
A Policy-based Approach

for Assuring Data Integrity in DBMSs

Hyo-Sang Lim

Department of Computer Science

Purdue University

Chenyun Dai

Department of Computer Science

Purdue University

Elisa Bertino

Department of Computer Science

Purdue University

West Lafayette, Indiana 47907

hslim@cs.purdue.edu

West Lafayette, Indiana 47907

daic@cs.purdue.edu

West Lafayette, Indiana 47907

bertino@cs.purdue.edu

Abstract-Data integrity is crucial for collaborative activities
where information is shared among multiple organizations to
effectively make cooperative and mission-critical decisions. As
suring data integrity is particularly challenging in the presence
of frequent data modifications by collaborative parties, especially
for large-scale collaborations. However, data integrity is difficult
to grasp with a single concept or a single model since the
definition can vary depending on the goals and requirements
of the collaboration. To address this multi-faced feature of data
integrity, we propose a policy-based approach by which one can
specify data integrity policies according to the requirements of
collaborations and enforce the policies on DBMSs, an essential
software component for large-scale collaboration activities. We
first introduce our integrity policy language, which provides
comprehensive framework for specifying and enforcing integrity
policies based on access control, data validation, and metadata
management functions. Next, to make our policy language work
with existing off-the-shelf DBMSs, we present an integration
strategy which we call language level integration (LLI). T he LLI
strategy enforces integrity policies by automatically translating
high-level integrity policies, expressed in our policy language,
onto low-level database operations. Compared to alternative
approaches, the LLI strategy can be easily implemented since it
does not require modifications to the source code of the DBMS or
to the code of the applications running on top of the DBMS. Also,
with the LLI strategy, the policies cannot be bypassed regardless
of which database interface is used by the applications since
the policies are implemented by DBMS functions and objects,
and then, automatically enforced by the DBMS itself. We then
present a software architecture of implementing the integrity
policy language with the LLI strategy for a real DBMS (Oracle)
and show that our strategy can easily implement well-known data
integrity models.

I. INTRODUCTION

Data integrity is crucial for collaborative actIvItIes where

organizations share information within and across the orga

nizations so that analysts and decision makers can analyze

the data, mine the data, and make cooperative and mission

critical decisions effectively. The problem of data integrity

becomes particularly challenging for large-scale collaborations

in which parties make frequent data modifications. Without

integrity, collaborations among multiple organizations cannot

be successful since the usefulness of data becomes diminished

as any information extracted from them cannot be trusted with

sufficient confidence.

Despite the significance of the problem, theoretical/technical

solutions available today for integrity are still very limited. A

key difficulty comes from the fact that the concept of integrity

is difficult to grasp with a precise definition. The most widely

accepted definition of integrity is perhaps prevention of unau
thorized and improper data modification [1]. This definition

also seems to coincide with the primary goal of Clark and

Wilson's approach, "preventing fraud and error" [5]. Another

well-known interpretation of integrity concerns the quality
and trustworthiness of data [3]. Inspection of mechanisms

provided by database management systems (DBMSs) suggests

yet another view of integrity. Many commercial DBMS today

enable users to express a variety of conditions, often referred

to as integrity constraints, that data must satisfy [6]. Such con

straints are used mainly for data consistency and correctness.
This multi-faceted concept of integrity makes it challenging

to adequately address integrity, as different definitions require

different approaches. For instance, Clark and Wilson address

the issue of improper data modification by enforcing well

formed transactions and "separation of duty" [5], whereas

the Biba's integrity model prevents possible data corruption

by limiting information flow among data objects [2]. On the

other hand, many current DBMSs ensure data consistency by

enforcing various constraints, such as key, referential, domain,

and entity constraints [6].

To address the problem of high-assurance data integrity, we

propose a policy-based approach by which one can specify

high-level data integrity policies according to the requirements

of collaborations and enforce the policies on DBMSs. Our

policy-based approach is based on the following elements:

• A reference architecture for integrity management which

supports both integrity-related access control and data
validation.

• The notion of integrity metadata template for specifying

metadata information relevant for integrity.

• A flexible integrity control policy language able to ad

dress several integrity requirements.

• An approach for automatically enforcing integrity poli

cies and metadata templates on top of existing DBMS.

The last element is a crucial component of our solution in

that it makes possible to deploy our high-assurance integrity

ziglio
Typewritten Text
COLLABORATECOM 2010, October 9-12, Chicago, USACopyright © 2011 ICST DOI 10.4108/icst.trustcol.2010.4

solution as a layer on top of current DBMS. Because such

layer implements our integrity policy language, our solution

achieves the goal of providing an integrity solution which does

not require modifications to the source code of the DBMS and

at the same time does not require modification to the code of

the applications running on top of the DBMS.

In this paper, we first introduce our integrity policy language

which is developed as part of our previous work [4] and

extended for use in DBMSs. We then present integration

strategies to make our policy language work with existing

off-the-shelf DBMSs. We consider three alternative strategies,

namely integration at source code level, at application level,

and at language level. Based on a comprehensive analysis, we

identify the language level integration (LLI) strategy as the

best since it is not only the easiest to implement but it also

achieves a robust enforcement of policies. The LLI strategy

can be easily implemented on top of current DBMSs since it

does not require modifications to the source code. Since the

LLI strategy utilizes DBMS built-in facilities such as triggers,

it also provides a robust enforcement of integrity policies

regardless of which database interface (e.g., web-database

gateway, call level interface (CLI), ODBCIJDBC driver) is

used by the applications running on top of the DBMS.

Finally, we provide a software architecture for implementing

the integrity policy language according to the LLI strategy

and discuss in details our translation approach for a specific

DBMS, that is, Oracle. We also show that our strategy can

easily implement well-known data integrity models such as

Biba's model.

The remainder of this paper is organized as follows. Sec

tion II introduces our integrity policy language. Section III

introduces the three implementation strategies for the integrity

policy language and analyzes the advantages and disadvan

tages of each strategy. Section IV introduces the architec

ture implementing the integrity policy language according

to the LLI strategy and discusses the automatic translation

of integrity policies onto Oracle DBMS. Section V reports

the results of the automatic translation, whereas Section VI

concludes the paper.

