
Model-driven Simulation for Cross-domain

Policy Enforcement

Zhengping Wu, Lifeng Wang
Department of Computer Science and Engineering

University of Bridgeport
{zhengpiw,lifengw}@bridgeport.edu

Ahstract-This paper proposes an enforcement

architecture and develop a simulation framework for

cross-domain policy enforcement. The entire simulation

environment is used to solve the problem of enforcing

policies across domain boundaries when permanent or

temporary collaborations have to span over multiple

domains. In reality, different systems from different

organizations or domains have very different high-level

policy representations and various low-level enforcement

mechanisms, such as high-level security policies, privacy

configurations, and low-level system calls (services). To

make sure the compatibility and enforceability of one

policy set in another domain, a simulation environment is

needed before actual policy deployment and code

development. The framework developed in this simulation

environment can also be used to generate policy

enforcement code directly for permanent integrations or

temporary interactions. This framework provides various

functions to enforce policies automatically or

semi-automatically across domains as by-products. A case

study in health care information systems confirms the

advantages of these new functions and facilities in this

simulation environment.

Index Terms-model-driven simulation, policy enforcement,
policy modeling, cross-domain enforcement.

I. INTRODUCTION

olicy-based management is an administrative approach to
Psimplify the management of a given endeavor by establishing

policies to deal with situations that are likely to occur. Policies

are operating rules that can be referred as means of maintaining

order, security, consistency, or other ways of successfully

furthering a goal or mIssIon. Different communities,

organizations and domains have their different standards to

define policies and policy execution infrastructures to enforce

their policies. These policies could be defined by any types of

policy languages such as WS-Policy and XACML [3].

Low-level enforcement mechanisms could be very different

from system to system. So it is hard to enforce a policy across

domain boundaries or over multiple domains. Before applying

policies across domain boundaries, it is desirable to know

which policies can be supported by other domains'

enforcement mechanisms, which are partially supported, and

which are not supported. A simulation of cross-domain policy

enforcement can help system administrators decide not only the

applicability of policies at foreign domains but also the

workload to support policies from foreign domains. In this

paper, we propose and implement an innovative simulation

environment using semantic modeling and translation for

policy enforcement across domain boundaries. As a byproduct,

this proposed enforcement framework also automatically

generates a part or all enforcement code if elements in a policy

model can find their corresponding low-level enforcement

mechanisms, which cab reduce developers' workload

In the proposed simulation environment, the entire

policy-based management architecture is divided into three

levels, which can be represented by high-level policy language

models, intermediate-level processing models, and low-level

policy enforcement models respectively. These three types of

models are defined by a semantic language-Web Ontology

Language (OWL). The simulation environment can

accommodate any types of high-level policy languages; system

administrators can easily introduce a foreign policy when a new

collaboration is created; and our semantic mapping and

translation throughout the enforcement framework is flexible.

This environment can simulate policy enforcement for

temporary co-operations between or permanent integration of

applications and systems from multiple domains.

II. POLICIES FROM MULTIPLE DOMAINS

Policies are operating rules that can maintain order, security,

consistency, or other ways of successfully furthering goals or

missions in information systems. In health care applications,

HIP AA requires certain operation policies and privacy policies

to protect the healthcare information of patients. Since there are

more and more collaborations and communications between

domains, cross-domain policy enforcement is a necessary

component in these domains' information systems. But in most

cases, these domains use different high-level policy languages

to define their policies, and these particular policies are

executed on their own policy enforcement platforms. Once the

collaborations or communications are needed by two

"stranger" domains, technical departments from these two

domains have to work together to evaluate whether is this

possible to make their systems work together, and how much

work is needed to establish the collaborations or

communications. It is a complex procedure for both participant

domains. Thus, a simulation environment can help evaluate this

possibility and give an approximate workload for the

implementation of collaborations or communications. As an

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USACopyright © 2011 ICST DOI 10.4108/icst.trustcol.2010.5

integral part of collaboration or communication control, a good

simulation environment can also sort out the odds in potential

cross-domain policy enforcement and execution. For example,

in social networking sites (one social networking site is an

independent domain), privacy protection rules can be formally

expressed in policies. When people join social networking sites,

they begin with creating a profile, and then making connections

with existing friends as well as new friends they meet through

these sites. A profile is a list of attributes associated with an

identification, which includes your real name (or a pseudonym),

photographs, birthday, hometown, religion, ethnicity, and

personal interest. This list may also contain a person's hobby,

interest and other types of information, which may be

considered as privacy, such as current and previous schools,

employers, drinking habits, and sexual orientation [6,7]. As we

know most of existing social networking sites have privacy

configurations based on their own enforcement mechanisms.

