
Large Scale Experiments of Multihop Networks in Mobile
Scenarios

Yacine Benchaïb
Sorbonne Universités, UPMC Univ Paris 06,

UMR 7606, LIP6, F-75005, Paris, France
yacine.benchaib@lip6.fr

Claude Chaudet
Institut Mines-Télécom / Télécom ParisTech /

LTCI CNRS UMR 5141
Paris, France

claude.chaudet@telecom-paristech.fr

ABSTRACT
This paper presents the latest advances in our research work
focused on VIRMANEL and SILUMOD, a couple of tools
developed for research in wireless mobile multihop networks.
SILUMOD is a domain specific language dedicated to the
definition of mobility models. This language contains key-
words and special operators that make it easy to define a
mobility model and calculate the positions of a trajectory.
These positions are sent to VIRMANEL, a tool that man-
ages virtual machines corresponding to mobile nodes, emu-
lates their movements and the resulting connections and dis-
connections, and displays the network evolution to the user,
thanks to its graphical user interface. The virtualization ap-
proach we take here allows to run real code and to test real
protocol implementations without deploying an important
experimental platform. For the experimentation of a large
number of virtual mobile nodes, we defined and implemented
a new algorithm for the nearest neighbor search to find the
nodes that are within communication range. We then car-
ried out a considerable measurement campaign in order to
evaluate the performance of this algorithm. The results show
that even with an experiment using a large number of mobile
nodes, our algorithm make it possible to evaluate the state
of connectivity between mobile nodes within a reasonable
time and number of operations.

Categories and Subject Descriptors
C.2 [COMPUTER-COMMUNICATION NETWORKS];
I.6.7 [Simulation and Modeling]: Simulation Support
Systems—Environments

General Terms
Testbed

Keywords
Wireless multihop networks, Mobility simulation, Virtual-
ization, Experimentation

1. INTRODUCTION
Multihop networks have attracted researchers attention since
the DARPA packet radio networks project in the 1970’s. Re-
search has fairly accelerated in the past decade and sensor,
mesh and vehicular networks autonomous applications are
progressively getting out of the labs. If several algorithms
and protocols mostly target static networks or low mobility
conditions, the interest in supporting more ambitious mo-
bility models has increased lately.

For research in multihop networks, we developed and re-
leased under an LGPL license two tools: SILUMOD [5] and
VIRMANEL [6]. SILUMOD is a domain specific language
that allows to describe complex mobility models, i.e. how
the various nodes in a network move around an environment
that can include obstacles. SILUMOD is expressive and easy
to use and to understand, making it perfectly suited for user
than do not have advanced programming knowledge. And
VIRMANEL is a virtualization tool based on OpenVZ [14]
whose role is to manages Linux-based virtual machines cor-
responding to the nodes of a mobile network and emulates
their movements by tearing up and down links dynamically,
according to the mobility pattern defined in SILUMOD. The
main advantage of the virtualization is that it make possi-
ble to conduct experiments in a virtual environment even if
financial and human resources are limited. In fact, a unique
physical machine is often sufficient for the realisation of ex-
periments.

But one of the main difficulties in implementing a simula-
tor for mobile multi-hop networks is the identification for a
mobile node to nodes that are sufficiently close, for the es-
tablishment of a connection to transfer data. The nodes are
frequently on movement so the simulator must at all times
be able to evaluate the distance between the mobile nodes
and update the status of virtual links between mobile nodes.

The SILUMOD/VIRMANEL couple combine the following
advantages, which makes them really convenient for the test-
ing of multihop wireless networks:

An easy language: SILUMOD language is dedicated to
the definition of mobility models used to simulate the
movement of mobile nodes in the case of multihop wire-
less networks. Its keywords are specific to mobility
models, which makes it a language easy to understand.
A user can define mobility models easily, understand
models built by others and create and maintain a mod-
els database.