II. INTEGRITY POLICY LANGUAGE

The integrity policy language represents a flexible mech

anism to specify which actions the database system should

take in order to assure data integrity. In what follows, we

first describe a language for specifying metadata for man

aging integrity policies and then present our integrity policy

language which supports both data validation and integrity

related access control. The integrity policy language has been

designed based on the relational data model since this model

is supported by almost all DBMSs. The language also targets,

for the component concerning access control, the role-based

access control (RBAC) model since this model is the most

popular access control model in many application domains

and supported by almost all DBMSs. Therefore, we consider

the data objects to be data items (i.e., tuples) in tables (i.e.,

relations), and the subjects, that is, the active entities accessing

and manipulating the data objects, to be users belonging to

roles in a RBAC system.

A. Metadata specification language

In this paper, we refer to information based on which data

integrity is determined as metadata. Such information can

vary depending on the type of data and/or the requirements

of collaborations. For instance, one can evaluate the integrity

of a particular data item based on the role which created the

data, the source from which the data is obtained, or the value

of some other data items that are related to the data. To allow

the application to specify and manage this information, we

introduce the notion of metadata template which is an abstract

data structure for metadata.

Metadata templates are thus the basis of the specification

and enforcement of integrity policies and are specified by

the metadata specification language. Therefore, metadata tem

plates are essentially pre-defined, specific descriptions (e.g.,

names and types of attributes) of data, which are relevant for

the integrity of objects (i.e., data items). Metadata templates

are also defined for the subjects (i.e., users) to describe various

attributes of the subjects, which are necessary to make integrity

related access control decisions. In our language, metadata

templates for objects are defined at the table level and metadata

templates for subjects are defined at the role level. This means

that every data item in a table or every user belonging to a

role is associated with the same metadata templates.

In addition to defining a set of attributes for a table or a role,

metadata templates also specify how each defined attribute

should be initialized and managed. More specifically, each

attribute in a metadata template is associated with a specific

method which determines the value of the attribute; that is,

an attribute is registered with a default value, a designated

function, or a system variable such as $USER or $TIME.

Except for the attributes that are registered with default

values, the attribute values must be updated only through the

registered procedure or a system variable. We note that such

controlled management of the metadata attributes is necessary

to guarantee the integrity of metadata values.

When a new data item is introduced to a system, an instance

of metadata template (i.e., a metadata item) is created for

the data item, according to the metadata template specified

for the type of the data item. Then this metadata object is

associated with the data item throughout its life-cycle; that

is, whenever an access to the data item is requested, the

metadata item is retrieved and possibly updated according

to the related integrity control policies. Similarly, when a

user activates a role, a metadata item is instantiated from the

metadata template specified for the role. This metadata item is

associated with the user and used for managing data integrity

until the user deactivates the role. A metadata template is

created according to cOlmnands specified as Syntactic Rule

1.

We can see from Syntactic Rule 1 that the cOlmnand for

creating metadata templates is similar to that for defining

Syntactic Rule 1: Create Metadata Template

CREATE MD-TEMPLATE template_name FOR targectype : target {
aUr _namel aUr _typel : attribute_description I ;

}

where:

o template_name : the unique identifier for the metadata template.
o targectype table, role. If targectype is 'table', the metadata

template is created for the relational table whose name is target.
If targectype is 'role', the metadata template is created for the set
of users whose role is target.

o target : the name of a table or a role corresponding to the metadata
template.

o attr _name; : the name of the i-th attribute.
o allr _type; : the data type of the i-th attribute.
o attribute_description; : the registered method for the i-th attribute,

which may be a specific value, a function, or a system-variable. D

a table in relational DBMSs. However, in addition to the

specification for attributes such as names (attr _name) and
types (attr _type), Syntactic Rule 1 specifies which table or
role should be associated with the metadata template (target

and targectype) and the methods for initializing the value of
each attribute (attribute_description).

B. Integrity policy specification language

Like metadata templates, an integrity control policy is speci

fied for a particular table and enforced on every tuple in the
table. There are two kinds of policies in our framework: access

control policies (ACPs) and data validation policies (DVPs).
ACPs are essential for integrity control as modifications to data
may have a direct impact on data integrity. The ACPs are also
necessary for addressing the issue of undesirable information
flow (e.g., [2]) through a series of retrieval and modification
operations. Compared to the conventional access control in

DBMSs, we note that the purpose of the ACPs is to prevent
'improper' accesses, not 'unauthorized' accesses. That is, the
ACPs do not deal with whether or not users have proper
privileges to access data, but only deal with whether or not

data are properly accessed by authorized users. The other key

component of our integrity control policy is represented by
the DVPs which govern the continuous process of monitoring

and/or enhancing the integrity of data. Compared to the ACPs,
a unique characteristic of the DVPs is that they monitor
the data independently from accesses or modifications. This

kind of autonomous monitoring process is essential when the
integrity of data depends on dynamic factors such as time or

real-world events. Compared to the ACPs which only consider

the data item accessed, the DVPs can verify all data items in
a table to enhance overall data integrity. ACPs and DVPs are

defined according to Syntactic Rule 2 and 3, respectively.

