
On Emulating Hardware/Software
Co-designed Control Algorithms for Packet Switches

Dimitris Syrivelis
Centre for Research and

Technology, Hellas

Paolo Giaccone
Dept. of Electronics and

Telecommunications
Politecnico di Torino

Iordanis Koutsopoulos
Athens University of

Economics and Business -
CERTH

Marco Pretti
CNR - Complex System Inst.

Politecnico di Torino

Leandros Tassiulas
Dept. ECE

University of Thessaly

ABSTRACT
Hardware accelerators in networking systems for control al-
gorithms offer a promising approach to scale performance.
To that end, several research efforts have been devoted to
verify a hardware version of complex control algorithms but
only for small-scale hardware unit tests. In this paper we
propose and evaluate an emulation framework, in which such
control algorithm accelerators can be integrated to design a
packet switch, able both to forward real traffic and to en-
able extensive experimental evaluation and demonstration
scenarios. As a case study, we have integrated in the pro-
posed framework a Belief-Propagation-driven algorithm ac-
celerator for multicast packet scheduling.

1. INTRODUCTION
Improving the performance of computer networks has al-

ways been a major design issue, in order to support the
growing traffic demand. During the last years, user-gene-
rated contents and video streaming services have stressed
the available network capacity. In order to cope with rel-
evant investments needed to upgrade communication links
and switching nodes, current practices tend, instead, to op-
timize the performance of currently available network re-
sources by implementing smarter control algorithms.

Hardware acceleration for networking systems has been
primarily considered for line-speed processing, such as packet
manipulation (e.g., encryption), routing table lookups, and
forwarding operations. In particular, the switching capa-
bilities at each network node are maximized by adopting
hardware acceleration in the data plane, especially when
high aggregate bandwidth must be supported. The data
plane within a switching node is made up of some queueing
system, which stores the packets waiting to be processed
or to be sent to the output interfaces. Moreover, some non-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

blocking switching fabric (e.g., a crossbar or a Clos network)
is responsible for physically transferring the packets to the
output interfaces. Finally, a scheduling algorithm is assigned
to select the packets to be transferred across the switching
fabric, based on each packet destination. Newly proposed
packet schedulers are often shown by simulation to signifi-
cantly improve forwarding performance but, in practice, the
required computation overhead might affect the maximum
achievable speed.
Performance in terms of throughput, delays and fairness

of the switching node depends on the scheduling decision.
Maximizing performance requires the scheduler to solve some
optimization problem at line speed, i.e., the scheduling deci-
sion must be taken in a very short time, not longer than the
packet transmission time at the port interfaces. Just as an
example, consider a 10 Gbit/s port fed by common 64 bytes
Ethernet packets: in this case, the scheduler decision must
be taken in less than 51 ns. It is clear that software solutions
for the scheduling problem are not able to cope with com-
plex scheduling control decisions. Thus, designers must face
the following dichotomy: optimal control implementation is
unfeasible, whereas implementable control policies achieve
non-optimal performance.
As a practical example of such a dichotomy, consider the

specific data plane architecture of core-level Cisco 12000
router [1]. This router is based on an input-queued (IQ)
switch with Virtual Output Queueing (VOQ), i.e., one queue
is available for each input-output pair. The VOQ struc-
ture avoids the well-known head-of-line blocking problem [7]
and, combined with an optimal scheduling algorithm, allows
one to maximize throughput. Unfortunately, the optimal
scheduling algorithm requires to solve a maximum weight
matching problem in bipartite graphs [10], whose compu-
tational complexity is O(N3), where N is the number of
ports. The implementation of such an algorithm is clearly
unfeasible at line rate, even for moderate N . Therefore, in
commercial routers, solutions for the scheduling problem are
based on heuristic algorithms that meet the following two
criteria: (i) achieve reasonable performance under a wide
(though not exhaustive) set of traffic scenarios; (ii) are im-
plementable with the available processing power.
Now, the processing power needed to implement a con-

trol algorithm is a non-trivial combination of the hardware
capabilities (e.g., logic frequency, parallelism, pipeline) and
the software complexity; note that software is very flexible

to describe control algorithms. Hence, in order to design
control scheduling algorithms that achieve the best tradeoff
between performance and implementation complexity in a
switching node, it is of paramount importance to emulate a
detailed model of the data plane, to explore all the design
dimensions of hardware accelerators.

In this work we present an emulation framework for the
operational verification and performance evaluation of hard-
ware accelerators for the control algorithms of fast packet
switches. We assume that the hardware accelerators have
been developed following the Hardware Description Language
(HDL) development cycle. The framework includes (i) a ref-
erence design implemented on the NetFPGA [11] platform
to host the hardware accelerators and (ii) a tightly inte-
grated software datapath, which, in addition to forwarding
real traffic, implements the specific queueing structure of
the considered switching architecture. The software datap-
ath is implemented on Click Modular Router platform [8].
Since our framework is a hybrid between hardware and soft-
ware, we shall refer to it as a hardware/software co-design
approach. Furthermore, we have developed a toolchain that
generates a synthetic traffic pattern and maps it, with the
proper injection times Note that the considered NetFPGA
platform is the defacto standard hardware emulator for the
development and evaluation of novel datapath accelerators,
so that most researchers in the field are familiar with the re-
lated development internals. The proposed emulation frame-
work introduces appropriate changes to the NetFPGA de-
velopment approach, in order to host accelerators for control
algorithms.

As a case study, we specifically consider the problem of de-
signing a switching node built around a high-speed multicast-
enabled fabric. This scenario is very challenging, since not
only the optimal scheduling algorithm is computationally
very complex, but even the optimal queueing structure is
made up of a very large number of queues [3]. The prac-
tical relevance of such a scenario is motivated by emerging
applications exploiting multicast traffic, i.e., addressed to a
set of destinations nodes, rather than a single node. Note,
however, that the proposed emulation framework is not ap-
plicable only to the considered scenario, but also to much
broader domains.

The paper is organized as follows. In Sec. 2 we describe
the components of the emulation framework architecture
and present the methodology that should be followed by
developers to provide the necessary hooks in their design to
integrate with the simulator. In Sec. 3 we present a step-by-
step example for the development and deployment on the
emulation framework of a hardware accelerator. Finally, in
Sec. 4 we evaluate the performance achieved by our emu-
lation framework for the specific packet scheduler proposed
in [6] and optimized to schedule multicast packets.