TRIDENTCOM 2015, June 24-25, Vancouver, Canada
Copyright © 2015 ICST
DOI 10.4108/icst.tridentcom.2015.259821

Use of real code: As VIRMANEL uses virtualization, a
user is able to test the real software implementation in
a wide range of configurations. Similarly, the installa-
tion of a given application of protocol is as easy as on
a real machine.

graphical user interface: VIRMANEL provides a graph-
ical user interface that allows experimenters to monitor
nodes mobility in real time.

scaling: VIRMANEL uses a very efficient virtualization so-
lution based on containers. It makes possible to run
multiple virtual machine instances on a single physical
machine. In addition, regulation of the connectivity
between the virtual nodes is provided by a controller
using an optimized algorithm.

In the rest of this paper, we first presents in section 2 the
VIRMANEL key aspects and the SILUMOD language. We
then present in section 3 the algorithm that we implemented
to reduce the search operations of the mobile nodes present
in a coverage radius and evaluate this algorithm in section 4.
Section 5 presents the related work. We then conclude the
paper in section 6 and present our future research directions.

2. ABOUT VIRMANEL AND SILUMOD
VIRMANEL and SILUMOD are tools that facilitate the re-
search in multihop networks, with a special focus on mobil-
ity. These tools were built with ease of use and flexibility
in mind, as the user is able to evaluate a classical program
running on Linux as well as real code running on an embed-
ded operating system (Contiki, FreeRTOS, ...). We believe
that VIRMANEL and SILUMOD provide a way to hide un-
necessary technical aspects, as any programming language
and operating system can be used, allowing users to focus
on the mobility-related aspects.

2.1 VIRMANEL key aspects
VIRMANEL is a tool responsible for managing the states
links between virtual machines that model the network nodes
and for updating and displaying the network topology. Each
mobile node is instantiated as a virtual machine based on
OpenVZ1, an efficient virtualization solution using contain-
ers to ensure an isolation of virtual machines. With a pre-
pared template, it is possible to virtualize the network nodes
running any Linux distribution or an embedded operating
system running on an emulated MSP430 micro-controller.
The template can include any software running under this
environment.

VIRMANEL receives nodes positions from SILUMOD scripts
(see section 2.2), computes the distances between pairs of
mobile nodes, compare these distances to a nominal trans-
mission range and update firewall rules dynamically mak-
ing the topology of the network evolve constantly. In fact,
the OpenVZ virtual machines that correspond to a wire-
less nodes are connected together by a single virtual switch,
which theoretically allows them to communicate together
directly. To emulate the limited transmission range of wire-
less interface, firewall rules are set on each virtual machine
in order to block trafic coming directly (at the MAC layer)

1http://www.openvz.org

from too distant mobile nodes. By default, for each mobile
node, all packets from other mobile nodes are dropped ex-
cept in two cases. The first case is when two mobile nodes
are close enough to establish communication, a firewall rule
is added on each node to ensure communication. And the
second case is when two mobile nodes are too distant for
direct communication, a firewall rule on each node accepts
packets from the other node only if they were routed, testing
in particular the value of Time To Live (TTL).

Besides the virtualization and the mobility management en-
gines, VIRMANEL includes a graphical user interface that
allows to monitor nodes positions and connections, as rep-
resented on Figure 2. The GUI allows users to see rough
mobility properties such as the repartition of the nodes on
the playground, or the network disconnections. In addition,
users can get a shell access to the virtual machines by run-
ning a manual command in a Linux terminal.

2.2 The SILUMOD language
SILUMOD is an open source (LGPL) internal domain-specific
language that allows an easy and expressive description of
the nodes movement patterns. Based on the Scala lan-
guage [17], SILUMOD uses the same syntax and the same
libraries as this language and adds a series of keywords and
operators specific to the description of mobility. SCALA
provides the structure of a classical languages, including it-
erative and conditional constructs, which allows to develop
fairly complex models. As example of a SILUMOD pro-
gram, the Random Waypoint Mobility Model is represented
in Listing 1.

import silumod.language._

virmanelNode value "saturne"
virtualization value "no"
name value "Mobile"

playground define(0,0,600,400,"PG","blue","no")
speed value 50
positionX value 100
positionY value 200
distance value 150
coverageRadius value 100

var x = 0
while (x < 100)

{
toPositionX value (1 <-> 599);
toPositionY value (1 <-> 399);

while (MOBILE calculateNewPosition)
{
if (MOBILE ->| LIMITS)

{
angle reflexive;
}

else
{ MOBILE Move }

}
x = x + 1
}

Listing 1: Specification of the Random Waypoint Mobility
Model in SILUMOD

With SILUMOD, it is possible to define the environment
in which mobile nodes evolve, specifying the playground di-
mensions, positioning obstacles, and to define each node’s
movement characteristics through the specification of its
movement speed, angle, etc. The user can describe the be-
havior of a node when it encounters an obstacle such as a
wall, form groups of nodes and define zones in the scene so
that mobiles change their behavior when they cross these
zones limits.