In Syntactic Rule 2 and 3, the WHEN-clause specifies the

particular event that triggers the specified policy. The ACPs

are triggered only by access requests (ac_event) while the
DVPs may be triggered by either access requests or some

user-defined events (event). The user-defined events include a
time event (i.e., the event occurs for each certain time period),

a counter event (i.e., event occurs for every certain number

Syntactic Rule 2: Create Access Control Policy (ACP)

CREATE ACP acp_name FOR (table_name, role_name) {

}

WHEN ac_event;
IF condition;
THEN then_decision: then_action;
ELSE else_decision: else_action;

where:

o acp_name : the unique identifier for the Aep.
o table_name: the name of the table on which the policy is enforced.
o role_name: the name of role who invokes the policy in a certain

event.
o ac_event represents an access request {Read, Insert, Update,

Delete}.

o condition is a set of boolean-expression primitives which may be
conjuncted, disjuncted, or negated with the boolean operators 1\, V,

and �, respectively.
o then_decision, else_decision : is an access control decision which is

one of {Allow, Deny}.
o then_action, else_action represents an action to be taken as a

consequence of the corresponding access control decision. An action
is either a procedure invocation or a metadata update. D

Syntactic Rule 3: Create Data Validation Policy (DV P)

CREATE DVP dvp_name FOR table_name

}

WHEN eventl, ... , eventz;
IF validationJJrocedure;
THEN then_action;
ELSE else_action;

where:

o dvp_name: the unique identifier for the DVP.
o table_name : the name of the table on which the policy is enforced.
o eventko k = 1, ... , I, represents either an access request {Read, Insert,

Update, Delete} or a user-defined event such as a specific time or a
particular situation that triggers the specified validation policy.

o validationJJrocedure is a designated function which validates the
data instances of table_name. It returns true if the validation
succeeds; otherwise, it returns false.

o then_action, else_action represents an action to be taken as a
consequence of the data validation. An action is either a procedure
invocation or a metadata update. D

of new data tuples), and alarms (or signals) from outside the

system.

The IF-clause in an ACP contains a condition (condition)

that checks various metadata attributes in order to determine
the integrity of the data. After evaluating the condition, ei

ther the THEN-clause or the ELSE-clause is executed. Each
THEN-clause and ELSE-clause contains an access control de
cision (then_decision, else_decision) which may be either al
low or deny, and also a set of actions (then_action, else_action)

that should be taken subsequently. Possible actions include

updating metadata attributes or invoking necessary procedures.

The IF-clause in a DVP contains a data validation procedure
which returns the result of the data validation. Like in ACPs,

each THEN-clause and ELSE-clause in DVPs specify a set
of actions that should be taken according to the result of the

validation procedure.

C. Running Example

For illustrating how metadata templates and integrity control

policies are specified and enforced to address various integrity

requirements, we introduce a simple usage scenario.

1) A Simple Application Scenario: A Financial Company:

This application scenario concerns a fictitious financial com

pany, IntegrityEqualsMoney (IEM). The goal of IEM is to

provide its customers with the accurate assessment of the

future stock values for the world's leading companies. In order

to accomplish its goal, IEM collects financial data from many

sources, analyzes them, and produces its assessments. Inter

nally, the company has employees organized to roles according

to their functions. More specifically, Data Collectors (DC)

produce Collected Data (CoD), and Stock Analysts (SA)

analyze CoD and produce Analytical Data (AnD). Both CoD

and AnD are used by SA to produce the final assessment data.

Due to the nature of its business, IEM considers the integrity

of data a top priority at all times. The integrity requirements

for DC and DoC are summarized as follows.

• IRl (information-flow): Every DC and SA is assigned

a trust level based on hislher records of performance

and analytical accuracy. As the trust levels may change

dynamically, the trust levels should be computed by

using a designated function, getTrustLevel($USERID),

whenever needed. Here, $USERID is a pseudo-variable

representing the ID of the current user.

• IR2 (information-flow): A DC can create or modify CoD

items unless hislher trust level equals O. When a DC

creates or modifies a CoD item, the trust level of the

DC must be reflected on the confidence level of the CoD

item. The confidence level reflects how much we can be

sure about the correctness of the item.

• IR3 (data verification): CoD can be decisive factors in

the stock value assessment. Thus, if the confidence level

of a CoD item is less than a specific level, c, the item

must be verified by a predefined verification procedure,

verifyCoD(this) before it is referenced by SA.

• IR4 (information-flow): A SA may also create CoD items

if it is necessary for his/her analysis, and such a CoD

item's confidence level is determined by the trust level

of the SA who has created it. However, in order to create

CoD, a SA must have a trust level higher than a specific

level, t.

• IRS (information-flow): The confidence level of an AnD

item is determined by the trust level of the SA who has

created or modified the AnD item.

• IR6 (information-flow): Some SAs (whose trust levels are

less than a specific level, g) are in their training, and they

can create AnD items, but should not modify any AnD

item that has a confidence level greater than g.

2) Metadata Templates and Integrity Control Policies for

the Running Example: IRI is addressed by the metadata

templates template-DC and template-SA defined as follows.

With these metadata template definitions, whenever a user

activates either a DC or SA role, an integer type trust level

is assigned to the user based on the result of the user defined

function, getTrustLevelO.

CREATE MD-TEMPLATE template-DC FOR role: DC {
trustLevel integer: getTrustLevel($USERID);

CREATE MD-TEMPLATE template-SA FOR role: SA {
trustLevel integer: getTrustLevel($USERID);

}

IR2 is addressed by the metadata template template-CoD

and the ACP ACP-IR2 defined as follows. In the ACP,

DC.trustLevel and CoD.confidenceLevel represent the attribute

values of the metadata items corresponding to a DC who

inserts or updates a CoD item and to a CoD which is inserted

or updated by the DC, respectively.

CREATE MD-TEMPLATE template-CoD FOR table: CoD {
confidenceLevel integer: 0; II a default value
verified boolean: false; II a default value

CREATE ACP ACP-IR2 FOR (CoD, DC) {
WHEN Insert, Update;

IF (DC.trustLevel i= 0);

THEN

ELSE

Allow: (CoD.confidenceLevel = DC.trustLevel);

Deny: Do Nothing;

IR3 is addressed by the DVP DVP-IR3 and the ACP ACP

IR3 defined in what follows. With the DVP, whenever a CoD

item is about to be read, the CoD item is first verified by

the specified function, and then, the result is recorded in the

metadata. With the ACP, a CoD item can be read by a SA

only if its confidence level is greater than or equal to c or it

has been verified successfully.