2. FRAMEWORK ARCHITECTURE
Our proposed emulation framework includes four subsys-

tems: (i) the generic hardware emulator unit, which hosts
the control algorithm accelerators, (ii) the software data-
path, which executes forwarding operations on real traffic,
(iii) the traffic generator toolchain, and (iv) the performance
measurement module.

In the Sections 2.1-2.4 that follow, we shall consider each
of them separately.

FPGA

I/O

CPU

PCI DMA

Memory

Hardware Accelerator

Linux Kernel

Driver

Software
Datapath

Hardware Components Software Components

Interrupt
Line

Figure 1: Overview of the emulator hardware, soft-
ware and gateware components.

2.1 Hardware emulator unit
This unit is implemented on FPGA and provides the re-

configurable resources for the deployment of the accelerator
for the control algorithm. Part of these reconfigurable re-
sources is devoted to a communication subsystem, which
takes care of the I/O operations with the FPGA software
driver. Note that we refer to gateware as the code to de-
scribe the FPGA configuration.
An overview of the hardware, gateware and software com-

ponents of the emulator are depicted in Fig. 1. The heart
of the hardware emulator unit is the FPGA platform, where
the developed gateware version of the control algorithm is
deployed. The latter is tightly integrated with a hosting
CPU platform via a high speed bus. In addition, Direct
Memory Access (DMA) hardware is used by the communi-
cation subsystem to speed up the I/O transfer performance
between FPGA and main memory. Finally, the communica-
tion subsystem gateware drives a hardware interrupt line to
the hosting CPU interrupt controller, which can be appro-
priately wired in the hardware design to alert the software
driver when results are ready to be processed in software.

2.1.1 NetFPGA platform
The hardware emulator unit is realized on the NetFPGA

1G [11] platform and, subsequently, the communication I/O
subsystem is based on NetFPGA reference design gateware.
The considered NetFPGA features 4 Gigabit Ethernet

ports, tightly coupled with a Xilinx Virtex-II-pro FPGA.
The reference gateware NetFPGA design performs packet
forwarding between the ports and the PCI-bus. The refer-
ence processing datapath is pipelined, 64-bit wide, and op-
erates at 125 MHz, equal to the standard Gigabit Ethernet
MAC clock frequency; this allows for 8 Gbit/s processing.
The FPGA on-chip memory is a BRAM (block RAM); it is
a scarce resource (typically a few kB) and can be directly
interfaced. Other than that, as it is the case for the CPUs,
an external SDRAM controller should be driven by the de-
veloped gateware to access data stored on off-chip SDRAM.
The overall NetFPGA design approach considerably boosts
packet processing operations and fast lookups by exploiting
Content Addressable Memory (CAM). Typically, NetFPGA
emulators have been developed to facilitate datapath ac-
celerators for novel routing implementations (where many

lookups are required), heavy packet processing operations
(e.g., encryption) and networking systems projects that aim
at satisfying realtime constraints.

On the PCI bus interface side, apart from network packet
I/O, NetFPGA design features a 32-bit register interface.
These registers can be either (i) software registers that are
written from software and read by hardware, or (ii) hard-
ware registers that are updated by hardware and are read
by software. The register I/O interface implements memory
mapped access over the PCI bus. On the NetFPGA ref-
erence design, the registers interface has been developed to
support software-based control algorithms; the registers I/O
performance is poor because each register access needs ex-
plicit PCI bus address negotiation. Conversely, DMA burst
transfer mode permits to move data without the negotiation
delay and cannot be exploited for register I/O but only for
packet transfer.

2.1.2 Gateware communication
The main component of the hardware emulator is the

gateware communication subsystem, which abstracts the in-
terconnection details with the software driver for the user-
defined accelerator logic. An overview of the internals is
depicted in Fig. 2 and it is based on two kinds of inter-
faces: register-based and packet-based I/O. The correspond-
ing NetFPGA communication subsystems have been exten-
sively altered as follows. For the register-based I/O inter-
face, all of the original NetFPGA reference design com-
ponents have been removed and the overall reconfigurable
logic requirements have been reduced by 90% leaving signif-
icantly more reconfigurable resources available to the user
logic. More specifically, we have removed the whole logic de-
voted to the Ethernet interface driver, to the input/output
packet queues, and to the arbiter. On the other hand, for
the packet-based I/O interface, we have kept only one input
and output queue set, thus removing most of the arbiter
logic. In this communication scheme, we have developed a
custom gateware support to exchange Ethernet packets with
the software driver. In these Ethernet packets the registers
are sequentially inserted. The developed solution relies on
the NetFPGA 64-bit pipelined datapath, where the pack-
ets are fragmented in 64-bit data units, which are serially
delivered as registers to the user logic and vice versa.

Both interfaces exchange data between registers wired in
the user logic design and the software driver. The register
interface manipulates 32-bit registers, while the packet I/O
interface 64-bit registers. The user also needs to appropri-
ately wire a start signal in the design, which is set by the
communication module at high, to trigger execution when
all required data transfer to the user logic registers has been
completed. Finally, when user logic computation is com-
plete, an interrupt line is available to notify the software
driver to collect results from the appropriate registers.

The user may choose between the available communica-
tion interfaces, or even use both of them, taking into account
the tradeoffs of each approach. More specifically, register-
based I/O consumes nearly 70% less reconfigurable resources
than packet-based I/O, but it is a considerably slower mech-
anism because it does not exploit DMA transfers. The max-
imum number of available registers is relatively small, due
to the memory mapped I/O range assigned to the NetFPGA
device by Linux. On the other hand, packet I/O needs a sig-
nificant amount of reconfigurable resources and may not fit

6
4

6
4

6
4

6
4

6
4 ….

Network Packet Segmentation
Engine

User 64

User 64

User 64

User 64
..