This set of keywords allows to describe most classical mo-
bility models, from the classical random movement patterns
(random waypoint, random direction, etc.) to more com-
plex and adaptive mobility patterns. For example, using
zones, it is possible to vary speed according to different types
of grounds, but also to define attractors and to model the
movements of humans in a city, traveling between home and
work.

SILUMOD is intuitive so that users can easily make move-
ment parameters vary, implement new mobility models, or
simply analyze a provided mobility description. We are cur-
rently working on creating a repository for mobility models
that should be available online and distributed with future
versions of the software.

The mobility model described in the SILUMOD language
is then passed to a simulation engine that computes nodes
successive positions and communicates these positions to
VIRMANEL through classical inter-process communication.
The user may easily keep track of the successive positions
taken by the nodes by accessing the positionX current and
positionY current variables and writing their values to a
file. The nodes effective mobility can then be compared to
the algorithm results, replayed and analyzed.

Figure 1: A trace of the Random Waypoint Mobility
Model

The trajectory represented of figure 1 corresponds to a single
node, whose movements are displayed in VIRMANEL.

Writing a small procedure, it is easy to log the successive
positions of the nodes in a file and, consequently, to per-
form offline analysis of various properties. The successive
network topologies can also be saved to a file and input into

Figure 2: Graphical User Interface of VIRMANEL

a dynamic graph analysis tool such as Gephi2 or exploited
with the GraphStream library3.

Another use case of VIRMANEL allows real-time display of
a mobile nodes network moving and the states links between
mobile nodes (Fig. 2). The user can then monitor the mobile
network and then adjust the parameters of the experiment
based on observed facts.

3. EVALUATION OF THE CONNECTIVITY
BETWEEN TWO MOBILE NODES

Evaluations conducted continuously between mobile nodes
by the usual methods (section 5.1) to know the distance be-
tween them are often unnecessary. This section describes
the method we have implemented in order to have a mini-
mum number of evaluations of the states links between mo-
bile nodes while ensuring the use of a maximum number of
moving mobile nodes.

3.1 Definition of the critical zone
In fact, let M1 and M2 be two mobile nodes separated by a
distance DM1−M2. Assuming M1 and M2 move at a maxi-
mum speed Vmax such that at each movement of M1 and M2

the distance between them tends to be the smallest possible.
And given that M1 and M2 can communicate with another
mobile node if the distance to the mobile node is less than
Dpropagation, then it is possible to define for how long T, no
connection is possible between M1 and M2.

Let be a critical zone corresponding to a crown delimited by
an inner circle with a radius Rint. and an outer circle with
a radius Rext.. The evaluation of the distance between M1

and M2 is only necessary when M1 is in the critical zone
Z2 of M2 (and M2 in critical zone Z1 of M1) because the
connection status between M1 and M2 could change. In fact,
taking the case of M2, if M2 is in the critical zone Z1 of M1,
at the text move M2 can either leave the zone covered by
M1, or stay while if M2 is outside the critical zone Z1, no
change in the status of connection between M1 and M2 is
possible at the next move of M2

2http://gephi.org
3http://graphstream-project.org

Figure 3: Critical zone of a mobile node

Two successive positions of a mobile node under SILUMOD
are separated by a predefined step P. Thus:

Rint. = Dpropagation - P Rext. = Dpropagation + P

3.2 Number of steps before an evaluation of
the connection status between two mobile
nodes

M1 moves at a speed V1 on a distance D1 during a time T1

and M2 moves at a speed V2 on a distance D2 during a time
T2. Thus:

V1 = D1 / T1 V2 = D2 / T2

Speed, distance and travel time are parameters calculated
according to the mobility model selected in advance. It is
also not necessary that M1 and M2 move according to the
same mobility model. Thus, according to the limits set by the
user in the specific SILUMOD script of each mobile node,
these parameters can vary considerably from one limit to
the other during the movement of a mobile node. These
parameters can therefore not be used to predict situations
requiring an evaluation of the connection status between two
mobile nodes.