CREATE DVP DVP-IR3 FOR CoD {
WHEN Read;
IF verify CoD(this);
THEN (CoD. validated = true);
ELSE (CoD. validated = false);

CREATE ACP ACP-IR3 FOR (CoD, SA) {
WHEN

IF

THEN

ELSE

Read;

(CoD.confidenceLevel 2: c) OR (CoD. verified = true);

Allow: Do Nothing;

Deny: Do Nothing;

IR4 is addressed by the ACP ACP-R4 defined in what

follows. With the ACP, a SA can create a CoD item only

if hislher trust level is greater than t; the confidence level of

the CoD item is determined by the trust level of the SA who

creates it.

CREATE ACP ACP-R4 FOR (CoD, SA) {
WHEN Insert;

IF (SA.trustLevel > t);

THEN

ELSE

Allow: (CoD.confidenceLevel = SA.trustLevel);

Deny: Do Nothing;

IRS is addressed by the metadata template template-AnD
and the ACP ACP-R5 defined in what follows. With the ACP,

any SA can create an AnD item; the confidence level of such

an item is determined by the trust level of the SA who creates

it.

CREATE MD-TEMPLATE template-AnD FOR table: AnD {
confidenceLevel integer: 0; II a default value

}

CREATE ACP ACP-R5 FOR (AnD, SA) {

}

WHEN Insert;

IF (SA.trustLevel ;::: 0);

THEN Allow: (AnD.confidenceLevel = SA.trustLevel);

ELSE Deny: Do Nothing;

IR6 is addressed by the ACP ACP-IR6 defined in what

follows. With the ACP, a SA can modify any AnD item if

his/her trust level is greater than f!. However, if his/her trust

level is less than or equal to f!, then the SA can modify only

AnD items with confidence levels less than or equal to f!.

CREATE ACP ACP-IR6 FOR (AnD, SA) {
WHEN Update;

IF

THEN

ELSE

(SA.trustLevel > l') or (AnD.confidenceLevel ::; l');

Allow: (AnD.confidenceLevel = SA.trustLevel);

Deny: Do Nothing;

From the examples, we can see how our integrity policy

language can describe arbitrary and complex application

specific integrity requirements which cannot be captured with

a single integrity model.

III. THREE ALTERNATIVE IN TEGRATION STRATEGIES

Implementing the integrity policy language on top of a

DBMS can be seen as the integration of a new language and

the DBMS. There are some alternative strategies for imple

mentation according to which the database system should be

extended. In this section we discuss three possible strategies,

referred to as source code level integration, application level

integration, and language level integration, respectively. As

shown by Figure 1, each such strategy performs the integration

at a different level. The figure also shows that the component

implementing and enforcing the integrity policies, referred

to as integrity controller, receives two types of input: (i)

statements specifying the integrity policies, expressed in the

language introduced in the previous section; and (ii) queries.

Queries need to be checked to determine whether the query

results comply with the integrity policies. For example, if a

user can only access data with high integrity level, the query

results need to be filtered by discarding data with low level

integrity.

�inlegritYPOlicieS

DBMS
queries

(a) Source Code Level Integration

integrity policies

queries

(b) Application Level integration

. r----- ;n/por;/"po/tcles

: queries

(c) Language Level Integration

Fig. 1. Strategies for integrating integrity policies w ith DBMS.

The source code level integration (SLI) strategy consists

of tightly coupling the integrity controller with the core

DBMS code. Therefore, the integrity policy language is di

rectly implemented by the DBMS. Such strategy is the most

comprehensive and solid, but, obviously, it is the hardest

to implement. Usually, the number of source code lines of

commercial DBMSs is over millions and the source code is

not publicly available. In addition, such strategy would require

a different implementation for each DBMS, thus reducing the

portability of our solution.

In the application level integration (ALI) strategy, data

integrity is assured by a mediator module between the DBMS

and applications. That is, the integrity controller acts as a

mediator. The mediator receives as input both integrity policies

and applications queries and modifies the queries or the query

results according to the integrity policies. The major advantage

of this strategy is that it is easy to implement. It is also DBMS

independent; then the same mediator module can be used for

different DBMSs. However, this strategy also has a major

drawback. To assure integrity, all accesses to DBMS should be

mediated by the integrity controller. If a query is submitted to

the DBMS by bypassing the integrity controller, the integrity

policies will not applied to the query, thus resulting in return

ing data that may violate the integrity policies. Because current

DBMSs provide a large variety of interfaces for accessing the

database (e.g., web database gateways, call level interfaces,

web services, and graphical interfaces), it is very difficult to

make sure that all accesses go through the mediator.

The language level integration (LLI) strategy uses the

DBMS features to implement and enforce integrity policies.

The main idea underlying this strategy is that the integrity

controller compiles the integrity policies into a set of objects

and functions implemented by the DBMS, such as triggers,

views, and auditing functions. Such objects and functions

are automatically executed by the DBMS when queries and

updates are issued. The LLI strategy means that the integrity

language is translated into another language and thus the

main task of the integrity controller is to generate DBMS

understandable statements reflecting the integrity policies de

scribed by our high level specification language. Consequently,

the integrity controller acts as a compiler running on top of the

DBMS. Notice that an important advantage of this strategy is

that the integrity controller does not need to intercept queries

and updates, since the enforcement of the integrity policies is

executed by the DBMS itself. This strategy, which is the one

we adopt in our work, is also the easiest to implement since

it does not require changing the DBMS or the application

code. The LLI strategy also provides, compared to the ALI

strategy, a more secure solution in that it is more difficult

for the applications to bypass the integrity enforcement. The

LLI strategy can be easily ported on top of different DBMS

by minor changes to the compiler for adjusting the integrity

policy translation to specific features of the target DBMS.

I V. DESIGN OF THE LANGUAGE LEVEL

INT EGRATION (LLI) FOR ORACLE DBMS

In this section we discuss the design of the integrity policy

management system (integrity system, for short) according

to the LLI strategy. We use Oracle as our target system as

according to our analysis it is the system that most closely

matches the requirements for the implementation of the in

tegrity system. We first outline the architecture of the integrity

system and then show how the integrity policy language is

automatically translated into the DBMS language.