PACKET I/O Based Interface

User Logic

User 32 User 32 Register I/O Interface

Execution Start Signal

 Done Interrupt

Figure 2: Hardware emulator unit design

Traffic
Generator
Interface

Linux
Tun/Tap
Interface

Bridge

Configurable
Input or Output

Queuing
System and

User Logic to
drive the

accelerator

Accelerator Driver

Software
Switching user

logic

Performance

Measurement
System

Ethernet
Interfaces

Linux Kernel

Data packets
 Control data

Figure 3: Software datapath design

together with an accelerator design on the NetFPGA plat-
form. In case few bytes need to be exchanged between the
hardware accelerator and the software driver for each exe-
cution cycle, this approach appears as an overkill, provid-
ing no significantly better performance, because DMA-based
burst mode transfers are efficient just when larger amounts
of bytes must be exchanged.

2.2 Software datapath emulator unit
This unit provides a software platform, which integrates

the hardware accelerated control function with a full-fledged
packet forwarding datapath. The latter can be configured
to emulate specifically the data plane architecture of the
switching device in terms of queueing structure and data
transfer operations. The internals are depicted in Fig. 3.
The packet entry path can start from three different sources:

(i) the traffic generator subsystem that we have developed,
(ii) the hardware Ethernet interfaces connected to the net-
work, and (iii) local applications which generate traffic via
the hosting Linux kernel network stack. The exit path deliv-
ers packets to three different sinks as well: (i) to a user con-
figurable performance measurement subsystem, (ii) to the
network via hardware Ethernet interfaces, and (iii) to the
local Linux kernel network stack. In Fig. 3 the datapath in-
terconnections are depicted with bold dotted lines, the other

packet sources and sinks are depicted on the right and left
sides of the scheme, and the arrow directions indicate entry
and exit paths.

The two main components of the datapath are the config-
urable input and output queueing system and the software
switching system. The first component accepts packets at
the input and enqueues them depending on the emulated
switching behavior. The second component is invoked when
forwarding operations are executed. In the case of an input-
queued switch, packets are immediately enqueued on arrival,
whereas, in the case of an output-queued switch, all user-
defined forwarding actions take place on packet arrivals, and
the packets are enqueued at the output interface queues for
immediate delivery. The hardware-accelerated control al-
gorithm can be invoked at any point in time, according to
the user logic in the queuing component. This process can
be triggered either by a timer, or on packet arrivals, or by
a specific signal from the traffic generator. The user logic
is responsible for interpreting the data exchanged with the
hardware accelerator. The driver only provides a generic
API to push data to the accelerator, and facilitates a call-
back mechanism where the switching component handler is
registered. The interaction of these components is depicted
in Fig. 3 with continuous lines.

Typically, the designer will need to add some configura-
tion options to the queueing component, in order to create
automatically the input and output queues, according to
the number of current inputs and outputs, and according to
the desired queueing structure (e.g., VOQ). Moreover, addi-
tional code is required for collecting the data to be sent to
the accelerator. On the other hand, the switching compo-
nent requires custom code to receive the accelerator response
and perform the required actions.

As mentioned in the Introduction, the software datapath
emulation framework has been developed using the Click
Modular Router packet processor [8]. In such a system, the
developer builds packet processing components, which are
integrated into a single binary file. Execution sequence of
the components, along with custom configuration options,
are all defined in a configuration file loaded during Click
bootstrap. The packet processor may also run in the Linux
kernel as a module with certain limitations.

In our case, Click-based software datapath communicates
with the hardware accelerator via an appropriately modi-
fied NetFPGA driver. Indeed, the original version of the
latter provides standard network I/O support for the four
Ethernet interfaces that are exported by the NetFPGA ref-
erence design. Moreover, it provides an interface for register
I/O access. We have removed both supports from the driver
to bypass the network stack operations and we have just kept
the low level functions that implement packet transfers via
the PCI bus to and from the NetFPGA. For the packet I/O
communication subsystem, we have built appropriate wrap-
per functions to support the 64-bit Ethernet packet segmen-
tation logic for register exchange with the hardware.

2.3 Traffic generator
The traffic generator subsystem generates traffic arrival

patterns on a user-defined number of emulated inputs. These
patterns are devised to test the performance of the control
algorithm, and are typically determined during a prelimi-
nary simulation study. The traffic generator subsystem feeds
the emulator datapath and it is comprised of an offline syn-

Traffic
Description

File

C Header
File

generator

Click
Toolchain Traffic

Generator
Binary

BinaryTraffic
Replay
Map

Time Input Port Output Port Bitmask Packet Size
Time Input Port Output Port Bitmask Packet Size

Packet 1:
Packet 2:

.

.
.
.

.

.
.
.

Traffic description file Format:

.

.

User tool
or

Emulator
tool

Figure 4: Traffic generator toolchain design

thetic traffic generator and an online Ethernet packet gen-
erator.
The original traffic pattern files can be generated either

by the user or by a synthetic traffic tool, according to the
following two processes:

• the time instants at which the packets are generated;
this process is either deterministic or stochastic (e.g.,
Poisson), and is controlled by a single parameter, as
the average offered load.

• the set of destinations for each packet (in case of uni-
cast packets, the destination is unique), which is de-
scribed by a traffic matrix providing the probability
that a particular set is chosen.

The traffic generator engine delivers the packets at the
inputs of the software datapath component, as depicted in
Fig. 3. Moreover, it supports timeslot emulation, where the
packet arrivals per timeslot are defined in the traffic pat-
tern file as well. Finally, the traffic generator engine accepts
configuration to instruct the datapath to invoke the control
algorithm after a specific number of emulated timeslots have
elapsed; thus, it is possible to investigate scenarios in which
the scheduling decisions are taken with a frequency lower
than the packet arrival rate.
The traffic pattern is described through a text file, as

shown in Fig. 4. Each packet is described in a single line
with tab-separated fields. The first field is the generation
time (or timeslot) for the packet; the file is sorted in in-
creasing order according to this field. The second field is
the input port where the packet is generated. The third field
describes the corresponding set of destinations, represented
by a bitmask (of size equal to the number of outputs) with
the i-th bit equal to 1 iff the packet is destined to the i-th
output port. The fourth field is the packet size (in bytes).
The traffic description file is preprocessed by a custom tool

that produces a binary“traffic replay map”as a C header file,
as depicted in Fig. 4. This binary file contains an encoded
version of each packet arrival, in a few bytes. After the
compilation is completed, the traffic generator engine binary
is ready to inject the packets.
At runtime, the traffic generator efficiently reproduces

each arrival event using bitwise operations. Before being
sent to the datapath input, though, each packet gets anno-
tated with its fanout set bitmask and the current time. The

packet annotation space is provided by Click framework and
does not affect the packet size and contents.