Nevertheless, the situation in the worst case can be evalu-
ated assuming that M1 and M2 always move with the same
maximum speed Vmax. If the difference between the speed
of mobile nodes and Vmax is important, use this solution
may require increased checks of the connection status be-
tween M1 and M2 relative to an accurate evaluation based
on the respective parameters of M1 and M2. But, the initial
overhead of using this solution is compensated because it
avoid to revalue the situation between M1 and M2 at each
change of parameters of M1 or M2. Reported to an impor-
tant number of nodes connected to M1 or M2, the gain in
terms of executed operations is substantial. By cons, if the
difference between the speed of the mobile nodes and Vmax

is minimal, the additional number of checks the connection
status between M1 and M2 will be negligible or null.

To evaluate the situation in the worst case, the margin of
movement MarginM1−M2 between M1 and M2 must be de-
fined first. This margin of movement corresponds to the

required distance (or remaining) for M1 and M2 before a
possible change in their common connection status. There-
fore:

MarginM1−M2 = D1 + D2

Either M1 et M2 are already connected and it must then
evaluate on which distance D1 and D2 the mobiles nodes
could move before not to be within reach of each other.
Thus:

MarginM1−M2 = Dpropagation - DM1−M2

OrM1 etM2 are not yet connected and it must then evaluate
on which distance D1 et D2 the mobiles nodes could move
before to be within reach of each other. Thus:

MarginM1−M2 = DM1−M2 - Dpropagation

Then, it must determine the values of distances D1 + D2

that M1 and M2 have to move before to be in the critical
zone Z1 of M1 with a speed Vmax. Thus:

D1

Vmax
=

D2

Vmax

⇒

D1 =
MarginM1−M2

2

The number of steps StepsNumberM1−M2 before an evalu-
ation of the connectivity status between M1 a,d M2 by M1

is then:

StepsNumberM1−M2 =
D1

P

3.3 Progress of the algorithm
Let be X a value in the range [1, N], N is the number
of mobile nodes in the simulation. Each mobile node MX

is represented by a process ProcX in the application re-
sponsible of establishing connectivity between nodes. Each
process receives the successive positions calculated by the
script of the respective mobile node. The number of posi-
tions received by a process ProcX is defined by the variable
numberOfPositionsRecevedX .

In an effort to optimize the computing time of the vari-
ous processes ProcX , every process ProcX is responsible for
managing the connectivity of its associated mobile node MX

with at most n
2

mobile nodes. Thus, if Proc1 manages the
connectivity between M1 and M2, Proc2 is exempt of the
managing of the connectivity of it’s associated mobile node
M2 with M1 (Fig. 4).

Figure 4: Management relation between processes

VIRMANEL being implemented in Erlang, a language that
natively manage parallelism, connectivity management be-
tween different mobile nodes is done by processes running
in parallel which significantly reduces the computation time
required for the processing by each node of all mobile nodes
under its management.

When the process ProcX receives the first position of the
mobile X, it evaluates the number of steps StepsNumberX − Y
needed before an evaluation of the connectivity status with
the Y mobile nodes under its management. The complexity
of this initial stage is O(n

2
).

A table TabX−Y whose size maxNumberOfSteps is the num-
ber of steps between the two most distant points of the sim-
ulation area (the ends of the diagonal), contains the eval-
uation order of the mobile nodes Y by the mobile node X
(Fig. 5). The mobile nodes Y are added (O(1) for each) to
a list in TabX−Y as an index I defined as follows:

I ≡
(numberOfPositionsReceivedX + numberOfStepsX−Y)

(mod maxNumberOfSteps)

When the mobile node X receives a new position, the in-
dex of the array TabXY , which serves as a moving cursor,
is incremented. If the index contains at list with at least
one mobile, then the process ProcX request to each mobile
present in the list their current position. If the list is empty,
then the ProcX waits to receive the next position.

