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ABSTRACT
Verification is an important step in the development of real-
time embedded systems. The validation of a real-time sys-
tem uses a timing accurate simulator and, when the actual
binary code is used, a cycle accurate simulator (CAS). How-
ever, a CAS is slow especially when the simulated processor
is complex and the application is big. One way to improve
the speed of a CAS is to use compiled simulation. In this
scheme, the application binary code model is merged with
the processor model. This allows to remove operations from
the simulator and to speed up it. In this paper, we show
how to use an abstraction of the program and improve the
handling of functions calls. The resulted simulator is tempo-
rally and functionally equivalent. This technique improves
simulation speed by more than 50% over the speed of an
interpreted CAS1.
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1. INTRODUCTION
Verification and validation of real-time embedded systems

is an important part of their development because a failure
can lead to dramatic consequences. In addition to a cor-
rect functional behavior, they also have to respect timing
constraints.
In the last steps of the validation process, when the ac-

tual binary code of the application is available and when the
actual hardware is known, formal methods become unsuit-
able because the formal model of the system includes a lot
of details. As a result, it is huge and leads to combinatorial
explosion. Instead validation by using precise models of the
hardware, e.g. a CAS simulator is greatly adapted at this
stage of the validation process.
The choice of simulation tools depends on the field studied

and the required objectives. They determine the abstrac-
tion level required by the simulator. Lower is this abstrac-
tion level, higher is the complexity of the simulator. The
handwritten development of these simulators is a long and
error prone work. To facilitate the generation of a simulator,
a hardware Architecture Description Language (ADL) [12]
can be used. The processor is described using a dedicated
Domain Specific Language, and an associated compiler is
provided to generate a simulator. The work presented in
this paper is part of the Harmless project [10]. Harm-
less is a language too [11] which allows the generation of
both a functional simulator, i.e. Instruction Set Simulator
(ISS), and a CAS. The later gives a temporal information
in addition to the functional behavior, but at the cost of a
significant computation time.
A Cycle Accurate Simulator should take into account micro-

architecture parts of the processor that have an impact on
timings. This particularly implies the modeling of the pipe-
line which leads to a greater complexity of the simulator.
Moreover, it has a huge simulation performance cost com-
pared to an ISS. The computation time required for sim-
ulation is, however, a real handicap during the validation
process, in particular when running a large amount of dif-
ferent scenarios.
In this paper, we focus on techniques to reduce the execu-

tion time of a CAS, using the compiled simulation. We pro-
pose a model allowing to take into account efficiently most



of the applications. Then, we improve the compiled simula-
tion to further reduce the execution time by abstracting the
application.

The paper is organized as follows: Section 2 presents re-
lated works; Section 3 introduces the basis of interpreted
simulation; Section 4 develops a model of compiled simu-
lation, that takes into account the software floating point
computation problem; Section 5 describes the application
abstraction done to further speed up the simulation; Sec-
tion 6 presents results; finally, Section 7 summarizes our
different contributions.

2. RELATED WORKS
Flexible simulator generation from a processor model sup-

poses the use of a hardware ADL. We can find many hard-
ware ADLs in the literature. Hardware ADLs may focus on
the functional aspects only. In this case, a description of
the instruction set is provided. It allows to generate an ISS.
For example, nML [4] and ISDL [6] are this kind of hard-
ware ADLs. Structural hardware ADLs add the ability to
do a micro-architecture description, in order to simulate the
temporal behavior. LISA [13], MADL [14] and Harmless
[9, 11] can generate both an ISS and a CAS.

We can also find in the literature for ISS the difference be-
tween interpreted simulators and compiled simulators. An
interpreted simulator, for each binary instruction, does the
following steps: instruction fetch, instruction decode, and
instruction execution. That is the same steps than the hard-
ware simulated. A CAS is usually implemented as an inter-
preted simulator. In addition to an ISS, it computes in-
structions dependencies, controls concurrent accesses to the
buses, register files, and generally any computing resource
of the architecture.

A compiled simulator is attached to a particular program.
Since the binary executable is known during the compila-
tion stage, it is possible to move from the execution stage
to the compilation one all the tasks that depend on the ex-
ecuted instruction only. This move leads to a shorter exe-
cution time and the simulator exhibits better performance
than the interpreted one. However, the compilation time is
longer. However, if the execution is done more times than
the compilation, classically several execution are done for
one compilation, we can get a global gain of time. The main
problem remains. The compiled simulator is less flexible
that the interpreted one, because the latter is not attached
to a particular program: if one needs to simulate another
program, another compilation must be performed.