All targets of access control can be simply called "objects" here,

such as profiles, photos, videos, daily logs. People who desire

to visit these objects can be simply called "subjects". Below,

we use the privacy configurations from three major social

networking sites as examples to illustrate common points and

differences in real policies from multiple domains.
Privacy Settings Linked
Research Surveys

Settings for receiving requests 10 participate in market
research surveys related to your professional e)(pertise

Connections Browse
Your connections are allowed to view your connections
list

Profile Views
Control what (if anything) is shown to Linkedln users whose
profile you have viewed

Viewing Profile Photos
You can view everyone's profile photos

Profile and Status Updates
Control whether your connections are notified when you
update your status or make significant changes to your
profile and whether those changes appear on your
company's profile

Service Provider Directory
If you are t8commend8d as a service provider. you will be
listed

NYTimes.com Customization
Control the Linkedln-inlegraled headline cuslomizalion and
enhanced advertising on NYTimes.com

Partner Advertising
Control whelher you will be shown Linkedln Audience
Network adllertisements on partner websites

Authorized Applications
See a list of websites or applications you have granted
access to your account and control that access

Figure 1. Linkedin Privacy Configuration

For privacy protection, Facebook allows users to define

access control policies to protect their "Profile", "Basic Info",

"Personal Info", "Status and Links", "Photos Tagged of You",

"Videos Tagged of You", "Friends", "Wall Posts", "Education

Info", and "Work Info" through a privacy configuration

interface. These accessible resources are objects in privacy

policies. The access groups include "Everyone", "My

Networks and Friends", "Friends of Friends", and "Only

Friends." All these access groups are subjects in privacy

policies. Myspace allows users to define a similar set of access

control policies. Being different from the previous two social

networking sites, Linkedin supports privacy control policies for

"Research Surveys", "Connections Browse", "Profile Views",

"Viewing Profile Photos", "Profile and Status Updates",

"Service Provider Directory", "NYTimes.com Customization",

"Partner Advertising", and "Authorized Applications" through

its configuration interface as well. Compared with Facebook

and Myspace, Linkedin's major user groups consist of business

and professional people. Most of these users are small and

medium enterprises' employees, consultants and sales

personnel. Special privacy settings for research surveys and

partner advertising can be considered as "special objects" in

privacy policy definition. Other objects are very similar to

Facebook and Myspace. Figure I illustrates Linkedin privacy

configuration interface.

In these social networking sites, most privacy settings are

similar such as settings for online status, profile, friends, and

photos, because the common privacy control rules are quite

similar from site to site. But some social networking sites also

have distinguished features in privacy policies, such as research

surveys' privacy control in Linkedin. This situation can be

found in not only social networking sites but other enterprise

systems as well, such as healthcare systems. For example, two

hospitals have their specific operation policies enforced on

different enforcement mechanisms, but their security and

privacy policies follow the same set of HIPAA conformant

rules. When two social networking sites or two health care

domains need to communicate or cooperate with each other,

they have to rebuild or reconfigure their system to make sure

these activities are consistent with their own and partners'

policies. When there are hundreds of communication or

collaboration partners, we have to rebuild or reconfigure the

systems for hundreds of times, which is totally infeasible.

Sometimes, the communication or cooperation is temporary,

which make system rebuilding or reconfiguration even

impossible. So, we need a simulation environment to find out

whether every rule in communication or collaboration policies

is enforceable over all partner domains. This simulation

environment can also tell how many policies used in local

domain are similar to those in partner domains. After such

simulation, a system administrator can decide whether a system

rebuilding is needed or partner domains' policies can be

enforced on current execution platform. We propose a new

enforcement hierarchy in this paper to provide this simulation,

which can not only help make this decision but also generate

most enforcement code for a partner domain's policies

automatically if the decision is feasible. Detailed information

for this enforcement hierarchy and a formal description of the

enforcement architecture are provided in section 3 and 4.

III. ENFORCEMENT HIERARCHY

High-level policy languages are easy for users to define

policy rules directly, which include natural languages and

formal policy languages. They are intuitive for readers to

understand policy rules. However, these policy languages tend

to be more and more complex with the development of

mathematics-derived languages and logic-based languages,

such as role-based access control languages, Keynote policy

language, and General Access Control Language [1]. One of

the most important aspects for interconnections between social

network websites are their agreements of privacy policies.