Figure 5: Data structure used for the classification
of mobile nodes in the simulation plan

All the nodes positioned in the simulation area are added
to an axis of length maxNumberOfSteps depending on the
position of a cursor representing the theoretical advance-
ment of the mobile node associated with the process ProcX .
Thus, no sorting operations and no change of the data struc-

ture that is time consuming is needed to manage the mobile
nodes.

Furthermore, by classifying mobile nodes in this way, the
process ProcX only evaluates situations that could tip the
connectivity between two mobile nodes from a not connected
state to a connected state and inversely. Mobile MX can
thus change positions several times before a revaluation of its
situation in relation to other mobile under its management
is necessary.

4. EVALUATION OF THE ALGORITHM USED
FOR THE EVALUATION OF THE STATES
LINKS BETWEEN MOBILE NODES

The goal is to evaluate the cost of the algorithm used to
control the mobility that we have just described. In fact, a
slowdown of this process would result that the topology con-
figured in the mobile network does not match the expected
positions of mobiles nodes movements. This algorithm reval-
uates the topology at a time interval which dependents on
the distance between the mobile nodes and a on a predefined
step. The algorithm then performs two main stages:

• Revaluation of the links (connection or disconnection)
for which the state is likely to have changed since the
last evaluation

• Setting the corresponding firewall rules to allow or
block communication between certain mobile nodes

If the system resources of the physical machine used for the
experiment are highly stressed in particular by the activity
of the virtual machines, this process can take a long time,
pushing its next iteration at a time when mobile will have
moved to a distance greater than the predefined step. In
this case, the maximum travel distance defining which links
should be revaluated or not may be insufficient and con-
nections or disconnections could be omitted. It would be
desirable, in this case, to increase the radius of the surveil-
lance zone, however this would lead to évaluate more links
at each stage and thus to a greater time calculation for the
evaluation process.

4.1 Test platform description
The testbed on which we install VIRMANEL and run our
evaluation is composed of a single server running the full
software suite (SILUMOD, VIRMANEL and the OpenVZ
virtualized machines). The server is equipped with 4GB
of RAM and a 2.6 GHz QuadCore Intel CPU. It is running
Ubuntu Linux 10.04 (The Lucid Lynx), kernel version 2.6.32
patched with the OpenVZ patch (2.6.32-feoktistov.1).

4.2 Execution time of the algorithm
We measured the execution time of the algorithm at dif-
ferent load levels on a physical testbed machine. Table 1
summarizes the results of this measurement campaign.

Figure 7 represents the evolution of the average of the exe-
cution time. The red curve represents the result of the linear
interpolation of the data series, for which the coefficient of
determination (R2)) equals 98.1 %. The hypothesis of a
linear evolution of the execution time seems to be a valid

Number Number Average time of Standard Coefficient of
of mobiles of sampling execution (ms) deviation (ms) variation

20 4020 0,526 0,009 0,017110266
80 16080 11,954 0,178 0,014890413
180 36180 22,726 0,345 0,01518085
245 49245 28,094 0,305 0,010856411
320 64320 30,712 0,29 0,009442563
405 81405 39,289 0,379 0,009646466
500 100500 43,549 0,402 0,009230981
605 121605 53,428 0,634 0,011866437
720 144720 58,608 0,702 0,011977887
845 169845 72,169 0,874 0,012110463

Table 1: Results of the evaluation of the execution time of the algorithm that define the links to reevaluate

(a) 20 nodes (b) 80 nodes

(c) 320 nodes (d) 845 nodes

Figure 6: Average number of states links evaluated from 20 to 845 mobile nodes

Figure 7: Average execution time of the algorithm
from 20 to 845 mobile nodes

approximation. Given the relationship between the stan-
dard deviation and average execution time, we can consider
that the regression equation of the line provides us with an
evaluation of the execution time of the algorithm based on
the number of mobile nodes. Therefore, it is assumed that,

for the physical machine that we used, the execution time
varies depending on the number of nodes, N , using the fol-
lowing equation:

Talgo(ms) = 0.0789 ·N + 5.1913

4.3 Number of states links to evaluate
We evaluated, based on the same scenario as previously, the
number of states links to evaluate at each stage. Figure 6
represents the distributions of the number of states links
evaluated for each stage in 4 cases, 20 nodes, 80 nodes, 320
nodes and 845 nodes. Distributions for other values have
the same profile and are therefore not shown here.