The interpreted simulation is implemented for ISS and
CAS. But the compiled simulation is mainly used by ISS. It
consists in Binary Translation (BT) ([3] or [1]). The princi-
ple of BT is to translate the binary executable we want to
simulate to a native binary of the host simulation platform.
Then, this native binary could be executed directly on the
host simulation platform.

Some methods exist to implement compiled simulation for
CAS. The technique of BT cannot easily be adapted to CAS,
but it is not impossible: [8] couples interpreted parts and
translated parts. Statistical approaches are another example
and Cycle Approximate Simulators are based on the sam-
pling of instructions [15]. But they are not exactly equiva-
lent to a CAS, because of errors margin.

The use of compiled simulation for CAS implies many
restrictions: the static determination of the evolution of the

micro-architecture is difficult. That is the reason why the
technique is so few employed to speed up CAS. However, in
[2] a model has been proposed. It allows to get a gain of the
execution time. In this paper, we propose to improve this
gain and to dismiss one major restriction: software floating
point computation.

3. INTERPRETED SIMULATION MODEL
To assess the performance of the compiled simulation, we

need a point of comparison: the associated interpreted ap-
proach. We present, in this section, the interpreted model
of the Cycle Accurate Simulator based on Harmless [10].
It is also the base of our compiled model.
The procedure that the interpreted simulator follows is to

decode instructions of the application code and to execute
them. Our system includes the instruction set, the memory
model and all the micro-architecture related parts that alter
timings. The Figure 1 presents the development chain used
by the interpreted simulation.
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Figure 1: The development of a CAS requires the
modeling of the instruction set, the memory and the
micro-architecture. (a): compilation, (b): execution

The main micro-architectural feature which is the costliest
to simulate and that alters timings is the processor pipeline.
It allows to execute instructions with some parallelism. Ide-
ally, each instruction in each pipeline stage progresses to the
next stage each cycle.
However, hazards can block instructions in pipeline stages.

Hazards are classified into three categories [7]:

• structural hazards result from a lack of hardware re-
sources;

• data hazards are caused by data dependencies between
instructions (for example between stages W and D in
Figure 2);

• and control hazards, are caused by branching policy.
When a branch is taken, instructions that just follow
the branch must be flushed, according to the branch
delay.



When a hazard is encountered, it is solved by introducing a
pipeline stall : a part or all parts of the pipeline is stopped.

In this paper, we only consider sequential pipelines, i.e.,
there are neither pipelines working in parallel, nor forking
pipelines. We model the pipeline behavior by using an au-
tomaton. A state represents the pipeline state at a particular
time, as we can see in the Figure 2.

The system can be modeled by a discrete transition sys-
tem, because a transition is taken at each cycle (see Figure
2) [10].
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Figure 2: A state of the automaton represents the
state of the pipeline at a given cycle. Here, the
pipeline has 4 stages. F: instruction fetch, D: in-
struction decode and registers read, E: instruction
execution, and W: result write into a register.

Then the definition of the interpreted model is the follow-
ing. A state represents the system in a particular cycle, and
is defined by:

• which instruction is in each stage of the pipeline;

• the state of internal resources.

Internal resources are elements of the micro-architecture,
affecting the pipeline, and used only by it. They affect
the pipeline by their availability. If the internal resource
is available, the progression of an instruction in the pipeline
is allowed, else it is not allowed. We consider stages of the
pipeline as internal resources.

In order to simplify the implementation of the model, we
group together instructions to form instruction classes, when
they use the same resources in the same pipeline stage. For
instance, arithmetic instructions that read registers, make
a calculation and write the result into a third register form
an instruction class. At run time, no internal resource is
needed, because they depend only on the instruction class
and on the pipeline stage.

The simulation performs from a state to another by fir-
ing a transition. A transition represents a discrete event of
one cycle time, and is determined by the state of external
resources and the next instruction class that enters the first
stage of the pipeline.