These agreements reflect standard policies defined by social

network administrators and designers in high-level policy

languages such as XACML. Sometimes, these policies cannot

have one-on-one correspondence to low-level enforcement

mechanisms in social network execution platforms. So we need

to add something between high-level policy languages and

low-level mechanisms to resolve the discrepancy. We

introduce an intermediate-level mapping and translation layer

to connect the two levels. The hierarchy of enforcement is

illustrated below.
high-level policy languages

1oW·1eve1 enforcement mechanisms

Figure 2. Policy Enforcement Hierarchy

The intermediate-level mapping and translation mechanisms

and the corresponding models used in these mechanisms must

be flexible enough to bridge the semantic gap between

high-level policies and low-level mechanisms in order to

accommodate different models of high-level policies. First,

domain experts translate high-level policies into specifications

using ontology or formal vocabularies. This task has already

become a part of the necessary responsibilities for IT

department in every organization, because every organization

needs to enforce their administrative and managerial policies.

And the first step is to make machine "understand" these

policies. Meanwhile, low- level enforcement mechanisms such

as functions, services, protocols, and etc. have their

specifications as well. Mapping mechanisms have been

proposed to translate high-level policies to low-level

mechanisms, such as top-down mappings and bottom-up

mappings. Top-down mappings try to search corresponding

features in low-level mechanisms for high-level policies.

Bottom-up mappings present all the available mechanisms to

the policy definer, and allow only enforceable features to be

included in the policy. Bottom-up mappings usually need a

good visualization to help a policy definer understand those

low-level features and mechanisms. We integrate the

advantages of both top-down and bottom-up styles to build an

intermediate-level layer, and construct a comprehensive

model-driven translation in the intermediate level to bridge the

gap between two levels.

IV. ENFORCEMENT ARCHITECTURE

To complete the policy enforcement hierarchy, a
model-driven enforcement architecture is proposed. Figure 3

illustrates the workflow of the entire enforcement architecture
using UML. In this architecture several predefined models and
procedures shown in figure 3 are used. We introduce the
definitions of these models and procedures here first. Then we
describe detailed steps of operations in the entire enforcement
architecture.

Definition 1 Mathematical-or-logical model (MLM) is a
collection of general operation rules used as standards by

different domains, such as standard business rules or policies
under contracts.

I nform.ati on flow)

I higtt-Ievel policy I,anguage 11 [st�1

m9p

y
system model 11

J
I "W�'�;'�';;; " I� 5 !"'ci. , �.rt onfD'4

1 1 r step2
1

matht:!matic I or logical .m [J � I 11
\1/1 \11 0

I
ontology for logical 11

model 111

[I
low-level ellforcemen1

mechanisms

illterme iafu�'evel model I

\ 1

........ 1 ontology for

I �1-1 int.rm.di.fe� ••• 1
model

I
map

middleware to map
�msp iniermedi,ate model

to low level

mecnanisms

1 step3

Figure 3. Information Flow of the Enforcement

Architecture

Definition 2 System model (SM) is a formal representation
of policy language specifications, which can be used to define
management policies, security policies, privacy policies, or
privacy configuration rules, such as EPAL, XACML, APPEL,
and etc.

Definition 2.1 Common part ontology (SM_C) is a
description of policy rules and their relationships that exist in
common practices of most business applications or
communities of business domains, which follow industrial
standards or business contracts. It includes those elements
having direct correspondence with the elements in a MLM.

• Assuming: SM _C is a set of common part ontology. MLM is
a set of ontology for mathematical-or-logical model.
SM_C and MLM have one-to-one mapping FI, which
means every element sm _ c of set SM _ C has only one
mapped image under FI, element 1m of set MLM has one
inversely mapped image under Fl. This can be expressed
as:

FI : SM CBMLM

Definition 2.2 Special part ontology (SM _ S) is a
description of policy rules and their relationships that uniquely
exist in applications or requirements of certain domains or
communities of domains, which may not be included in any
industry standard. It includes those unique elements in the
system model.

• Assuming: SM _S is a set of special part ontology. MLM is
a set of ontology for mathematical-or-logical model. SM _ S
and MLM do not have one-to-one mapping under rule F2,
which means any element sm _ s of set SM _ S does not have
any mapped image under F2. This can be expressed as:

F2 : SM S --� MLM

Procedure 1 Mapping procedure from system model to
mathematical-or-logical model is defined as this: if an element
or a relationship between elements in a system model has exact
mapped one in mathematical-or-logical model, this element or
relationship between elements will be included as a part of the
common part ontology; if no mapped element exists, that
element in the system model should be categorized as a part of
the special part ontology.