2.4 Performance measurement
Packets can be sent either to the physical interfaces or to

the performance measurement subsystem, in order to evalu-
ate the performance of the control algorithm. This subsys-
tem is a packet sink able to measure throughput and delay,
per input and output port. The delay is evaluated as the
difference between the current time and the generation time
of the packet, which is carried by the packet across the data
plane. This subsystem uses the Click Modular Router kernel
memory log system to dump the performance results. This
design choice is important, since the traffic measurement
subsystem does not interact with disk files, and therefore it
does not affect performance.

3. EMULATION METHODOLOGY
Let us now describe the development methodology to be

followed for the proposed emulation framework. In a few
steps, the accelerated control algorithm can be quickly in-
tegrated into a real-life networking system. The final de-
ployment can be used for both performance assessment of
a final system configuration, as well as for proper operation
verification by large scale experiments and direct compari-
son with simulated results. Note that, for the former case,
the final system can be either an all-hardware switching fab-
ric (ASIC) or a hardware/software co-designed solution, in
which a part of the control algorithm is designed in software.

3.1 Accelerator integration
The gateware accelerator core may be developed outside

the context of the hardware emulator unit framework, fol-
lowing the standard hardware description development cy-
cle, using either the structural approach of Verilog or VHDL
languages. Moreover, the developer needs to design a flexi-
ble pipeline and/or a state machine that may be revisited to
meet the timing constraints on the FPGA deployment tar-
get. One important design decision is the encoding and the
volume of data to be exchanged between the accelerator and
external components, in order to minimize the communica-
tion overhead. According to the implemented communica-
tion scheme, the accelerator cannot communicate via shared
memory with external components. The provided integra-
tion signals of the emulator communication I/O subsystem
are depicted in Fig. 5.

Initially, the developer defines the 32-bit or 64-bit regis-
ters to receive the data over the register I/O interface or the
packet I/O interface, respectively. In the same spirit, dif-
ferent register instances need to be defined for data output.
The clock and reset signals are supplied by the communi-
cation subsystem; thus, the developer needs to remove any
other clock sources from the design. The communication
subsystem also supplies a start signal line, which changes
state whenever a data transfer cycle is completed, so that
the accelerator can begin execution. Finally, the accelerator
is equipped with an interrupt line, which alerts the com-
munication subsystem when results are ready. In the case
of memory-mapped register I/O, the interrupt is delivered
to the software driver, which initiates the register read pro-
cess, while, in case of packet I/O, the interrupt is delivered
to the emulator hardware that prepares and sends the out-
going packet. User logic may ignore both the start signal

Communication
I/O

Subsystem

Control
Function

Accelerator

Results Ready
 Interrupt Line

Start Computations
Signal Line

Nx32-bit or Nx64 bit
Data lines

 CLK

 RST

Figure 5: Integrating the gateware accelerator with
the communication subsystem

and the interrupt signal (in case of memory mapped regis-
ters, for polling-based access), but it cannot ignore the latter
when packet I/O based transfer is used. The user edits the
configuration options of the communication subsystem, to
choose between register and packet I/O, or both. When
both options are selected, the interrupt line is connected to
the packet I/O module and the registers can be read only via
polling. The communication module accepts further config-
uration to generate the number of bit signals required to
accommodate all the user logic input and output registers.
The integrated design gets processed by the Xilinx tools [2]

to produce a configuration bitstream for the NetFPGA. As
far as the reconfigurable area availability is concerned, the
first design approach is to use only the register I/O commu-
nication, which requires considerably less area than packet
I/O, before the accelerator design is revisited. On the other
hand, timing constraints violation definitely requires a de-
velopment effort. Note that such, possibly required, design
improvements are a step forward to the final deployment and
are not valid only for the system emulation. After this step
is successfully completed, the hardware integration is fin-
ished and the developer may proceed with the software-side
design.

3.2 Software datapath integration
After the accelerator is installed successfully on the Net-

FPGA using the default deployment tools, the developer has
to configure and add logic to the software datapath frame-
work. At the architectural level, the datapath can be config-
ured as an N ×M switch, where N is the number of input
ports and M the number of output ports. Moreover, the
inputs and outputs can be configured to be connected to
either virtual or physical Ethernet interfaces; alternatively,
inputs can be connected to the traffic generator and outputs
to the performance measurement subsystem, as depicted in
Fig. 3.
The framework module hosting the queues supports the

configuration of general-purpose queues, in addition to the
typical input and output queueing structures. These con-
figuration options are passed as arguments to an emula-
tor script, which generates the appropriate Click Modular
Router configuration files.

3.2.1 Adding user logic
Depending on the overall design approach, the developer

needs to add functionality to the software datapath core as
follows. If the control algorithm is totally implemented in
hardware, the developer needs to add code in the queueing
module, to transfer the required queue states in the appro-
priate format to the hardware accelerator. In most cases,
these states are updated online by enqueue and dequeue op-
erations. The developer uses a library interface to update
such state variables and operate the enqueue and dequeue
functions.

The modified NetFPGA driver API exports generic func-
tions to build and send register values grouped in Ethernet
packet(s) for packet I/O, and a slightly different version for
the register I/O. Moreover, in the software module that per-
forms switching, we provide a callback, already attached to
the accelerator interrupt, which can be used to receive the
data from the accelerator using the respective driver API
calls.

The developer has to code how to perform the switch-
ing operations based on the accelerator feedback. Note that
Click Modular Router library features many approaches to
switching, which can be properly modified by the developer
to achieve the required functionality. The general purpose
queues are allocated during the configuration, and the de-
veloper is equipped with an array of pointers to the queue
objects, which can be properly organized, according to the
required queueing architecture (e.g., VOQ).In case the con-
trol algorithm is hardware/software co-designed, part of the
computation is implemented in software. It is straightfor-
ward to add new processing modules to the Click Modular
Router configurations, by editing the configuration files pro-
duced by the emulator tool before deployment. Finally, the
developer has the option of using the supplied traffic gener-
ator, described in Sec. 2.3.