External resources are quite similar to internal resources,
but they are not solely used by the pipeline. Their state is
defined in other micro-architecture parts, such as a memory
caches. These external resources have an influence on the
evolution of instructions in the pipeline. Since their state
are only determined dynamically in function of the other
architectural parts, their availability is determined during
the execution.

We abstract the content of states. The simulation requires
information from the execution of the automaton: it is gath-
ered on transitions, with a label. This information is a set

of notifications, which signal if a particular event happens
or not.
Now, we can formalize the interpreted model. Let IA be

an automaton defined by {S, s0, ER, IC,N, T}, where:

• S is the set of states;

• s0 is the initial state (empty pipeline) in S;

• ER is the first alphabet of actions (external resources);

• IC is the second alphabet of actions (instruction classes);

• N is the alphabet of labels (notifications);

• T is the transition function in S ×ER× IC ×N × S.
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Figure 3: Automaton in interpreted simulation: a
transition 0:b(1) means that the external resource
is available 0:b(1) , the instruction 0:b(1) may enter
the pipeline and the notification happens 0:b(1)

In the Figure 3, an example is presented. The notation
[bb__] represents the state of the 4-stages pipeline: it means
that an instruction of class b is in the first stage and that
another instruction of class b is in the second stage. Other
stages are empty. This simple example has only two instruc-
tion classes: a and b. We have only one notification that
represents the entry of an instruction in the second stage of
the pipeline. There is only one external resource. The in-
struction class a needs to take the external resource to enter
the pipeline.
The execution of the simulation proceeds by exploring the

automaton. The conditions to determine the next state of
the automaton are the state of the external resources and
the instruction class that will enter the pipeline. The noti-
fications labeled on the taken transition give to the sim-
ulation engine information to interact with other micro-
architectural parts.

4. COMCAS MODEL WITH PUSHDOWN
AUTOMATON

In this section, we broach the problem of the adaptation
of the interpreted model into a compiled one.
The compiled simulation is opposed to the interpreted

simulation in the repartition of tasks between compilation
step and execution step. The main goal of the compiled
simulation is to move the analysis of the program from the
execution step to the compilation step. This is particularly
interesting as the compilation step is done only once. On
one hand, the compilation step is slower with the compiled



simulation than with the interpreted simulation, because the
program is analyzed and the simulation engine is optimized
for this particular program. On the other hand, the execu-
tion step is much faster. This approach is less flexible in
the debug sequence of an application, when the code of the
application is often updated. However, it is particularly in-
teresting in the test sequence of an application, when many
scenarios have to be evaluated on the same binary code.

Figure 4 shows the development chain for compiled simu-
lation. It has to be compared to figure 1. In the compiled
simulation, the program is at the beginning of the develop-
ment chain and is part of the build step of the simulator.
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Figure 4: The development of a compiled CAS re-
quires to move the program analysis at the compi-
lation step. (a): compilation, (b): execution

A model of compiled simulation, temporally and function-
ally equivalent with the interpreted one, has been proposed
in [2] for Harmless and is the basis of our contribution.
The analysis of the program requires information about the
program: its semantics, the Program Counter (PC) and the
stack of function calls. Compared to interpreted simulation,
the model is extended to include the Program Counter (PC)
and the stack of function calls.

In addition, the control of data dependencies has been
moved to the compilation phase. This move reduced by
45% the execution time, in average. Since the compiled
simulation analyzes statically the program, it can not take
into account any indirect branches when the target PC is
unkown at compilation phase.

The management of functions in the program uses a par-
ticular indirect branch: the function return. The target of
this branch is determined by a function call stack. When
the function is called, the following PC is pushed onto the
stack. Then, when a function return is read, the target is
at the top of the stack. This is to simulate this particular
indirect branch that the stack of function calls is included in

the model. Because, we know the state of the stack in each
state of the automaton, we can determine statically the tar-
get of function returns. But, this technique has a drawback:
the size of the model is increased. Indeed, the technique is
equivalent with the duplication of states each time a func-
tion is called. The more a function is called, the bigger is the
automaton. For example, if floating point computations are
managed with functions, the size of the automaton increases
considerably, and the generation of the simulator becomes
unfeasible.
In this paper, we propose an improved model that takes

into account function returns, without penalty on the size
of the automaton. This improvement allows to simulate the
programs using software floating point computation. More-
over, it becomes possible to simulate recursive programs.
If the management of function call stack is not processed

statically, then it must be processed dynamically. The exe-
cution of a program is a context-free language, and could be
described by a Pushdown Automaton (PA). Thanks to this
model, it is possible to describe our system without includ-
ing function call stack. In our contribution, our system is
only defined by:

• the state of the pipeline: which instruction is in each
stage;

• the state of internal resources;

• and the position in the program (the Program Counter).