• system model = {common part ontology} U {special part
ontology} ({common part ontology} n {special part
ontology} = 0)

Definition 3 Intermediate-level model (ILM) is a formal
representation to show the relationship between SM and MLM.
It is in the format of an ontology. After the SM being mapped to
the MLM, part of the elements or relationships can be mapped
directly (in common part ontology), and other elements cannot
(in special part ontology). Both these two parts are included in
the ILM, which in turn will be used to construct translation
between high-level policy languages and low-level
enforcement mechanisms.

• Assuming: MLM is the ontology for
mathematical-or-logical model. ILM is the ontology for
intermediate-level model. MLM is added to ILM if and
only if MLM has one-to-one correspondence with SM
under rule F3. This can be expressed as:

F3 : MLM � ILM iff SM C B MLM

• Assuming: SM_S is the special part ontology. ILM is the
ontology for intermediate-level model. An element sm_s
of SM _S is added to ILM under rules F 4, which does not
have one-to-one mapping between SM and MLM. This can
be expressed as:

F4 : SM S � ILM

Procedure 2 Mapping procedure from SM and MLM to
ILM is defined as this: the ontology of MLM is directly added
to ILM together with its correspondence in the common part
ontology of the SM, and the special part ontology of the SM is
inserted into the ILM after the addition of MLM.

Definition 4 Low-level enforcement mechanism (LLM)
includes those low-level functions, services, and configurations
that are designed for the usage by local users and domain
administrators for security protection, access control, privacy
configuration, and other management purposes.

• Assuming: ILM is a set of ontologies for
intermediate-level model. LLM represents a set of
low-level enforcement mechanisms. ILM and LLM match
with each other under rule F5. An element il of set ILM has
only one image under F5; an element II of set LLM has one
inverse image under F5. This can be expressed as:

F5 : ILMBLLM

Procedure 3 Mapping procedure from ILM to LLM is

defined as this: in the ILM, the actual elements in a policy

language and relationships between elements with a match of

the MLM are identified. These elements are searched in LLM

to find matched functions or services, which can meet required

properties and relationships in the MLM. Then these matched

mechanisms are recorded in an OWL file. Unmatched elements

and their required properties and relationships are also recorded

in a separate part for further manual adjustments from

administrators or system developers

v. SIMULATION

After defining all these necessary terms and procedures, we
can go through the entire workflow of this three-layer
enforcement architecture to simulate policy enforcement across
domain boundaries. First of all, we have to obtain valid source
information about the relevant selection of key characteristics
and behaviors. The first key characteristic is high-level policy
language. For different purposes of different domains, different
policy languages are used to construct their system models. For
example, in most cases, the privacy protection of social
networking sites is regulated by access control policies. In
healthcare environments, electronic medical records are
protected under certain security policies. The second key
characteristic is the mathematical or logical model. It can be
obtained from common privacy configurations, business
practices, or security rules. For example, the common privacy
configurations of social networking sites include a common
rule "only my friend can see my photo"; a common rule in
healthcare environment "without obtaining the individual's
authorization, covered entities are permitted to utilize or
disclose PHI (protected health information) to whom the PHI
pertains, in case where the law requires such disclosure." The
third key characteristic is the low-level enforcement
mechanisms. We need the enforcement mechanism information
of involved domains for testing and verifying policy
compatibility in policy enforcement simulation.

Meanwhile, like all simulations, certain simplifications and
assumptions exist in our policy enforcement as well. First, we
assume every policy can be expressed by a formal language, so
that we can always get the system model. Second, we assume
most elements in the mathematical or logical model, which
reflect common practices or requirements, can be mapped to
the system model, so that we can find the clear boundary
between common part ontology and special part ontology.
Third, we assume the intermediate level model should be able
to fill the gap between high-level policy languages and
low-level enforcement mechanisms by semantic mappings
from both formal languages and machine languages to the
intermediate level model. Based on these simplifications and
assumptions, we can go through three stages in the enforcement
architecture to simulate cross-domain policy enforcement.

The expected simulation results include how many policy
rules are similar or identical to the partners', how many local
policy rules can be mapped to a partner domain's enforcement
mechanisms, and how many policy rules need manual coding to
deploy. As a byproduct, partial enforcement code can be
generated automatically. Before starting simulation, we need to
do some preparation for key characteristics selection and
certain simulation assumptions of the simulation. The
mathematical or logical model should be formed and translated
into a standard ontology language - OWL. As we know,
ontology is a formal representation of a set of concepts within a
domain and the relationships between these concepts. Ontology

can clearly represent all the elements and relationships in
various models used in our architecture. We choose OWL
because ontology is language independent and OWL is a family
of knowledge representation languages for authoring ontology.
Then the entire simulation can be performed following the
steps described below. Figure 4 illustrates how the proposed
enforcement architecture works for domain A and B. With the
help of this simulation environment, an administrator or user
can tell whether a policy set from local domain can be enforced
in a partner domain's execution platform or vice versa.