We will approach these distributions by normal laws. Ta-
ble 2 lists the distribution parameters in different scenarios.

Figure 8 represents the evolution of the average number of
evaluations and a logarithmic interpolation of these evolu-
tion for which the coefficient of determination (R2) is 99.3%.
Figure 9, represents the evolution of the standard deviation
and the logarithmic interpolation of the standard deviation

Number Number Empirical Empirical
of mobiles of average standard

nodes samples deviation
20 4000 3,6 1,63
80 16000 8,32 3,2
180 36000 9,77 3,75
245 49000 10,95 4,15
320 64000 11,85 4,21
405 81000 12,5 4,52
500 100000 13,47 4,71
605 121000 13,76 4,67
720 144000 14,49 4,96
845 169000 15,12 5,18

Table 2: Number of state links to revaluate at each
stage

for which the coefficient of determination (R2) is 98.9%.

Therefore we can model the number of states links to change,
or more precisely the firewall rules to execute at each step ac-
cording to the number of mobile nodes N by a random vari-
able following a normal distribution with parameters µfw

and σfw, such as:

Nfw ∼ N (µfw, σfw)

µfw = 2, 9994 ln(N)− 5, 3484

σfw = 0, 9034 ln(N)− 0, 9414

Figure 8: Average number of state links evaluated
by the algorithm from 20 to 845 mobile nodes

We modeled the cost of the algorithm that we have imple-
mented based on the number of mobile nodes. The loga-
rithmic law obtained confirm that the number of operations
required by the algorithm increases very little, even with a
large number of mobile nodes. The measurements also show
that despite the number of processes running in parallel and
the various processing operations, the execution time of the
algorithm is reasonable compared to the number of mobile
nodes.

Figure 9: Standard deviation of the number of state
links evaluated by the algorithm from 20 to 845 mo-
biles nodes

5. RELATED WORK
5.1 Methods for the nearest neighbor search

problem
Several data structures exist for the nearest neighbor search
problem[8]. After a description of the most common struc-
tures, this section presents a new algorithm for the nearest
neighbor search in the context of mobility simulation.

5.1.1 Linear
The linear method is the most obvious. It consists of eval-
uating for each mobile node its distance with the other mo-
bile nodes of experimentation at regular time intervals or
at every movement of a mobile node. Even if a judicious
definition of these two parameters can reduce the computa-
tion time of the simulator, this method is extremely costly
because it is applied frequently and for each mobile node.
Thus, the complexity for a linear search is O(n).

5.1.2 Use of a grid
The principle is to divide the experimental area represented
by a grid in several square shaped cells (Fig. 10). Mobile
nodes are then assigned to one of these cells based on their
position in the grid.

Figure 10: Experimental area division by using a
grid

Whenever a mobile node moves, it re-evaluates its distance
from the nodes that are in adjacent cells. This method was
notably used to optimize the search in neighboring mobile
nodes for NS2 [16] and has also a complexity in O(n).

5.1.3 Use of binaries trees
K-dimensional trees [8] are data structures that are used to
partition data and thus have a better distribution of nodes
to limit the number of operations when the searching for
nearest neighbors is required. K-dimensional trees are espe-
cially used for the nearest neighbor search by the ambient
network simulator SimANet [20]. Figure 11 shows the data
partitioning with a k-dimensional tree for the set of points
(6,3), (5,5), (3,2), (4,8), (8,7) and (7,1).

Figure 11: Data partitioning with a k-dimensional
tree

But the use of k-dimensional tree requires a preliminary pro-
cessing of the data, in O(n.log(n)) complexity, to construct
the data tree. The nearest neighbor search and the insertion
and destruction of data have thus a O(log(n)) complexity in
the best case and O(n) complexity in the worst case.

K-dimensional trees are considered one of the most efficient
data structures for the nearest neighbor search even if their
complexity has a high amplitude.

But the use of K-dimensional trees in the context of mobil-
ity is problematic because each mobile movement may in-
validate the data partitioning already established. It would
thus be necessary to define a new data partitioning.