The system changes its state each cycle according to the
availability of external resources and to the top element of
the stack of the PA.
Let PA be a Pushdown Automaton defined by {S, s0, ER,N,

Z, z0, T}, where:
• S is the set of states;

• s0 is the initial state in S;

• ER is the input alphabet (external resources);

• N is the label alphabet (notifications);

• Z is the stack alphabet;

• z0 is the symbol for the bottom of the stack, in Z;

• T is the transition function in S ×ER× (Z ∪ ε)×S ×
N × (Z ∪ ε).

(s, er, z, s′, n, h) ∈ T means that there is a transition from
state s to state s′ with er on the input and z onto the stack.
This transition pops z from the stack, then pushes h onto
the stack. The transition is labeled with the notification n.
We mark er : z(n : h) on the transition.
In the Figure 5, we give an example of the compiled model.

Only one notification is represented, indicating the entry
of an instruction in the second stage of the pipeline. Two
external resources are present. The second external resource
allows the instruction a, with PC pcd, to enter the pipeline.
The stack is used to choose the transition to fire in the par-

ticular case of function returns. The transition correspond-
ing to the function call pushes onto the stack an identifier.
When a function return instruction enters in the pipeline,
the value is popped from the stack and determines the tran-
sition to fire. An example is given in Figure 6.
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Figure 5: Automaton in compiled simulation:
10:0(1:0) means that the first external resource is
free and the second taken (10:0(1:0), starting from
least significant bit), that nothing is popped from
the stack 10:0(1:0), that the notification happens
(1:0) and that nothing is pushed onto the stack
(1:0).

The management of branches is the same than in [2]: a
specific external resource is allocated for this purpose. If the
resource is taken, the branch is taken too, and conversely.
It is necessary to use an external resource, because, in the
general case, the branch condition can only be computed at
runtime. The simulator is able to determine if a PC jump
happens, then it can define dynamically the value of this
resource. Using the same logic, a specific external resource
can be used to represent the branch delay, according to the
branching policy.

The example of Figure 7 shows the management of branches.
The first external resource is allocated to manage branches.
In particular, it is used for the branch b at PC pca. If this
resource is not available, then the automaton goes to the
target PC (pcc), else it goes to the next PC (pcb). The sec-
ond resource is allocated to manage the branching latency.
No instruction can enter the pipeline, while it is taken.

The construction of the automaton is quite difficult be-
cause the state of the system may be different when a func-
tion is called and depends on the caller. Consequently a
simple algorithm based on the Breadth First Search is not
sufficient. So when the program calls a function that have
already been processed, the algorithm finds the previously
created state. In this case, the algorithm jumps directly to
the state modeling the function return, in order to continue
the construction. This manipulation requires to record some
information on the structure of the automaton, especially,
for each state, which state models the previous function call,
and which states model the next function returns. The al-
gorithm is presented in the Figures 8, 9 and 10.

5. MACRO-INSTRUCTIONS
An important part of the execution time is devoted to the

management of the automaton which is done at each clock
cycle: one transition is fired to simulate one cycle. In this
section, we propose a technique to speed up this task.

Thanks to the compiled simulation, it is possible that the
automaton handles not only one instruction by transition,
but a block of many instructions. We use the term of macro-
instruction for this block. Then, firing one transition allows
to simulate more than one cycle, speeding up the execution

label pc inst
pca call f
pcb

. . .
pcm call f
pcn

. . .
f pcy

pcz return
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Figure 6: Management of the stack: 11:0(0:1)

means that 1 is pushed onto the stack, 01:1(0:0)

means that the transition is fired if 1 is popped from
the stack. 10:0(1:0) means that nothing is pushed
onto the stack and 10:0(1:0) means that nothing is
popped. If the automaton comes from pca, at the
return function, 1 is popped from the stack, then
the automaton goes to pcb.

