the jump of the other com-
ponent, in order to obtain the conditions on the transition
rates. Note that the jump of component x makes the coupled
process can go out of K, if an arrival occurs, and so must be
compensated by an equivalent jump of y. The jumps of y
that makes the coupled process leave K are services or flush-
ing of queues, and must be compensated by similar jumps
of x. We now consider the different events happening in a
queue i in order to analyse the jumps of the components:

1. If we have an arrival in a queue i ∈ I troggering a
transition from state x to x′ such that g(x′) = g(x)+vi,
then we must have also a transition from y to y′ such
that y′ = y + vi, in order to obtain g(x′) ! y′. Thus
transition rates must satisfy the following condition:

Qu(y, y + vi) ≥
X

x′|g(x′)=g(x)+vi

Q(x, x′) (9)

Since inequality (9) must be satisfied for all states x
such that (x, y) ∈ K, then we take the maximum of
the right part over x ∈ Nn:

Qu(y, y + vi) = max
x|g(x)&y

{
X

x′|g(x′)=g(x)+vi

Q(x, x′)}

The evolution of {g(X(t)), t ≥ 0} due to this event
(Q(x, x′)) is given in equation (2), and the maximum
of this rate is reached for states x such that xj >
0, ∀j /∈ I . Thus we choose Qu(y, y + vi) = λ+

i +P
j /∈I µj P+(j, i).

2. The transition from a queue i to a queue j can trigger
a jump out of K for the first or the second compo-
nent. For the first component, if we have a transition
between x to x′ such that g(x′) = g(x)− vi + vj , then
we must have also a transition from y to y′ such that
y′ = y − vi + vj or a transition such that y′ = y + vj .
For the second component, if we have a transition
from y to y′ such that y′ = y − vi + vj , then we
must have a transition from x to x′ such that g(x′) =
g(x) − vi + vj or g(x′) = g(x) − vi. As the jumps
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for services and arrivals are used to compensate these
events, we take only the transit between queues i and
j. It results the same transition rate, so from equation
(3): Qu(y, y − vi + vj) = µiP

+(i, j).

3. If we have a transit of a negative customer from queue
i to queue j making a transition from y to y′ such that
y′ = y− vi − yjvj , then we must have also a transition
from x to x′ such that g(x′) = g(x)−vi−xjvj if xi > 0.
As this event occurs in the exact system only if xi > 0,
then we take the minimum rate : Qu(y, y−vi−yjvj) =
0, in order to avoid to have 0 in the component yj (if
yi > 0) while xj could not be modified (if xi = 0).

4. If we have a service in a queue i ∈ I making a transition
from y to y′ such that y′ = y − vi, then we must have
a transition from x to x′ such that g(x′) = g(x) − vi,
so we have the following inequality:

Qu(y, y − vi) ≤
X

x′|g(x′)=g(x)−vi

Q(x, x′)

As this inequality must be verified for all (x, y) ∈ K,
then we take:

Qu(y, y − vi) = min
x|g(x)&y

{
X

x′|g(x′)=g(x)−vi

Q(x, x′)}

From equation (4), we take: Qu(y, y − vi) = µidi +P
j /∈I µiP

+(i, j) +
P

j /∈I µiP
−(i, j). Moreover, as in

the precedent case we have supposed that Qu(y, y −
vi − yjvj) = 0 (i, j ∈ I) we consider in the upper
bound that the rate µiP

−
ij has no impact in component

j, and serves only to decrease the component i. So
we obtain Qu(y, y − vi) = µidi +

P
j /∈I µiP

+(i, j) +P
j /∈I µiP

−(i, j) +
P

j∈I µiP
−(i, j).

5. If we have an external arrival of a negative customer
to a queue i ∈ I triggering a transition from y to y′

such that y′ = y − yivi, then we must have a transi-
tion from x to x′ such that g(x′) = g(x) − xivi. For
compensating, we could have also a transition from x
to x′ such that g(x′) = g(x)− vj − xivi (for j '= i and
j ∈ I), in the case of xj > 0. For the two cases, we
take the minimum rates obtained when xj = 0, ∀j '= i,
so from equations (5) we obtain Qu(y, y − vi) = λ−

i

Thus for a queue i ∈ I , the transition rates are :

• arrival rate λ+
i +

P
j /∈I µjP+(j, i).