4. DEMONSTRATION AND EVALUATION
In this section we evaluate the proposed emulator frame-

work by a design example. We specifically consider the prob-
lem of scheduling multicast packets in IQ switches. This
problem is very challenging, since it is computationally very
complex and must be solved in very short time, as briefly
discussed in Sec. 1. Performance is strongly dependent on
the scheduling algorithm.

Some previous work has investigated how to solve packet
scheduling problems using an FPGA-based accelerator. For
example, in [4] the authors investigated the performance
improvement achievable by a packet scheduler for unicast
traffic, but they did not evaluate the accelerator in an in-
tegrated forwarding system. Furthermore, the problem ad-
dressed in [4] is much simpler than the current one; indeed,
the computational complexity of the optimal scheduling al-
gorithm for unicast traffic is polynomial, whereas our prob-
lem for multicast traffic turns out to be NP-hard [3].

In the following, we show how to design an accelerator for
the multicast packet scheduler presented in [6], to demon-
strate the integration with the emulator framework and pro-
vide an evaluation of the presented subsystems. The reason
for this choice is that the algorithm in [6] is amenable to
efficient FPGA implementation, due to its intrinsic parallel
nature.

Figure 6: IQ switch with N = 2 inputs and M = 3
outputs. Each logical queue of MC-VOQ is tagged
with the corresponding fanout set.

4.1 Belief propagation for multicast traffic
We consider an IQ switch of size N ×M (see Fig. 6).

The switching fabric is non-blocking and bufferless (e.g., a
crossbar), able to transfer any non-conflicting set of packets,
i.e., at most one packet is transferred from each input and
to each output at any time. We assume that the switching
fabric natively supports the transfer of multicast packets,
i.e., an input can send a copy of the same packet to different
outputs, at the same time.
The scheduler, based on the state of occupancy of the

queues, has to select a set of non-conflicting packets, in or-
der to maximize throughput. Its task is usually very com-
plex from the computational point of view and the optimal
scheduling policy requires to solve an ILP (Integer Linear
Programming) problem, which, as previously mentioned, is
solvable in polynomial time only under unicast traffic [10].
Here we consider the more challenging problem of schedul-
ing multicast traffic. A fanout set is defined as a subset of
output ports, so that a multicast packet can be described
by the fanout set of its output destinations. For example, a
packet destined to outputs 1,2,4 has fanout set {1, 2, 4}.
We assume that time is slotted and the switching fabric

runs synchronously. At each timeslot, packets arrive and are
stored in the input queues. Based on the queue occupancy,
the scheduler selects the packets to be transferred across the
switching fabric.
The adopted queueing architecture is MC-VOQ [3], i.e.,

one logical queue is present for each possible (non-empty)
fanout set and each input port. For example, the packets
with fanout sets {1, 2, 4}, {1, 4}, {3, 5}, {1}, {1, 2, 5} are
stored in 5 different queues. Clearly, each input has to sup-
port at most 2M − 1 logical queues. As an example, Fig. 6
lists all the possible queues for M = 3.
Note that MC-VOQ is the only optimal queueing archi-

tecture for an IQ switch, because it avoids the head-of-line
blocking problem, i.e., a front packet will never prevent an-
other packet in the same queue from accessing a free output.

4.1.1 The optimal scheduling policy
Combined with optimal queueing (MC-VOQ), we consider

the throughput-optimal scheduling policy for multicast traf-
fic [3]. Such a policy allows “fanout-splitting”, i.e., a packet
can be sent to just a subset of its destination ports, leaving
some residual destinations for future transmissions. In case
of residual destinations, the packet is re-enqueued into the
queue corresponding to the residual fanout set. For example,
a copy of the packet destined to {1, 2, 4} might be sent just
to output 1 (if, for instance, outputs 2 and 4 are busy with

packets transmitted from other inputs), while the packet is
moved to the queue corresponding to the fanout set {2, 4}.

To be more general, let I and O denote the sets of in-
put and output ports, respectively, whose cardinalities are
|I| = N and |O| = M . The “power set”P(O) is the set of all
possible fanout sets. As one logical queue is present for each
non-empty fanout set, the set of all possible logical queues
can be represented by P(O) \ {∅}, where ∅ denotes the null
fanout set. For example, if M = 3, then

P(O) = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}
A scheduling decision can be represented by N pairs of
fanout sets σi, τi ∈ P(O), one for each input i ∈ I. In par-
ticular, we define for input i:

1. The service fanout set σi, representing the served queue;

2. The transmission fanout set τi, representing the subset
of outputs to which the packet is actually transmitted;

3. The residual fanout set σi \ τi, representing the queue
in which the packet is, in case, re-enqueued.

In the above example, the packet at input i, destined to
σi = {1, 2, 4}, is sent to outputs τi = {1} and then re-
enqueued to outputs σi \ τi = {2, 4}.
The decision variables must satisfy the following constraints.

First, by construction, each transmission fanout set must be
a subset of the corresponding service fanout set:

σi ⊇ τi ∀i ∈ I (1)

Second, the transmission fanout sets must not generate con-
flicting packets, i.e, their intersection must be empty:

⋂

i∈I

τi = ∅ (2)

According to [3], the objective (“weight”) function, to be
maximized at each timeslot, is

w
(
[σi, τi]i∈I

)
=

∑

i∈I

[�i(σi)− �i(σi \ τi)] (3)

where �i(σ) is the current length of the queue associated to
the (non-empty) fanout set σ at input i (whereas �i(∅) ≡ 0).
The main idea behind this function is to serve at higher pri-
ority packets that are stored in large queues and that are
possibly re-enqueued into small ones. As previously men-
tioned, this policy was shown in [3] to be optimal in terms
of throughput.
The scheduling problem can be simplified, observing that

constraint (1) involves separately the decision variables σi, τi
of each single input i. As a consequence, one can perform a
preliminary optimization procedure, that runs in parallel for
each input i ∈ I, to determine the maximum value of each
single element of the sum in (3), for each possible choice
τi = τ ∈ P(O), which we shall call “local weight”

wi(τ) = max
σ∈P(O)|σ⊇τ

{�i(σ)− �i(σ \ τ)} (4)

The same procedure computes the optimal σi, for each pos-
sible choice τi = τ ∈ P(O), which we shall denote as σ̂i(τ).
After this preliminary procedure, the original problem is re-
duced to an optimization over the sole τi variables, con-
strained by (2). The weight function to be maximized is