Domain B

Figure 4. Simulation of Policy Enforcement across Domain

Boundaries

The first step is to find a suitable high-level policy language
and its system model to match the policy rule set of domain A if
we intend to enforce domain A's policy as illustrated in figure 4.

The usability of the entire enforcement architecture is affected
by this system model because it directly defines what features
are available and how can they be used. As mentioned in the
definition of the mathematical or logical model, an appropriate
policy language needs to be chosen for accommodating general
operation rules or industrial standard rules used in multiple
domains. This policy language together with its system model
is one of the key characteristics in this simulation. After
choosing the policy language, ontology is used to describe all
the elements in rules and the relationships between rules. This
ontology can be described by using OWL. In the Myspace
example, we can include two elements and a relationship from
Myspace domain (domain A) in this way, "birthday is the
resource; friends are the subjects; reading action is the
relationship between them."

The second step is to derive an intermediate-level model
from the mathematical or logical model and the system model.
In this step, elements and relationships in the system model
ontology are merged with the mathematical or logical model for
next step process. For example, the set of common elements
used in privacy profile configurations for most social
networking sites reflects general practices in this industry. The
logical model accommodating these common elements is
merged with the policy language (XACML)'s system model
used for Myspace (domain A) privacy rule specification. In this
step, we assume that both the system (policy) model and the
logical model can be represented by ontology similar to that of
typical social network elements. Then, elements in the

intermediate-level model can be split naturally into a common
part ontology and a special part ontology. The common part
ontology includes the merged elements having direct
correspondence between the system model and the logical
model. The special part ontology includes those unique
elements in the system model. We use a comprehensive
mapping mechanism to translate the system model into an
intermediate-level model, which utilizes ontology-based
mapping and query-based mapping to find correlations
between the system model and the logical model. The
intermediate-level model is built from a tailored logical model
(merging with system model elements) combined with certain
extensions from unique system model elements.

The third step is to map the intermediate-level model to
available low-level enforcement mechanisms from another
domain (domain B) using query-based construction. Then this
top-down mapping returns all the unsupported elements in the
intermediate-level model back to the administrator (or user). So
the user can amend this problem by modifying high-level
policies or extend low-level mechanisms. There are two merits
of this architecture. The first one is that users can choose their
high-level policy languages to support the most usability they
want; the second one is that the domain administrator can
introduce a new core logical model when it is more appropriate
for the enforcement task's target. In this step, one important
requirement (assumption) is that low-level enforcement
mechanisms should provide a clear specification of APls for
query-based construction of mapping between the
intermediate-level model and low-level mechanisms. In the
Myspace example, all the mapped APls in the low-level
mechanisms are matched with their corresponding elements in
the intermediate-level model and recorded in an OWL file.
Then this OWL file can be used to help generate enforcement
code automatically for Facebook domain. Unmapped elements
in the intermediate-level model are also recorded in the OWL
file for further notification. Figure 4 illustrates the entire policy
enforcement process.

After these three steps, this policy enforcement simulation
environment can tell the system administrator (or user) whether
a local policy set can be enforced in a partner domain. If not
entirely, how many policy rules can be enforced in the partner
domain's execution environment. As a byproduct, those
mapped policies can be translated into enforcement code
automatically. If too few policy rules are supported by the
low-level mechanisms in the partner domain's execution
environment, the administrator (or user) can decide to modify
policy rules or work with partner domain's administrator for
developing a plan to manually code unsupported policy rules.
Thus, both the system administrator's and the developer's
workload can be reduced dramatically.

VI. CASE STUDY

To illustrate the full capability of our proposed simulation
framework, we discuss a real world application in this section.
Our objective is to provide a simulation environment for
evaluating the possibility of cross-domain policy enforcement.
Policy modeling and partial code generation are by-products
that can be used for real enforcement in future development and
deployment. Through the case, we will show how the policy
model and mathematical or logical model are formed; how

partial code is automatically generated; how we can apply this
simulation environment in different applications using its
different aspects? In this case study, the entire simulation
architecture is applied in a healthcare environment. In this
environment, system administrators need to define policies
following HIP AA and other regulations for all electronic
medical records and other digitized information; doctors and
medical specialists can define security policies for medical
records; and patients can define their own security policies and
access control to authorize utilization or disclosure of their own
information.