A. Integrity System Architecture

The integrity policy language translator (see Figure 2) is the

core module of the integrity system implemented according to

the LLI strategy. This module translates the integrity policy

specifications described with metadata template descriptions

into statements expressed by the languages supported by

Oracle, such as SQL and PLlSQL. Specifically, our imple

mentation design uses triggers for detecting events, tables for

managing metadata, and VPD or FGA for simulating select

triggers.

integrity policy specification
(MD·Template, ACP, DVP)

application
queries

Fig. 2. System architecture of the integrity policy management system.

The translator module stores information about the policies

into the policy table which is a relational table managed by

the translator for managing policies registered in the system.

Besides the policy tables, there are two kinds of tables in

the database: 1) target tables which are defined and used

by applications and 2) metadata tables which are defined by

metadata template specifications and used for the integrity

policy control.

The event manager module is an independent process that

detects and handles the database-independent events that are

specified as part of the policies expressed in the DVP speci

fication. As we mentioned in Section II-B, the events that a

DVP can specify include non-database events such as timers,

counters, or specific signals. These kinds of events cannot

be detected only with DBMS built-in facilities; therefore

we include an event manager to periodically execute event

detection.

B. Integrity Policy Language Translator

In this section, we introduce the approach for translating

ACPs and DVPs onto Oracle.

l) Metadata templates: In our LLI strategy, metadata tem

plates are represented as relational tables storing metadata

items. Hereafter, we refer to a relational table created for

a metadata template as metadata table. The integrity policy

language translator automatically translates a metadata speci

fication into SQL statements which create 1) a metadata table

and 2) triggers for managing the metadata table whenever

changes occur in the target. Table I outlines the main steps of

the translation.

Step 1 Create a metadata table for the metadata template
Step 2 Insert initial tuples into the metadata table
Step 3 Create a trigger for new entries in target
Step 4 Create a trigger for deleted entries in target

TABLE I
STEPS FOR CREATE META DATA TEMPLATE

In Step 1, the schema of the metadata table is generated

based on the template descriptions which consist of attr _names

and attr _types. Along with the attributes, the metadata table

also includes key attributes to map each metadata item into

a specific item in target. When the targeCtype is 'table', a

relational table is created for storing metadata of the target

table. There is one-to-one mapping between data items in the

metadata table and data items in the target table. It means that

each item in a metadata table corresponds to a data item in a

target table. For the mapping, the metadata table has the same

key values of the target table. When the targeCtype is 'role',

a relational table is created for storing metadata of all users in

the role. There is also one-to-one mapping between users and

metadata items, thus, the key of the metadata table is user_id

which uniquely distinguishes users in the system.

In Step 2, if some tuples already exist in target, the

corresponding metadata items are inserted into the metadata

table. If the targeCtype is 'table', the initial metadata items for

the items in the target table are inserted. The initial value of the

metadata follows the description in the attribute_description.

If the attribute_description is a value, then all the initial

metadata have a same value. If it is a procedure call, the value

can be obtained from the results of the procedure according to

the attribute values in the target table. When the targeCtype is

'role', the step is same as 'table' tuples but the initial metadata

tuples are generated for the users are currently logged on the

system.

In Steps 3 and 4, triggers to synchronize the target and

its metadata table are generated. Here, 'synchronize' means

that the metadata table stores tuples only for the information

that is actually stored in the target. The triggers automati

cally insert or delete corresponding metadata tuples for the

information which is inserted or deleted for the target. For

the 'table' metadata template, we create an insertion trigger

for generating a new metadata tuple whenever a new tuple

is inserted into the target table. The initial value is decided

by the attribute_description as in Step 2. We also create a

delete trigger for removing a corresponding metadata tuple

whenever a tuple is deleted from the target table. For the 'role'

metadata template, we create a login trigger for generating a

new metadata tuple whenever a user logs into the system. We

also set a logoff trigger for removing a corresponding metadata

tuple whenever a user logs off from the system.

There is an alternative way to handle deletion in the 'table'

metadata template. In Step 1, after creating a table for the

metadata template, we can set a cascading deletion between

the target table and the metadata table. Then, the correspond

ing tuple in the metadata table is automatically deleted when

a tuple in the target table is deleted.

2) Access Control Policies: In our LLI strategy, each ACP

is implemented as a trigger. We create a trigger for an event

described in the acevent of a create ACP statement. In the

body of the trigger, we perform access control based on the de

cision and execute the action according to the evaluation result

of the condition. Triggers for insert, delete, or update events

are trivial to implement since Oracle directly provides trigger

facilities for these kinds of events. However, Oracle does not

support select triggers and so we had to simulate these triggers

by using the Virtual Private Database (VPD) and the Fine

Grained Auditing (FGA) functions of Oracle. Specifically,

we use VPD for access control and FGA for the execution

of the actions. A VPD can dynamically generate additional

query conditions based on the current context of the database.

Therefore, by these additional conditions, we can control that

queries only access (i.e., read) the data tuples allowed by

the ACPs. The FGA function allows one to execute complex

statements (including SQL statements) for auditing purposes

for each tuple accessed by a query. Therefore, by specifying

integrity statements (instead of auditing statements), we can

execute the ACP actions.

The automatic translation of our select triggers onto the

VPD and FGA functions of Oracle is outlined in Table II.

In Step 1, the trigger is defined as a 'BEFORE' trigger

since whether the operation (i.e., insert, update, or delete) can

be allowed or denied is determined by the condition before

Step 1 If aCjvent is Insert, Update, or Delete,
Create a trigger for the event

Step 2 If ac_event is Read,
1) Create a VPD for the access control described in condition

and decision
2) Create a FGA for the execution of action

TABLE II
STEPS FOR CREATE ACP (ACCESS CONTROL POLICY)

the execution. By using PLlSQL, which is Oracle's procedural

extension to the SQL database language, it is straightforward

to specify the body of the trigger. The trigger evaluates the

condition and, if the decision is 'DENY', raises an application

error to halt the operation. For both 'DENY' and 'ALLOW'

decision, we execute the corresponding action to preserve the

data integrity described in the ACP statement.