ŵ
(
[τi]i∈I

)
=

∑

i∈I

wi(τi) (5)

4.1.2 The belief propagation approach
In order to solve the resulting problem, one can resort

to a Belief Propagation (BP) algorithm, as proposed in [6].
BP is a rather general class of algorithms [9], based on mes-
sage passing among the elements of a given system (input
and output ports in our case). Such a distributed nature
makes it specially suitable for hardware implementations.
As shown in [9], given a proper formulation of a constrained
optimization problem, the construction of a BP algorithm is
a rather well-established issue, even though some analytical
manipulations are usually required to obtain conveniently
simple equations. Here, due to limited space, we shall basi-
cally give only the pieces of information that are needed for
the implementation. More details are reported in [6]. Let
us only mention the fact that, even though we generically
speak of BP, our algorithm is of the min-sum type [9], which
can be regarded as a special case of BP, specifically suited
for computing MAP (maximum a posteriori probability) es-
timates.
At a high level description, the algorithm can be divided

in the following phases:

1. Message Initialization (MI). Messages are initialized at
some “null” value.

2. Message Update (MU). Messages are exchanged be-
tween each input and output, and updated iteratively
by each input and output, concurrently. At each iter-
ation, each message is computed as a function of the
received messages and the state of the queues. This
phase ends when either a maximum number of itera-
tions is reached or the message values converge to a
fixed point.

3. Scheduling Decision (SD). The scheduler chooses the
packets to be transferred, based on the final values
of quantities called beliefs, that again depend on the
messages and on the state of the queues.

The beliefs, associated to each transmission fanout set τ
at each input i, are defined as

mi(τ) = wi(τ)−
∑

j∈τ

bj→i (6)

where the information about the state of the queues is incor-
porated in the local weights wi(τ), defined by equation (4),
whereas bj→i are “backward” messages (from output j to
input i), defined below. The belief mi(τ) is an estimate
of the weight (objective function value) that can be ob-
tained by choosing a specific transmission fanout set τi = τ .
Moreover, the backward message bj→i is an estimate of the
weight degradation due to possible conflicts generated by
a transmission from i to j (i.e., by a choice τi such that
j ∈ τi). Backward messages are defined by self-consistency
equations, that depend also on intermediate quantities fi→j ,
called “forward” messages (from input i to output j):

bj→i = max
i′∈I\i

fi′→j (7)

fi→j = max
{
0, max

τ∈P(O)|τ�j
mi(τ) + bj→i − max

τ∈P(O)|τ/�j
mi(τ)

}

(8)

These equations define one elementary iteration of the MU
phase of the algorithm. The beliefs are updated according

Figure 7: Update of backward message bj→i during
one iteration of MU

Figure 8: Update of forward message fi→j during
one iteration of MU.

to equation (6). Figs. 7 and 8 provide a graphical represen-
tation of the various dependencies expressed by equations
(7) and (8), respectively. The backward message bj→i (from
output j to input i) is computed as the maximum among
all the forward messages fi′→j , coming from any input i′,
except i, to the same output j. The forward message fi→j

(from input i to output j) is computed by a more complex
expression (including also the beliefs), which however sim-
ilarly depends on all the backward messages bj′→i, coming
from any output j′, except j, to the same input i.

A major difficulty of this approach is that, due to the
“densely connected” constraints (basically, we have a single
constraint (2) involving all variables), there are several cases
in which the MU phase does not converge [6]. Because of
this problem, a fully distributed SD phase, in which every
input i takes its decision τi on the basis of its own belief
mi(τ), is not feasible, since it might lead to conflicting de-
cisions. Such a difficulty can be overcome, using BP with a
fixed number of iterations, in conjunction with a centralized
decimation algorithm, which at each step fixes a given vari-
able τi = τ with the maximum belief mi(τ) (over all inputs),
and then re-runs BP, keeping compatibility with previously
fixed variables. The resulting algorithm, which we denote
as DEC-BPn (meaning exactly decimation with n BP iter-
ations), is described by the pseudocode reported in Fig. 9.

The algorithm takes as input the array of queue lengths
�i(σ), for each input i and each fanout set σ, and returns
the scheduling decision, in terms of the fanout set variables

DEC-BPn (input: [�i(σ)]i∈I,σ∈P(O); output: [σi, τi]i∈I)

0. for i ∈ I and τ ∈ P(O), compute wi(τ) and σ̂i(τ) by (4)

1. set Ĩ = I and Õ = O

2. while Ĩ �= ∅

3. for i ∈ Ĩ and j ∈ Õ, set bj→i = 0

4. repeat n times

for i ∈ Ĩ and j ∈ Õ, compute fi→j by (8) and (6)

for i ∈ Ĩ and j ∈ Õ, compute bj→i by (7)

5. for i ∈ Ĩ and τ ∈ P(O) | τ ⊆ Õ, compute mi(τ) by (6)

6. choose i ∈ Ĩ and τ ∈ P(O) | τ ⊆ Õ that maximize mi(τ)

7. if mi(τ) = 0, set τ = ∅

8. set τi = τ and σi = σ̂i(τ)

9. set Ĩ = Ĩ\i and Õ = Õ\τi

Figure 9: DEC-BPn algorithm.

σi, τi for each input i. Step 0 performs the preliminary op-
timization procedure defined by equation (4). The “lists” Ĩ

and Õ of “unreserved” inputs and outputs, respectively, are
initialized at step 1, assuming that all the ports are initially
available. Step 2 begins the decimation loop, which con-
tinues until every input has taken a decision, i.e., as far as
Ĩ is not empty. Steps 3 and 4 represent the MI and MU
phases, respectively; step 5 computes the final belief values.
Step 6 chooses an input i and a transmission fanout set τ ,
such that i is available and τ contains only available out-
puts, maximizing the belief mi(τ). Step 7 states that, if the
maximum belief found is zero, the algorithm assigns a null
transmission fanout set (which corresponds to a vanishing
belief as well). The transmission fanout set at input i and
the corresponding optimal queue to be served are fixed at
step 8. Step 9 updates the lists of available inputs and out-
puts. Finally, it is understood that, when the decimation
loop is over, the current values of the fanout set variables
are returned.