PRIVACY fLOW

InfOfm.tloo A« ...
Rec}' t hom ott.

donulM

Figure 5. Federated Information and Control Flows

Between Hospital and Pharmacy Domains

As illustrated in figure 5, system interactions between the
hospital domain and the pharmacy domain, and different
components within one domain are through web services.
Security policies for security flows are described in
WS-SecurityPolicy and WS-Security formats, which are used
for security protections of medical records and access control
of other patient information. Trust policies for trust flows are
described in WS-Trust format for cross-domain federation
activities. Privacy policies for privacy flows are described in
WS-Policy format for privacy protections within and across
domains. These policies need to be enforced in local domain as
well as in domains involved in interactions. Our simulation
environment can help system administrators decide the
possibility of policy enforcement across domain boundaries
before real policy deployment. As a byproduct, partial
enforcement code can be generated automatically. For example,
the system administrator at the hospital domain defines a set of
security policies to regulate access of different types of
healthcare information through web services. Then, to facilitate

federation activities across domains, the hospital domain and
the pharmacy domain both need to define trust establishment
policies and token exchange policies for negotiating trust and
validating trust relationships also through web services.
Besides, to protect their own privacy, patients also can define a
set of privacy policies to selectively disclose their healthcare
information from the hospital domain to the pharmacy domain
if it is necessary. White, grey, and black arrows represent these
three types of information and control flows respectively. Our
simulation environment can help analyze the possibility as well
as an estimated workload to enforce these different types of

policies over domain boundaries.

A. Logical model of health care systems

Privacy policy enforcement is especially important in
healthcare systems, since HIP AA includes a clear declaration
of patient privacy requirements. Protected Health Information
(PHI) under HIP AA is individually identifiable health
information. Identifiable information not only refers to data
that is explicitly linked to a particular individual but also
includes health information with data items that can reasonably
be expected to allow individual identification. Under HIP AA
"safe harbor" standard, information is considered
de-indentified if all of the above have been removed, and there
is no reasonable basis to believe that the remaining information
could be used to identifY a person.

There are also other HIPAA rules for Security, Identifier, and
Transaction and Code Set, such as "without obtaining the
individual's authorization, covered entities are permitted to
utilize or disclose PHI to the individual to whom the PHI
pertains, for purposes of TPO (healthcare operations), to another
covered entity for the healthcare operations of the entity
receiving the information, with valid authorization, if the
covered entity has received the individual's oral agreement for
the use of the PHI, and in instances where the law requires such
disclosure." HIP AA also includes clear definitions for security
and trust policies in healthcare environments, such as person or
entry authentication, workforce security, transmission security,
security management policies, and etc. All of these policies can
be translated into formal mathematical or logical model for
enforcement.

B. System model of health care systems

In the healthcare environment, the system model for three
types of policies needs to be established for simulation. For
privacy policies, we use XACML policy language to represent
and build system model with a similar procedure described in
section 6.1. For security policies, due to the fact that healthcare
systems distribute their privileges to different roles, there are
different ways to support confidentiality, integrity,
authentication, and other security services. So we use the
formal WS-Security and WS-SecurityPolicy specification to
build the system model for these requirements. For trust
policies, WS-Trust specification formally describes the way
trust can be established and maintained in the web services
environment. So it is used to construct the trust-related part in
the system model.

C. Implementation

Following the simulation architecture, we generate the

system model from specifications of XACML, WS-Security,

WS-SecurityPolicy and WS-Trust into an OWL-formatted

ontology as the first step. Then the system model maps to the

logical model and returns a common part ontology and a special

part ontology. Both of these two parts are included in the

intermediate-level model. Finally, we use a query-based

construction to map the intermediate-level model to low-level

enforcement mechanisms. The possibility of cross-domain

enforcement is then determined by the domain administrator

considering how many policy rules don't have supporting

low-level mechanisms, how much code is automatically

generated by the simulation environment, and how much code

still needs manual development.

VII. DISCUSSION

The core of this simulation environment is the proposed new
policy enforcement architecture, which can evaluate potential
cross-domain policy deployment through model-driven
mapping and translation. The critical part of the policy
enforcement architecture is the intermediate-level modeling
and translation, which transforms high-level policies into
formal models and maps these formal models to low-level
enforcement mechanisms. This enforcement architecture can
not only simulate cross-domain policy enforcement but also
have the potential to be used in real policy development and
deployment.