5.2 Experimentation tools
For years, researchers conducted their experiments using
network simulators. Simulation tools such as NS2 4 and
OPNET 5 are always used for research in mobile networks.
These tools include the most common mobility models and
all major communication protocols. For cons, the addition
of new mobility models, new protocols or other new tech-
nology related to networks requires a thorough knowledge
of these tools and a lot of programming effort.

Experimentation platforms adapted for the study of multi-
hop wireless networks tend to develop according to excep-
tional financing obtained by the research laboratories. We
can quote Senslab [10], a research platform with 1024 nodes
distributed over 4 sites on French territory. The deployment
of this platform aims to study wireless sensor networks on a
large scale. But this kind of experimentation platforms re-
quire significant resources for technical management as well
as for the purchase of equipment.

4http://www.isi.edu/nsnam/ns/
5http://www.opnet.com

Thus, over the years the virtualization has become an essen-
tial technology for computer networks experiments. A tool
such as VIRCONEL [7] gives users a suitable environment
for the study of computer networks but does not include
the notion of mobility for nodes networks. Net-Kit [18] and
VN-UML [12] both use UML [11] for virtualization network
nodes. Their mode of operation is similar. The user de-
fines a topology for the network to virtualize in a file. Be-
sides the fact that performance with UML are disappointing
compared to container type virtualization solutions [9], these
solutions do not make it possible to manage mobility.

Tools were then developed by the scientific community to
support the specificities related to the mobility of nodes in
the context of experimentation. MASSIVE [15] uses virtual
interfaces to simulate the mobile nodes. Thus virtual inter-
faces use the same network stack which is problematic for the
isolation of the nodes during the execution of applications.
Node mobility is defined using an internal script, which cal-
culates the successives positions of a mobile node. These po-
sitions are then used by the MASSIVE server to determine
which are the nodes that are close enough to communicate
in a defined coverage radius. Neman [19] is a tool that, from
virtual nodes emulated, simulates a mobile multi-hop net-
work. The nodes are emulated using IP-aliasing [1]. The
interface used for the visualization of multi-hop network is
that of MobiEmu [2], a tool for MANET [3] emulation, that
is coupled with NS3 [13] simulator for the mobility simu-
lation. Topology as well as the motion of the nodes are
reproduced by using positions calculated by NS-2 [4].

6. CONCLUSION
VIRMANEL allows to easily study real applications for mo-
bile multi-hop networks and the SILUMOD languages al-
lows to define well-know of new mobility models to obtain
the successive positions of a moving node. The use of con-
tainers for virtualization ensures the deployment of a large
number of virtual machines, each with its own Linux en-
vironment (network stack, routing tables, disk space, ...).
And the algorithm defined to adapt the nearest neighbor
search problem in mobility simulation, allows experiments
with a large number of mobile nodes. Indeed, we have ob-
served during our evaluations that the average time needed
to evaluate states links between mobile nodes is very low
and evolved linearly . In addition, the number of operations
necessary to this evaluation evolves according to a logarith-
mic law. Thus, even an experiment with a large number of
mobile nodes will require only a few operations.

We plan for our future research to improve this algorithm
by studying the impact of different criteria. These criteria
could be directly related to the mobility model and an eval-
uation of the efficiency of the algorithm according to the
mobility model chosen would then to have a more effective
management of connectivity between mobile nodes.

As of today, VIRMANEL does not include a wireless link
emulator. It is hence limited to the evaluation of distributed
applications and protocols in a mobile context. However, the
architecture of VIRMANEL was designed to allow the easy
integration of such a tool and we are currently evaluating
various tools performances to realize this soon.

7. ACKNOWLEDGMENTS
This work is supported in part by the FIT project 6 granted
by the French National Research Agency (ANR) and by the
FITTING project funded by EIT ICT Labs. Part of this
work has been realized at the LINCS laboratory7.

8. REFERENCES
[1] Ip aliasing -

http://www.tldp.org/howto/ip-alias/index.html.

[2] Mobiemu, a framework for emulating manets with lxc
and ns-3 - http://code.google.com/p/mobiemu.

[3] Mobile ad-hoc networks - ietf .
http://datatracker.ietf.org/wg/manet/documents/.

[4] The network simulator ns-2 .
http://www.isi.edu/nsnam/ns/.