4.2 Implementing DEC-BPn

Initially, DEC-BPn has been implemented in Click Modular
Router as an integrated system, capable of forwarding real
traffic in a 4 × 4 switch. For simplicity, we have assumed
fixed-size packets and slotted time, with the timeslot dura-
tion equal to the packet transmission time. A simple profil-
ing on such a software version has revealed that the scheduler
execution occupies 94% of each timeslot, while the actual
packet switching process and the queue manipulation oper-
ations account for 6%. This result was expected, because all
the packet enqueue/dequeue operations rely only on pointer
arithmetic operations, which take place very efficiently on
instruction-set processor architectures. Since the scheduler
needs to be invoked as often as possible, a hardware accel-
erated version has been considered to improve its execution
performance. Therefore, we have developed a gateware ver-
sion of the scheduler, making use of the Verilog hardware
description language. The gateware DEC-BPn design has
been realized as a state machine, still for a 4× 4 switch.

4.2.1 The scheduler communication interface
The DEC-BPn scheduler exports 61 16-bit registers at its

input. The first 60 registers are used for passing all the MC-
VOQ queue lengths [�i(σ)], for any input i ∈ I (with |I| = 4
inputs) and any queue σ ∈ P(O), (with |P(O)| = 15 queues
per input). The last register acts as a control register and it
is used to initiate calculation and to indicate when the de-
cision is ready. The scheduler outputs 8 4-bit registers with
all the decision variables (service and transmission fanout
sets): σi and τi, for i = 1, 2, 3, 4.
The decisions are encoded in each register with a bitmask,

designed to index queues (and their corresponding fanout
set), and to perform easily queue set operations. Each bit
position is reserved for a given port; the value 1 indicates
that the respective port belongs to the set represented by
the current bitmask. For example, fanout set {1, 2, 4} is
represented by 1101. As a result, a few bitwise operations
can determine whether a given port belongs to a fanout set
or not, and queue head pointers are directly indexed by the
respective bitmask values, which allow for instant retrieval.
The external logic is responsible for placing incoming pack-

ets on the appropriate MC-VOQ structures and log all queue
backlogs. The backlog values are placed on the input regis-

ters of the scheduler accordingly. Then the control register
is set at 0x1 to initiate execution. As soon as the result is
ready, the control register value changes to 0x2. It is ex-
pected that the external logic hooks an interrupt line to the
respective register bit to get notified or just poll for the re-
sult. The result can be read from the output registers and
appropriate forwarding operations as well as MC-VOQ re-
enqueuing operations have to be performed by the datapath
logic.

4.2.2 The gateware scheduler state machine
The C software library of the scheduling algorithm, avail-

able from the simulator adopted in [6], has been properly
restructured to be easily mapped to gateware. During this
process, all the for-loops have been transformed as follows.
(i) The for-loops that performed independent operations on
different regions of data have been “unrolled”, so that hard-
ware may execute all operations on a single cycle. (ii) The
for-loops that used the feedback from the previous cycle for
the calculations during the next one have been converted to
state machines.

In this way, the gateware scheduler design has required 81
states to compute all the local weights according to equa-
tion (4), in parallel among the 4 input ports. Subsequently,
it has required 68 states to compute the forward messages
and 53 states to compute the backward messages, during
each DEC-BPn iteration. Finally, 71 states are needed to
perform all the necessary matching and comparison opera-
tions to reach the final decision. In total, for 3 hard-coded
iterations, the gateware version of DEC-BP3 needs 515 cy-
cles to produce the final decision. The combinatorial logic
within each state has been carefully placed to minimize the
critical path delay, so that the overall design can operate at
high clock rates. For example, this design can be clocked
at 72.9 MHz on a mid-range reconfigurable hardware plat-
form, which enables the DEC-BP2 scheduler to complete
execution in 7.06 μs, almost 3 times faster than the software
version running on a Intel Core i7 CPU running at 3.06 GHz.

4.2.3 Integration with the emulator framework
The behavior of DEC-BPn gateware accelerator has been

verified with ModelSim system for proper operation using
some test traffic pattern. In order to integrate with the em-
ulator, we firstly interfaced DEC-BPn gateware with the em-
ulator communication subsystem signals. Initially we aimed
to use the packet I/O interface. We appropriately grouped
the input and output registers in 64-bit groups to intercon-
nect with the packet datapath signals. Next we have appro-
priately connected the control register bits with the “start”
and “done” interrupt signals, as well as the clock and reset
signals. The Xilinx tools were used to compile the design
for the NetFPGA target. Unfortunately the final design
had reconfigurable resource requirements that exceeded the
NetFPGA capacity. We revisited the DEC-BPn design to
save some space but it was not adequate, so we decided to
use the register I/O interface instead to decrease consider-
ably the required reconfigurable area. Towards that end, we
had simply to re-group the I/O registers in 32-bit groups and
rewire them with the reconfigured communication module.
Another change was to wire the control register to a commu-
nication bus register to get the start signal via the software
driver, while the “done” signal was removed from the control
register and connected to the provided interrupt line. This

Table 1: Communication I/O performance analysis
and area requirements on NetFPGA 1G and i7 plat-
form

Communication I/O Average delay per byte FPGA area
Packet I/O 9 ns 6265 slices
Register I/O 180 ns 2580 slices

time the DEC-BPn configuration bitstream was successfully
built for the NetFPGA.
Regarding the software side of the emulator, we started by

configuring the Click-based datapath. In our case we have a
4×4 IQ switch, with the inputs connected to a traffic gener-
ator instance and the outputs connected to the performance
measurement module. Moreover, the queueing module is
configured to build the required number of queues to imple-
ment the MC-VOQ structure at the inputs. We passed all
these arguments to the emulator configuration script that
generated appropriate Click configuration files for the data-
path. In the sequel, we added logic to the queueing module,
the switching module and the traffic generator.
In the queueing module we implemented the MC-VOQ

structure and we mapped pointers to the backlog counters
which were used for the transfer to the accelerator via the
driver API. Each time a transfer cycle is complete, we use
the driver API once more to write a register that initiates the
scheduler execution. The scheduler response calls a handler
in the switching module which has been developed to read
the decisions via the driver API, to re-enqueue the pack-
ets within the MC-VOQ structure and to forward them to
the output performance module sink. The traffic patterns
used in the original simulator have been converted to an
emulator traffic description file. In our case, each packet is
timestamped with its generation timeslot and tagged with
its fanout set. The emulator toolchain is used to build the
binary traffic map and integrate it with the traffic generator
code. After this step, the software datapath is complete and
the integration with the emulator has finished.