3) Data Validation Policies: The major difference between

ACPs and DVPs is the event which invokes the policies. An

ACP is invoked when a user in a specific role accesses (i.e.,

read, insert, delete, or update) a specific data. However, in

a DVP, the events can be independent from data accesses.

As we already discussed in Section II, the events for DVP

include timers, counters, or signals from outside the DBMS.

We refer to these kinds of data access-independent events as

user-defined events and in this section focus on how to handle

user-defined events. We omit the translation rule since it is

similar to the translation rule for ACPs.

User-defined events are handled by an independent process,

which we refer to as the event manager. Since Oracle does not

directly support user-defined events, we need to convert each

user-defined event into a DBMS-known event (e.g., insertion)

to then use DBMS facilities such as a trigger. The event man

ager in Figure 2 performs such task by periodically checking

whether a user-defined event has occurred and executing an

insertion into a log if the event has occurred.

V. EVALUAT ION

In this section, to evaluate the effectiveness of the LLI

strategy, we show how very well known integrity models [2]

are easily expressed in our integrity policy languages and then

automatically translated onto the Oracle specific language.

A. Settings

For the evaluation, we implement two well-known data

integrity models with LLI strategy: the Biba model and Low

Water-Mark (LW M) model [2]. In these models, a system

consists of a set S of subjects, a set 0 of objects, and a set

I of integrity level. In our relational database setting, S is a

set of users in the DBMS (or a set of roles), and 0 is a set of

relational tuples in the database. We define a function iLO to

map a subject s E S or a object 0 E 0 into an integrity level

i E I.

The Biba model defines the following two integrity rules:

• No read down rule: s E S can read 0 E 0 if and only if

iL(s) :s: iL(o).

• No write up rule: s E S can write to 0 E 0 if and only

if iL(o) :s; iL(s).

Here, the 'no read down' rule means that a user at a given

level of integrity must not read any tuple at a lower integrity

level. The 'no write up rule' means that a user at a given level

of integrity must not write any tuple at a higher integrity level.

The LWM model is very similar to Biba model. The LWM

model uses the same 'no write up' rule of the Biba model,

but it allows a subject to read data with lower integrity levels.

The LWM model thus replaces the 'no read down' rule of the

Biba model with the following rule:

• Low Water-Mark rule: If s E S reads 0 E 0, then

iL'(s) = min{iL(s),iL(o)}, where iL'(s) is the sub

ject's integrity level after the read.

Here, the 'low water-mark' rule means that when a user reads a

record, his/her integrity level will be changed to the minimum

between the integrity level of the user and the integrity level

of the record.

The application scenario is to maintain the integrity of an

evidence database according to the Biba model or to the

LWM model. The database consists a table evidence whose

attributes are evidence_id, title, content, category, owner. Here,

evidence_id is indexed and has a unique integer value (i.e.,

the primary key of the table). title, owner and content store

the evidence information itself. category has a random integer

value and is used for controlling the selectivity of queries (see

the next paragraph).

B. Metadata Management

Because both the Biba model and the LWM model rely on

the integrity levels assigned to the subjects (i.e., users) and

to the objects (i.e., tuples), we need to record these levels in

a metadata table. We thus create metadata templates for the

evidence table and users in the database. Figure 3 shows the

metadata template specifications expressed with our integrity

policy language.

CREATE MD-TEMPLATE evi_intL FOR table : evidence {
integrity_level number

: initIntegrityLevelEvid(@TARGET.owner)

};

CREATE MD-TEMPLATE user_intL FOR role : all {
integrity_level number

: initIntegrityLevelUser(@TARGET.role)

};

Fig. 3. Statements expressed in our integrity policy language for creating
metadata templates.

The metadata template table evi_intL, created for the target

table evidence, includes only the integrity_level

attribute, which is of integer type and records the integrity

level for each tuple in the evidence table. The initial

value of the integrity_level attribute is assigned by a

PLlSQL procedure ini t Integri tyLevelEvid () based

on the integrity level of the user who has inserted the tuple.

Another metadata template, called user_intL, is created

for the database users in order to record, for each user,

the integrity level. Figure 4 shows the PLlSQL statements

which are automatically generated from the metadata creation

statements by our integrity policy language translator.

CREATE TABLE md_evi_intL (integrity_level number,

CONSTRAINT md_evi_intL_pk PRIMARY KEY() ,

CONSTRAINT md_evi_intL_fk FOREIGN KEY()

REFERENCES evidence() ON DELETE CASCADE);

CREATE TABLE md_user_intL(user_id NUMBER,

integrity_level NUMBER,

CONSTRAINT md_user_intL-pk PRIMARY KEY(user_id»

CREATE TRIGGER md_trg_user_intL_logon

AFTER LOGON ON DATABASE

DECLARE v_userName VARCHAR2(128); v_userId INTEGER;

v_roleId INTEGER; ref_attri NUMBER;

BEGIN

END;

v_userName := USER;

SELECT user_id, role INTO v_userld, v_roleld

FROM userlist WHERE user_name v_userName;

SELECT role INTO ref_attri

FROM userlist WHERE user_name v_userName;

INSERT INTO md_user_intL

VALUES (v_userId,

initIntegrityLevelUser(ref_attri));

CREATE TRIGGER md_trg_user_intL_logoff

BEFORE LOGOFF ON DATABASE

DECLARE v_userName VARCHAR2(128);

v_userId INTEGER; v_roleId INTEGER;

BEGIN

END;

v_userName := USER;

SELECT user_id, role INTO v_userld, v_roleld

FROM userlist WHERE user_name = v_userName;

DELETE FROM md_user_intL WHERE user_id� v_userId;

Fig. 4. PLlSQL statements for the creation of metadata templates in the LLI
strategy.