The major contribution of this policy enforcement
architecture is in workflow innovation. Traditionally, policy
development and deployment need three steps - policy rule
definition and formation (by administrative personnel), policy
rule translation (by technical staft) , and enforcement code
development (by programmers). But the gap between step two
and step three needs substantial knowledge and experience for
programmers. Our enforcement architecture tries to absorb the
knowledge from the technical staff to build a policy model for
each policy language and automate the tedious translation
process (code development) from policy language to
executable code using semantic mapping and query-based
mapping. Compared with traditional approaches, our
enforcement architecture connects high-level policy languages
to low-level enforcement mechanisms by using an automatic
model-driven process. Meanwhile, enforcement code
previously requiring manual development can be generated
automatically if proper APIS or formal descriptions for
low-level mechanisms are available. For those unmapped
elements in the intermediate-level model, our enforcement
architecture can also estimate future manual coding effort. But,

on the other side, we require an application of our enforcement
architecture should provide a formal model for each type of
policy and each policy language, or support formal modeling of
existing policy languages. We also assume a proper API exists
for low-level mechanisms if code generation is desirable.

In the implementation of the case study, policy modeling,
mapping and transformation are transparent to user. The
graphic user interface can help user monitor the correctness of
mapping and transformation. The effectiveness of policy
enforcement simulation is predicated on the correct
construction of mapping rules. Use of semantic ontology
language to represent models used in different steps such as
Web Ontology Language (OWL) can guarantee correct

processing in the entire simulation. As long as policies can be
correctly represented in ontology [2], whether security policies,
trust policies, authorization policies or privacy rules that need
modeling and processing does not matter. The usability of this
simulation environment can be further improved by providing
more user monitoring interfaces [4,5].

A comparison with other enforcement architectures can help
illustrate merits as well as identify this architecture's potential
applications in real (future) development and deployment of
policy enforcement systems. We list two representative
enforcement architectures below for comparisons.

A. An enforcement mechanism for run-time security policies -
In this mechanism [8], policies can be enforced by monitoring
and modifying programs at run time, such as Edit Automata [2].
In Edit automata, program monitors are abstract machines that
examine the sequence of application program actions and
transform the sequence when it deviates from a specified policy.
Security properties are enforced in this mechanism by a
monitor program that runs in parallel with a target application
program. Whenever the target program wishes to execute a
security relevant operation, the monitor first checks its policy to
determine whether or not that operation is allowed. If the target
program's execution sequence is not in the property, the
monitor transforms it into a sequence that obeys the property.
This mechanism has two major considerations. This first one is
that the final output of a monitored system must obey the policy.
Consequently, bad programs that would otherwise violate the
policy must have their executions modified by the enforcement
mechanism. The second one is transparency, which means
whenever the un-trusted program obeys the policy in question,
a run-time enforcement mechanism should preserve the
semantics of the un-trusted program. But it still requires expert
level knowledge of security properties and policies so that an
interpreter is still needed to use this mechanism.

B. Antigone system - In Antigone system [9], there are three
levels of policies are defined for communication systems:
application-level policy, enterprise-level policy, and session
policy. The Antigone framework fills the gap between policy
representation and enforcement by implementing and
integrating the diverse security services needed by policies.
Policies are enforced by run-time composition, configuration,
and regulation of security services. Antigone does not
implement policy-enforcing software, but provides APIs and an
associated framework for its definition and use. A central
element of the Antigone enforcement architecture is a set of
mechanisms that provide the basic services needed for secure
groups. Policies are implemented by the composition and
configuration of these mechanisms. Thus, Antigone does not
dictate the available security policies to an application, but
provides low-level mechanisms for implementing them. The
centralized control mechanism needed for all enforcement
activities in Antigone system can neither be distributed nor be
applied across domain boundaries. The semantic gap between
policy languages and enforcement mechanisms also exists in
Antigone system.

Both systems described in A and B (system (2) and (3)

thereafter in this section) have their own advantages and

disadvantages. But to understand the merits of new

enforcement architecture (system (1) thereafter in this section)

used in our simulation environment, we need to compare this

new architecture with system (2) and (3) form different aspects

listed in Table I. From the aspect of architectural hierarchy,

system (1) and (3) use a three-level hierarchy, which helps to

construct a bridge over the gap between the top-level and

bottom-level. System (1) is also policy independent. For

storage, system (1) uses OWL representation file to store its

policy models. System (2) stores and monitors its configuration

files. System (3) maintains its session-specific policy instances.

For core operations, system (1) is based on a web environment

for cross-domain enforcement, and system (2) enforces only

system properties, which the core mission of system (3) is to

regulate sessions and subsequent system provisions. For

usability, system (1) can be performed automatically or

manually; system (2) has to have supports from operating

systems; system (3) has the limitation that its users have to

develop software using its Antigone framework through its

APIs. The time complexity of system (1) is O(n2), while for

both system (2) and (3), the time complexity becomes a

NP-Complete problem. For dynamicity or flexibility, system (1)

and (2) support dynamic policy enforcement.