4.3 Emulator framework evaluation
The proposed emulator framework has been deployed as

follows. The gateware communication subsystem has been
compiled with Xilinx tools version 10.1 and deployed on
NetFPGA 1G PCI platform. The host platform features
a 3.06 GHz i7 processor running Fedora 14 with Linux ker-
nel version 2.6.35 32-bit. We used the latest version (2.0.1)
of Click Modular Router framework for the datapath im-
plementation. Any co-designed networking system, that is
integrated in the emulator framework and uses the provided
communication subsystem, shows the fixed I/O performance
and reconfigurable area requirements of Table 1.
As expected, the register I/O interface is significantly slower

(20 times) because of the memory mapped I/O access that
does not allow burst mode memory transfers. Moreover,
register I/O interface occupies CPU cycles for each regis-
ter transfer, while packet I/O uses DMA and the CPU is
releaved to perform other tasks during a transfer. Note
that the averages presented in Table 1 have been calculated
on 256-byte data transfers and the time was measured us-
ing Linux“gettimeofday”virtual system call implementation
that uses the i7 CPU cycle (TSC) counter (introduced in

Table 2: Gateware 4×4 DEC-BPn execution perfor-
mance analysis on NetFPGA 1G hosted on Intel i7
CPU

n = 0 n = 1 n = 2
Push data to input registers 23μs 23μs 23μs
DECBPn execution 3.77μs 5.44μs 7.12μs
Get data from output registers 13μs 13μs 13μs
Datapath execution 1μs 1μs 1μs
Timeslot duration 40.77μs 42.44μs 44.12μs

Linux 2.6.35). There is a fixed setup delay for each packet or
register transfer that makes few bytes I/O operations very
expensive. The communication subsystem performance is
expected to be the bottleneck in most emulated network-
ing systems with accelerated control algorithms, mainly be-
cause PCI bus interconnection is slow compared to CPU
and gateware processing speeds. Note that this is not in-
herent to the emulator design rather than the deployment
platform and is a common issue of hardware software co-
designed systems of this type [5]. For example, running the
emulation framework on NetFPGA 10G over PCI-Express
would significantly improve performance of both communi-
cation subsystem approaches. Nevertheless, measurements
on the emulated subsystems can provide the relative differ-
ences in performance which should be taken into account in
the selection of the final system interconnection components.

On the other hand, register I/O needs almost 3 times less
reconfigurable area, which leaves a significant amount of re-
sources available to the user logic. This may be crucial for
some designs, as it was for the presented DEC-BPn sched-
uler.

4.3.1 Evaluation of DEC-BPn emulation
DEC-BPn algorithm was proposed and its performance

investigated by simulation in [6]. We have run the emulator
traffic generator engines for uniform and concentrated traf-
fic matrices, defined in [6]. More specifically, we have used
4 different uniform traffic patterns for different input loads.
Table 2 shows the performance of the emulated DEC-BPn
forwarding system. As expected, register I/O is the bottle-
neck and defines the top operating speed of the forwarding
system. On the other hand, several experimental scenarios
may be implemented on the emulated DEC-BPn, including
real traffic forwarding, and the relative performance results
can be used to assess the performance in a final system con-
figuration.

5. CONCLUSION
In this paper we have presented a hardware/software co-

designed emulator framework for the operational verification
and evaluation of hardware accelerators that implement dat-
apath control algorithms in fast packet switches. The pro-
posed approach is implemented on a combination of two
popular frameworks, the Click Modular Router for the soft-
ware datapath and the NetFPGA hardware for the control
algorithm accelerators. Following the proposed accelerator
integration methodology, the developer can quickly realize a
full-fledged packet switch that exploits the hardware acceler-
ator, while focusing only on devising the control algorithm.

Acknowledgements
The research leading to these results has been funded by the
European Union Seventh Framework Programme under the
FET project “STAMINA”.

6. REFERENCES
[1] Cisco XR 12000 series and Cisco 12000 series routers.

http://www.cisco.com/. Accessed: 2014-01.

[2] The Xilinx ISE design suite. http://www.xilinx.com/
products/design-tools/ise-design-suite.
Accessed: 2014-01.

[3] M. Ajmone Marsan, A. Bianco, P. Giaccone,
E. Leonardi, and F. Neri. Multicast traffic in
input-queued switches: optimal scheduling and
maximum throughput. IEEE/ACM Trans. on
Networking, 11(3):465–477, 2003.

[4] S. Atalla, D. Cuda, P. Giaccone, and M. Pretti.
Belief-propagation-assisted scheduling in input-queued
switches. IEEE Trans. on Computers,
62(10):2101–2107, 2013.

[5] K. Chuang, S. Yalamanchili, A. Gavrilovska, and
K. Schwan. ShareStreams-V: A virtualized QoS packet
scheduling accelerator. In International Symposium on
Field-Programmable Custom Computing Machines
(FCCM), pages 265–268, 2008.

[6] P. Giaccone and M. Pretti. A belief-propagation
approach for multicast scheduling in input-queued
switches. In Workshop on networking accross
disciplines: Communication networks, complex
systems and statistical physics (NETSTAT), pages
1403–1408, 2013.

[7] M. Karol, M. Hluchyj, and S. Morgan. Input versus
output queueing on a space-division packet switch.
IEEE Trans. on Communications, 35(12):1347–1356,
1987.

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. ACM Trans. on
Computer Systems, 18(3), 2000.

[9] F. Kschischang, B. Frey, and H.-A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE Trans.
on Information Theory, 47(2):498–519, 2001.

[10] N. McKeown, A. Mekkittikul, V. Anantharam, and
J. Walrand. Achieving 100% throughput in an
input-queued switch. IEEE Trans. on
Communications, 47(8):1260–1267, 1999.

[11] G. Watson, N. McKeown, and M. Casado. NetFPGA:
A tool for network research and education. In
Workshop on Architecture Research using FPGA
Platforms (WARFP), 2006.