For the evi intL metadata template, a table

rnd_evi_intL is created with two attributes:

(evidence_id, integrity_level). Here,

evidence_id is a foreign key referring to the

evidence_id column of the evidence table; this

foreign key associates each metadata tuple with a unique

tuple in the evidence table. integrity_level is an

attribute of type NUMBER that indicates the integrity level

of the corresponding data tuple referred by evidence_id.

The table is created with the DELETE CASCADE option

to automatically remove the metadata tuple whenever

the target tuple is removed from the evidence table.

Another table, rnd_user_intL, is created for storing

the user_intL metadata template. It has two attributes:

user_id and integrity_level. user_id is the

primary key of the table and uniquely identifies which user

is associated with a metadata tuple. integrity_level

indicates the integrity level of the user. Next, two triggers are

created for all users. The rnd_trg_user_intL_logon

trigger inserts a metadata tuple for each user in the

rnd_user_intL table whenever the user logs in. The

integrity level of the user is retrieved from a system table

by the initlntegrityLevelUser () PLlSQL function.

The rnd_trg_user_intL_logoff trigger deletes a tuple

of a user from the metadata table rnd_user intL whenever

the user logs out.

Whenever a new data tuple is inserted in the evidence

table, a corresponding metadata tuple is inserted into the

md_evi_intL table (see Figure 5 that shows the ACP

statement for the management of this insertion).

CREATE ACP biba insert FOR (evidence, all) {
WHEN insert;

) ;

IF true;

THEN allow

INSERT INTO @OBJECT.MD.evi_intL.integrity_level

VALUES (@SUBJECT.MD.user_intL.integrity_level);

ELSE deny : NOTHING;

J:i,g. 5. An ACP for managing insertions in the md evi intL table.
Here, the integrity_level value forthenew tuple is

the same as the integrity level of the user who inserts the

record. This ACP statement is automatically translated by our

integrity policy language translator into the PL/SQL statements

shown in Figure 6. The trigger trg_acp_biba_insert in

serts one tuple into md_evi_intL metadata table whenever

a new tuple is inserted into the evidence table.

CREATE OR REPLACE TRIGGER trg_acp_biba_insert

AFTER INSERT ON evidence FOR EACH ROW

DECLARE v_userName VARCHAR2(128); v_lvalue NUMBER;

v_rvalue NUMBER; v_tempi NUMBER;

v_roleId INTEGER;

BEGIN

v_userName := USER;

SELECT md_user_intL.integrity_level INTO v_tempi

FROM userlist, md_user_intL

WHERE userlist.user_name = v_userName

AND userlist.user_id = md_user_intL.user_id;

INSERT INTO md_evi_intL(evidence_id,integrity_level)

VALUES (:NEW.evidence_id, v_tempi);

END;

Fig. 6. SQL statements for the creation of the insert trigger.

C. No Write Up Rule

Figure 7 shows the ACP statement for specifying the 'no

write up rule'.

CREATE ACP biba_no_write_up FOR (evidence, all)

WHEN update

) ;

IF @OBJECT.MD.evi_intL.integrity_level <�

@SUBJECT.MD.user_intL.integrity_level;

THEN allow NOTHING;

ELSE deny : NOTHING;

Fig. 7. 'No write up' rule expressed in our integrity policy language.

The ACP is defined for the evidence table as its object

and all users as its subject. When a user tries to update (i.e.,

write) a tuple in the table, the ACP enforces the 'no write

up' rule. We can see that the 'no write up' rule of the

Biba model can be easily specified by a single statement of

our integrity policy language. In the statement, the rule is

simply represented with a condition in the IF clause and an

access control policy which permits the update only for the

users who satisfy the condition. Our integrity policy language

translator automatically translates the ACP statements into

PL/SQL statements shown Figure 8.

As we can see from the figure, our translator generates

a trigger for controlling the update on each tuple in the

evidence table. The trigger compares the integrity levels

of the user and the tuple. If the integrity level of the user is

higher than that of the tuple, the update is admitted, otherwise

it is denied.

CREATE OR REPLACE TRIGGER trg_acp_biba_no_write_up

BEFORE UPDATE ON evidence FOR EACH ROW

DECLARE v_userName VARCHAR2(128); v_lvalue NUMBER;

v_rvalue NUMBER; v_tempi NUMBER; v_roleId INTEGER;

BEGIN

END;

v_userName := USER;

SELECT integrity_level INTO v lvalue FROM md_evi intL

WHERE md_evi_intL.evidence_id = :OLD.evidence_id;

SELECT integrity_level INTO v_rvalue

FROM md_user intL WHERE user id � 1;

IF v_I value <= v_rvalue THEN

doNothing;

ELSE raise_application_error

(error_code, 'access denied');

END IF;

Fig. 8. PLlSQL statements for 'no write up' rule.

D. No Read Down Rule

Figure 9 shows an ACP statement for specifying the 'no

read down' rule.

CREATE ACP biba_no_read_down FOR (evidence, all)

WHEN select;

};

IF @SUBJECT.MD.user_intL.integrity_level

<� @OBJECT.MD.evi_intL.integrity_level;

THEN allow NOTHING;

ELSE deny : NOTHING;

Fig. 9. 'No read down' rule expressed in our integrity policy language.

Basically, the structure of the biba_no_read_down ACP

statement is the same as that of the biba_ no_write_up

ACP statement, except that the event triggering the policy is

select instead of update. However, this difference makes the

translation more difficult, since Oracle does not support select

triggers and we have thus to simulate these triggers with the

VPD and FGA functions. Here, we however only need to use

the VPD since the 'no read down' rule does not require any

data modification. It only includes access control for queries.

Figure 10 shows the translation of the ACP statement encoding

the 'no read down' rule onto PL/SQL statements.