• transition rate to queue j ∈ I : µiP
+(i, j).

• departure rate : µidi+
P

j /∈I µiP
+(i, j)+

P
j '=i µiP

−(i, j).

• arrival rate of a signal (negative customer) from the
outside : λ−

i .

As the rates of {Y u(t), t ≥ 0} are defined such that the
coupled process stay in the set K, then equation (7) is satis-
fied. For the upper bound, the transition rates µjP

+(j, i) of
positive customers coming from the rest of the network are
added to the external arrival rates λ+

i of positive customers.

The departure rate is the rate of the departure from the sub-
network. For negative customers, only external arrival rates
are considered. Inside the subnetwork the transit of positive
customers is kept, but not the transition of negative cus-
tomers which is considered as a departure rate. Intuitively
speaking, any queue of the upper bound has more positive
customers, but is less flushed than in the exact system. We
can also remark that the upper bound is the most accurate
bound that we could obtain from the constraints inequali-
ties. Moreover as the transitions happen for any state, then
the bounding model is monotone (see theorem 4).

4.3 Lower bound
Similarly to the upper bound case, we apply Theorem 3 in
order to define {Y l(t), t ≥ 0} providing a lower bound:

∀t ≥ 0, Y l(t) !st g(X(t))

We will define the infinitesimal generator Ql such that the
Theorem 3 is verified, which means that we study the cou-
pled process Z(t) = ((Y l(t), X(t)), such that realisations
stay in:

K = {(x, y) ∈ Nk × Nn | x ! g(y)}

We study all events from state y in the process X(t) such
that g(y) varies.

1. If we have an arrival in a queue i ∈ I generating a
transition from x to x′ such that x′ = x + vi, then
we must have also a transition from y to y′ such that
g(y′) = g(y) + vi. Then we must have:

Ql(x, x + vi) ≤
X

y′|g(y′)=g(y)+vi

Q(y, y′)

By considering the minimum rate in equation (2) (xj =
0,∀j /∈ I), we take Ql(x, x + vi) = λ+

i .

2. As in the case (2) of the upper bound, we take the
same transition rate: Ql(x, x − vi + vj) = µiP

+(i, j).

3. If we have a service in a queue i ∈ I from y then we
must have also a decrease of the number of customers
of queue i in x : (a service in the same queue i from x
or a transit of a positive or a negative customer from
queue i to any queue j /∈ I . So from equation (4), we
take:

Ql(x, x − vi) = µidi +
X

j /∈I

µiP
+(i, j) +

X

j /∈I

µiP
−(i, j).

4. If we have a transition from queue i to queue j trig-
gering a transition from y to y′ such that g(y′) =
g(y) − vi − yjvj then we can have a transition from
x to x′ such that x′ = x − vi − xjvj if xi > 0 or
x′ = x − xjvj if xi = 0.

if xi > 0:
X

y′|g(y′)=g(y)−vi−yjvj

Q(y, y′) ≤ Ql(x, x − vi − xjvj)

If we replace the first part of the inequality by the rate
given in equation (6), then we obtain:

Ql(x, x − vi − xjvj) = µiP
−(i, j)
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If xi = 0:
X

y′|g(y′)=g(y)−vi−yjvj

Q(y, y′) ≤ Ql(x, x − xjvj)

This relation will be important to define the external
flushing rate to queue j. We have the condition for all
i '= j ∈ I such that xi = 0:

Ql(x, x − xjvj) ≥ µiP
−(i, j).

And we derive :

Ql(x, x − xjvj) ≥
X

i∈I,i'=j

µiP
−(i, j)1xi=0. (10)

5. If we have an arrival of a negative customer in queue
i ∈ I making a transition from y to y′ such that g(y′) =
g(y)− yivi, then we could have a transition from x to
x′ such that x′ = x− xivi or x′ = x− xj − xivi ∀j ∈ I
if xj > 0. As the second transition is already used
to compensate the transition from y to y′ such that
g(y′) = g(y) − vi − yjvj (in the precedent case), then
we take only the transition to x−xivi. From equations
(5), we take the maximum value by considering xj > 0,
∀j '= I . Moreover, by considering also inequality (10)
where we consider the flushing of queue i instead of
queue j, we add the sum of transition rate µjP−(j, i)
for the case where queues j are idle to the external
flushing rate of queue i, and we obtain the following
value :

Ql(x, x − xivi) = λ−
i +

X

j /∈I

µjP
−(j, i)

+
X

j∈I,j '=i

µjP
−(j, i)1xj=0.