[5] Y. Benchäıb and C. Chaudet. Silumod: A simulation
language for user mobility models definition in
multihop networks. In First Asia-Pacific Programming
Languages and Compilers Workshop (APPLC),
Beijing, China, June 2012.

[6] Y. Benchäıb and C. Chaudet. Virmanel: a mobile
multihop network virtualization tool. In 7th ACM
International Workshop on Wireless Network
Testbeds, Experimental evaluation and
Characterization, Istanbul, Turkey, Aug. 2012.

[7] Y. Benchäıb and A. Hecker. Virconel: A network
virtualizer. In Proceedings of the 2011 IEEE 19th
Annual International Symposium on Modelling,
Analysis, and Simulation of Computer and
Telecommunication Systems, Aug. 2011.

[8] J. L. Bentley. Multidimensional binary search trees
used for associative searching. Commun. ACM,
18(9):509–517, Sept. 1975.

[9] G. Bhanage, I. Seskar, Y. Zhang, D. Raychaudhuri,
and S. Jain. Experimental evaluation of openvz from a
testbed deployment perspective. In T. Magedanz,
A. Gavras, N. Thanh, and J. Chase, editors, Testbeds
and Research Infrastructures. Development of
Networks and Communities, volume 46 of Lecture
Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering,
pages 103–112. Springer Berlin Heidelberg, 2011.

[10] C. B. des Roziers, G. Chelius, T. Ducrocq, E. Fleury,
A. Fraboulet, A. Gallais, N. Mitton, T. Noël, and
J. Vandaele. Using senslab as a first class scientific
tool for large scale wireless sensor network
experiments. In Proceedings of the 10th international
IFIP TC 6 conference on Networking - Volume Part I,
NETWORKING’11, pages 147–159, Berlin,
Heidelberg, 2011. Springer-Verlag.

[11] J. Dike. User-mode linux. In Proceedings of the 5th
annual Linux Showcase & Conference - Volume 5,
ALS ’01, pages 2–2, Berkeley, CA, USA, 2001.
USENIX Association.

[12] F. Galan, D. Fernandez, J. Ruiz, O. Walid, and
T. de Miguel. Use of virtualization tools in computer
network laboratories. In Information Technology
Based Higher Education and Training, 2004. ITHET
2004. Proceedings of the FIfth International

6http://fit-equipex.fr/
7http://www.lincs.fr/

Conference on, pages 209 – 214, may-2 june 2004.

[13] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley.
ns-3 project goals. In Proceeding from the 2006
workshop on ns-2: the IP network simulator, WNS2
’06, New York, NY, USA, 2006. ACM.

[14] K. Kolyshkin. Virtualization in linux. White paper,
OpenVZ, 2006.

[15] M. Matthes, H. Biehl, M. Lauer, and O. Drobnik.
Massive: An emulation environment for mobile ad-hoc
networks. In Second Annual Conference on Wireless
On-demand Network Systems and Services
(WONS’05), St Moritz, Switzerland, Jan. 2005.

[16] V. Naoumov and T. Gross. Simulation of large ad hoc
networks. In Proceedings of the 6th ACM international
workshop on Modeling analysis and simulation of
wireless and mobile systems, MSWIM ’03, pages
50–57, New York, NY, USA, 2003. ACM.

[17] M. Odersky, S. Micheloud, N. Mihaylov, M. Schinz,
E. Stenman, M. Zenger, and et al. An overview of the
scala programming language. Technical report, 2004.

[18] M. Pizzonia and M. Rimondini. Netkit: easy
emulation of complex networks on inexpensive
hardware. In Proceedings of the 4th International
Conference on Testbeds and research infrastructures
for the development of networks & communities,
TridentCom ’08, pages 7:1–7:10, ICST, Brussels,
Belgium, Belgium, 2008. ICST (Institute for
Computer Sciences, Social-Informatics and
Telecommunications Engineering).

[19] M. Puzar and T. Plagemann. Neman: a network
emulator for mobile ad-hoc networks. 1:155 – 161,
15-17, 2005.

[20] M. Vodel, M. Sauppe, M. Caspar, and W. Hardt.
Simanet–a large scalable, distributed simulation
framework for ambient networks. Journal of
Communications, 3(7):11–19, 2008.