(2)
(1) Our Enforcement

(3) Antigone
enforcement mechanism for
arch itecture run-time

system

security pol icies
Hierarchy Three levels Two levels Three levels
Policy

yes no no
Independence

OWL

Storage
representation configuration session-specific
file of policy file monitors policy instance
models

A session-specific
policy instance is

Our created by an
architecture initiator through
provides a monitors are the reconcil iation

Operation
web-based used to enforce algorithm. The
environment for system instance is
monitoring properties subsequently used
cross-domain to regulate the
enforcement seSSlOn and

subsequent
provisions

Automatically
mapping
high-level
language to The monitor Users have to
low-level must has develop software

Usability enforcement support of base on Antigone
architecture + operating framework by
Manually system using the APIs.
assistance
mapping
correction

Time
O(n2) NP-Complete NP-Complete

complexity
Dynamic
policy yes yes no
enforceable

Table 1. Comparison of Different Architectures

VIII. CONCLUSION

Policy-based management provides a flexible way for

security management, privacy protection and adaptive access

control, when multiple domains cooperate or collaborate to

finish a common goal. It requires system administrators to

consider the possibility of integrating or interconnecting two or

more domains when these domains have different policy

definitions and different policy enforcement mechanisms, and

estimate the workload for this cross-domain policy

enforcement effort if it is necessary. This paper introduces a

simulation environment to help to do so to evaluate the

possibility before software development or system rebuild. The

central part of this simulation environment is a new

enforcement architecture to provide an intermediate-level

component for mapping processing and configuration

recording. Each pair of domains can establish one

intermediate-level component for cross-domain enforcement.

Once this intermediate-level component is created, it can be

re-mapped and manually modified at any time. This

intermediate-level component can also be extended to more

than two domains. Then the entire request from partner

domains will be processed and mapped through this

enforcement architecture to decide the possibility for

cross-domain enforcement. Code can also be automatically

generated based on these mapping results. Following the study

cases, the advantages of this enhanced new enforcement

architecture are confirmed and can be summarized into three

merits: Administrators and users can choose their high-level

policy languages with the most expressive capability; domain

administrators can change the core mathematical or logical

model when it is more appropriate for system controls or

low-level enforcement mechanisms; the translation and

mapping in the intermediate-level is flexible.

RE FERENCES

[I] v. Crescini, Y. Zhang, W Wang, "Web server authorization with the
policyupdater access control system," Proc. 2004 IADIS WWW/lnternet
Conference, vol. 2, 2004, pp. 945-948.

[2] Vladimir Kolovski, Bijan Parsia, Varden Katz, and James Hendler,
"Representing Web Service Policies in OWL-DL," Y. Gil et al. (Eds.):
ISWC 2005, LNCS 3729, 2005, pp. 461-475.

[3] OASIS, "eXtensible Access Control Markup Language (XACML)
Version 2.0," Feb. 2005, http://docs.oasis-open.org/xacml/2.0/access_
control -xacml-2.0-core-spec-os.pdf

[4] Uszok, A, Bradshaw, Lott, 1 Breedy, M , Bunch, L.,Feltovich, P.,
Johnson, M. and .lung, H., "New Developments in Ontology-Based Policy
Management: Increasing the Practicality and Comprehensiveness of
KAoS," IEEE Workshop on Policy 2008, IEEE Press.

[5] Uszok, A, Bradshaw, 1, JetTers, R., Johnson, M., Tate A., Dalton, 1,
Aitken, S., "KAoS Policy Management for Semantic Web Services," In
IEEE Intelligent Systems, Vol. 19, No. 4, July/August 2004, pp. 32-41.

[6] Ralph Gross, Alessandro Acquisti, "Information Revelation and Privacy
in Online Social Networks," ACM Workshop on Privacy in the Electronic
Society (WPES), 2005.

[7] Catherine Dwyer, Starr Roxanne Hiltz, 'Trust and privacy concern within
social networking sites:A comparison of Facebook and MySpace,"
Proceedings of the Thirteenth Americas Conference on Information
Systems, Keystone, Colorado August 09 - 12 2007.

[8] .lay Ligatti, Lujo Bauer, David Walker, "Edit automata: enforcement
mechanisms for run-time security policies ", International Journal of
Information Security, Volume 4, Numbers 1-2, February 2005, pp. 2-16.

[9] Patrick McDaniel, Atul Prakash, "Enforcing provisioning and
authorization policy in the Antigone system", Journal of Computer
Security, Volume 14, Number 6,2006, pp. 483-511.