ALTER TABLE evidence RENAME TO evidence_org;

CREATE VIEW evidence_view AS select * from evidence_org;

CREATE PUBLIC SYNONYM evidence FOR evidence_view;

CREATE OR REPLACE FUNCTION evidence_read

(oowner IN VARCHAR2, ojname IN VARCHAR2)

RETURN VARCHAR2 AS con VARCHAR2 (1024);

v_user_integrity_level NUMBER;

BEGIN

SELECT md_user_intL.integrity_level

INTO v_user_integrity_level

FROM userlist, md_user_intL

WHERE userlist.user id = md_user_intL.user id

AND userlist.user_name = USER;

con .- 'evidence_id IN (select evidence_id

from md_evi intL

where integrity_level >= '

I I v_user_integrity_level I I ')';
RETURN (con);

END evidence_read;

BEGIN

END;

policy_name => 'sp_evidence',

policy_function => 'evidence_read',

sec_relevant_cols => NULL);

Fig. 10. PLlSQL statements for 'no read down' rule.

First, the translation process creates a view and a synonym

for the original evidence table to avoid infinite recursive calls

to the VPD function. The function generates an additional

condition for queries to make sure the subject only accesses

tuples whose integrity level is lower than the subject's integrity

level.

E. Low Water-Mark Rule

Figure 11 shows the ACP statement for specifying the 'low

water-mark' rule.

CREATE ACP lwm_integrity_revision FOR (evidence, all)

{
WHEN select;
IF true;
THEN allow:UPDATE @SUBJECT.MD.user_intL.integrity_level

VALUES (MIN (
@OBJECT.MD.evi_intL.integrity_level,
@SUBJECT.MD.user_intL.levelintegrity_level));

ELSE deny : NOTHING;

);

Fig. 11. 'No read down' rule expressed in our integrity policy language.

The structure of the lWffi_integrity_revision

ACP statement is almost identical to that of the

biba no read_down ACP. However the translation

is more complex because it includes not only select event

but also data modification to be performed during the read

operation. Therefore, we simulate the select trigger with the

Oracle fine-grained auditing (FGA) function. We do not use

the VPD mechanism since the 'low water-mark' rule basically

allows one to access any tuple in the database (i.e., there is

no access control). Figure 12 shows how the ACP statement

for such rule is translated onto PLlSQL statements.

As in the 'no read down' rule, the translation process first

creates a view and a synonym for the original evidence

table to avoid infinite recursive calls for the FGA procedure.

The generated procedure, which is executed at run time

whenever a query is issued on the evidence table, first

executes a query which is the same as the issued query; then,

it finds the minimum between the user integrity level and the

tuple integrity level. Finally, it updates the integrity level of

the user with such minimum value.

VI. CONCLUSION

In this paper, we have proposed a policy-based approach

for the definition of data integrity policies according to the

requirements of collaborations. We believe that our approach is

a practical solution for assuring data integrity in collaborations.

As future work, we plan to develop integrity control policy

languages and implementation techniques for more complex

data models and access control models. We also plan to

investigate how to handle conflicting policies by resolving

the conflict and combining policies into a conflict-free policy

before the translation.

Acknowledgements: The authors have been partially sup

ported by Northrop Grumman as part of the NGIT Cybersecu

rity Research Consortium and by the NSF Grant N.0964294

"NeTS: Medium: Collaborative Research: A Comprehensive

ALTER TABLE evidence RENAME TO evidence_org
CREATE VIEW evidence_view AS select * from evidence_org
CREATE PUBLIC SYNONYM evidence for evidence_view

CREATE OR REPLACE PACKAGE audit_handler IS
PROCEDURE HANDLE_LWM_ACCESS
(object_schema VARCHAR2, object_name VARCHAR2,

policy_name VARCHAR2);
END;

CREATE OR REPLACE PACKAGE BODY audit_handler IS
PROCEDURE handle lwm_access
(object_schema VARCHAR2, object_name VARCHAR2,

policy_name VARCHAR2)
IS PRAGMA AUTONOMOUS_TRANSACTION;
v_ varl NUMBER;
v var2 NUMBER;
v var3 NUMBER;
v_ var4 NUMBER;
v_ var5 NUMBER;
CURSOR c results IS SELECT evidence_id FROM evidence_org

WHERE system. current_where;
-

BEGIN
SELECT user_id INTO v_var4

FROM userlist WHERE user_name USER;
OPEN c_results;
LOOP

FETCH c_results INTO v_var3;
EXIT WHEN c_results\%NOTFOUND;
SELECT integrity_level INTO v_varl

FROM md_evi_intL WHERE evidence_id = v_var3;
SELECT integrity_level INTO v_var2

FROM md_user intL WHERE user id = v_var4i

ELSE
v_varS .- v_varl;

END IF;
UPDATE md_user_intL SET integrity_level

WHERE user_id v_var4;
END LOOP;
COMMIT;
CLOSE c_results;

END handle_lwffi_access;
END;

BEGIN
dbms_fga.add-policy (object_name=>' evidence_view' ,
policy_name�>'EVID_ACCESS_HANDLED' ,
aUdit_column => NULL,
aUdit_condition => NULL,
handler_module �>'AUDIT_HANDLER.HANDLE_LWM_ACCESS');

END;

Fig. 12. Translated PLlSQL statements for 'low water-mark' rule.

Approach for Data Quality and Provenance in Sensor Net

works".

REFERENCES

[1] E. Bertino and R. S. Sandhu. Database security-concepts. approaches,
and challenges. IEEE Trans. Dependable Sec. Comput., 2(1):2-19, 2005.

[2] K. Biba. Integrity considerations for secure computer systems. Technical
Report TR-3153, Mitre, 1977.

[3] M. Bishop. Computer security: Art and science. Addison-Wesley, 2003.
[4] J.-w. Byun, Y. Sohn, and E. Bertino. Systematic control and manage

ment of data integrity. In SACMAT, pages 101-110, 2006.
[5] D. D. Clark and D. R. Wilson. A comparison of commercial and military

computer security policies. In IEEE Symposium on Security and Privacy,
pages 184-195, 1987.

[6] R. Ramakrishnan and J. Gehrke. Database management systems.
McGraw-Hill, 2000.