Thus for a queue i ∈ I , the transition rates are :

• arrival rate: λ+
i .

• transit rate to queue j ∈ I : µiP
+(i, j).

• departure rate: µidi+
P

j /∈I µiP
+(i, j)+

P
j /∈I µiP

−(i, j).

• transit rate of a signal (negative customer) to queue j
: µiP

−(i, j) .

• arrival rate of a signal:

λ−
i +

P
j /∈I µjP

−(j, i) +
P

j∈I,j '=i µjP
−(j, i)1xj=0.

As the rates of {Y l(t), t ≥ 0} are defined such that the
coupled process stays in the set K, then equation (8) is
satisfied. For the lower bound, we remark that transition
rates µjP

−(j, i) of flows of negative customers coming from
the rest of the network are added to the external flows of
negative customers. The departure rate is the rate of the
departure to the outside of the subnetwork. For arrivals
of positive customers, only external arrival rates of positive
customers are considered. Inside the subnetwork the tran-
sit of positive and negative customers are kept. Moreover,
the rate µiP−(i, j) of negative customers between queues is
considered in the lower bound for any value of xi : if xi > 0,

and if xi = 0 it is added to the external signal arrival rate.
So with this rate, a queue j is always flushed whatever the
state of the other queues. We can remark also that this
system is the more accurate lower bound for the subnet-
work, and as the transitions trigger whatever the state is,
the lower bound is monotone (see theorem 4). Intuitively,
for the lower bound each queue has less positive customers,
and is more flushed than in the exact process.

4.4 Transient measure comparisons
In this section, we identify which measures could be com-
pared between G-Network with catastrophes and bounding
systems. Obviously, we have the comparison of the mean
number of customer in queue i ∈ I at any time t. G-
Networks are very efficient models for software virus infec-
tions [14]. In G-network with catastrophes, flushes of queues
can represent malware infections which cause the deletion of
informations (represented by positive customers) in the sta-
tions. Several interesting performance measures can be com-
puted using bounding techniques. Let Ni(t), be the num-
ber of times a station i of the subnetwork I has been in-
fected in the time interval [0, t]. We denote by Nu

i (t) (resp.
N l

i (t)) the corresponding measure for {Y u(t), t ≥ 0} (resp.
{Y l(t), t ≥ 0}). Then we have the following comparison :

Proposition 1. ∀t ≥ 0, ∀i ∈ I:

Ni(t) ≤st N l
i (t), and Nu

i (t) ≤st Ni(t)

Proof. We use the coupling of the processes with the
flush event, as it is the only event which modifies the be-
haviour of these processes. We define the process { bNi(t), t ≥
0} (resp. { bN l

i (t), t ≥ 0}) with the same transition rates as
{Ni(t), t ≥ 0} (resp. {N l

i (t), t ≥ 0}), with the following

initial condition: bNi(0)[ω] ≤ bN l
i (0)[ω]. For the proof, we

suppose that:

bNi(t)[ω] ≤ bN l
i (t)[ω] (11)

and we will prove that this inequality is also satisfied at time
t+dt. As we have proved that the processes {g(X(t)), t ≥ 0}
and {Y l(t), t ≥ 0} are !st-comparable, then it means that
the flush event occurs more in {Y l(t), t ≥ 0} then in the

corresponding subnetwork of the exact system, so if bNi(t)

increases then bN l
i (t) increases also and equation (11) is ver-

ified at time t + dt, so Ni(t) ≤st N l
i (t). Similarly, we can

prove that Nu
i (t) ≤st Ni(t).

Another interesting measure that can be computed, is the
time until the first infection of a queue i in a subnetwork I .
If Tfi denotes the time until the first flush, then we deduce
the following inequality :

Proposition 2.

∀i ∈ I, T fi ≤st Tfu
i and Tf l

i ≤st Tf

Proof. Let cTf i (resp cTf
u

i ) be the random variable with
the same probability distribution then Tfi (resp. Tfu

i ). We
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suppose the case where no flush has occurred yet in the
interval [0, t] for both systems. It is clear that when a flush
occurs in a queue i of Y u(t), then it has already occurred

in X(t). So we deduce that : cTf i[ω] ! cTf
u

i [ω],∀ω ∈ Ω.
Similarly, we can prove that Tf l

i ≤st Tfi, and proposition 2
is proved.

5. NUMERICAL RESULTS
We present some transient performance measures results in
order to illustrate the proposed approach. We study a G-
network with 7 queues represented in Figure 1. We focus
on queue 7 in order to compute the transient performance
measures from different subnetworks. Three subnetworks
are studied : I1 = {7}, I2 = {5, 7}, and I3 = {5, 6, 7} (where
I1 ⊂ I2 ⊂ I3) in order to study the accuracy of the bounds.
The results are obtained using the Matlab/Simevent simu-
lator. About 100 sample paths have been generated in order
to obtain with 95% confidence the indifference region with
width of 0.01 of the estimated value. We take the follow-
ing values for the parameters : for 1 ≤ i ≤ 6 : λ+

i = 2,
λ+

7 = 3, and for 1 ≤ i ≤ 7 : λ−
i = − 1

25 , µi = 2. The non
null probabilities are as follows: P+(1, 3) = P+(1, 4) = 0.3,
P−(1, 3) = P−(1, 4) = 0.1, d1 = 0.2, P+(2, 4) = 0.6,
P−(2, 4) = 0.2, d2 = 0.2, P−(3, 5) = P−(3, 6) = 0.1,
P+(3, 5) = P+(3, 6) = 0.3, d3 = 0.2, P+(4, 6) = P−(4, 6) =
0.4, d4 = 0.2, P+(5, 7) = 0.6, P−(5, 7) = 0.2, d5 = 0.2,
P+(6, 7) = 0.3, P−(6, 7) = 0.5, d6 = 0.2.

Figure 1: The G-Network understudy.
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Figure 2: Time until first failure in queue 7.

System Simulation time
Exact 363 s
U3 149 s
U2 100 s
U1 53 s

Table 1: Simulation times in seconds

For all the figures, we denote by L1, L2, L3 (resp. U1, U2,
U3) the lower bounds (resp. the upper bounds) obtained
from the subnetworks I1, I2, I3. In Figure 2, we study the
time until the first failure Tf7, and we give the lower bound
L1, the exact value obtained from the queueing network with
7 queues, and the upper bound U1. We deduce from Figure
2 that the first failure occurs in queue 7 before a time equal
approximately to 1.12.

In Figure 3, we represent the number of customers in queue
7 at any time t ∈ [0, 10]. Obviously, U1 is the worst upper
bound as it is represented by only queue 7, and U3 pro-
vides the best upper bound as it is represented by a larger
network. On the other hand, the lower bounds provide the
same results which is obvious as queue 7 has similar rates in
L1, L2, and L3. We can easily remark that the lower bound
is close to the exact value, while the upper bounds are far
from it especially when the time increases. This is because in
the upper bounds, we have not considered the transition of
negative customers between queues, so the behaviour is rel-
atively far from the exact system, especially when the time
increases. On the other side, the lower bound has a good
accuracy as we have considered both positive and negative
customers in the system.
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Figure 3: Number of positive customers in queue 7
for µ5 = µ6 = 2, and t ∈ [0, 10].

In Figure 4, we take µ5 = µ6 = 6, in order to reduce the load
of queues connected to queue 7, and we consider a smaller
time interval. We can see in this case, that upper bounds
are closer to the exact value, and also the gap between the
bounds is significant. Moreover, if we consider also the sim-
ulation times given in Table 1, we can see the relevance of
our approach. Instead of computing the exact values with a
simulation time of 363 seconds, we obtain bounding values
with a tradeoff between accuracy of bounds and simulation
time.
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Figure 4: Number of positive customers in queue 7
for µ5 = µ6 = 6, and t ∈ [0, 3].

6. CONCLUSION
We have seen in this paper that application of stochastic
comparisons for transient analysis of G-networks with catas-
trophes provides an interesting solution as we obtain a trade-
off between the quality of the bounds and the computational
complexity. As a future work, it is interesting to define a
general algorithm based on the coupling by mapping func-
tions in order to analyse transient behaviour of other net-
works. We will also study how we can extend this stochas-
tic comparison approach to more abstracted representations
such as the tensor based representation of Master-Slave syn-
chronisation with product form introduced in [8] or Stochas-
tic Process Algebra.
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