of the simulation. A sequence of transitions can be reduced
to one transition only, containing the concatenation of the
information of the elementary transitions. We call a macro-
transition a transition modeling more than one cycle. This
reduction is only possible with linear sequence of transitions,
as shown in Figure 11.
Indeed, if a state has several successors, conditions used to

choose the correct following state should be done at runtime,
as it depends on other hardware devices (a memory access
for instance). Such a state is at the end of a linear sequence
of instruction and terminates a macro-instruction.
The efficiency of this reduction depends on the rate of

linear sequences of transitions in the automaton. These se-
quences appear only if the use of external resources is infre-
quent. Indeed, an external resource leads to two successors:
if the external resource is taken or free, the evolution of the
pipeline is blocked or not. In order to make the technique
efficient, it is necessary to treat statically the behavior of
some external resources particularly used. This treatment
is allowed by the compiled simulation, as it is explained in
[2].
One external resource of primary interest is the one related

to the instruction fetch. As the instruction fetch requires a
memory access, an external resource is used to model the
fact that the memory is available or not. If the memory is
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Figure 7: The second external resource specifies if a
branch (like b) is taken or not. The first external re-
source is used to model branching latency (delaying
in this case the entry of instruction e in the pipeline).

1: Initialisation
2: while list of states to process is not empty do
3: s = pop(list of states to process)
4: Find successors from state s
5: end while

Figure 8: Global program

not available, a pipeline stall is inserted into the pipeline.
This external resource has a deep impact on the macro-
instruction size because each instruction requires it.

However, this particular external resource related to in-
struction fetch modeling can be optimized if we consider the
instruction cache. During the compilation process, we can
test if the instruction currently processed is on the same in-
struction cache line than the previous instruction: 2 instruc-
tions are on the same cache line if their address differs only
in the 5 least significant bits for a cache line of 32 bytes for
instance. Obviously, if the instruction is on the same cache
line, we can statically deduce that the cache access will be
a hit and remove the external resource for this access. We
can notice that this modification leads to an average of 70%
reduction of automaton’s states.

The integration of macro-instructions needs no deep mod-
ifications in the model. It is only necessary to manage the
concatenation of information labeled on transitions and to
add one: the number of cycles represented by the macro-
transition. Since the macro-transition is the reduction of
linear sequences of transitions, intermediate conditions bring
no additional information to handle the automaton. Then,
we only keep the first of them. Moreover, for implementation
reasons and because such a condition is not really restrictive,
we require that macro-transitions cannot own more than one
pop and more than one push. To handle the automaton, it is
not useful to execute this two actions at a precise moment.
It allows us to bring backward their treatment at the begin-
ning of the macro-transition. However, it is important to
respect their chronology.

We can now formalize the model. Let MA be an automa-
ton defined by {S, s0, IC,ER,NC, P,N, T}, where:

• S is the set of states;

1: for all external resources do
2: if instruction is a taken branch then
3: if instruction is an indirect branch then
4: Search the called state
5: Add the return state in the called state
6: for all call found in the called state do
7: Computation of successor for call
8: end for
9: else
10: Computation of successor for the target
11: end if
12: else
13: Computation of successor for the next instruction
14: end if
15: end for

Figure 9: Algorithm to find successors

• s0 is the initial state (empty pipeline, initial PC) in S;

• IC is the first alphabet of actions (indirect condition);

• ER is the second alphabet of actions (external re-
sources);

• NC is the first alphabet of labels (number of cycles);

• P is the second alphabet of labels (push);

• N is the third alphabet of labels (notifications);

• T is the macro-transition function in S × IC × ER ×
NC × P ×N∗ × S.

In the Figure 12, we give an example of the construc-
tion of a macro-transition. We suppose that the first tran-
sition pops ic1 from the stack, and that the second transi-
tion pushes p2 onto the stack. The middle state has only
one successor. Then, conditions are gathered to construct
a macro-transition. We replace all input transitions by the
concatenation of itself and the transition to the successor.
The macro-transition contains the concatenation of the two
notifications, the indirect condition of the first transition,
and the push value of the second transition. The numbers
of cycles are added up. If (s, ic, er, nc, p, n, s′) ∈ T , we mark
er : ic(n : p : nc) on the transition from s to s′.
The execution of the automaton is done as follows: The

simulator computes external resources and indirect condi-
tion to handle the automaton. It finds the successor and
fetches the information on the macro-transition. For each
cycle modeled by the macro-instruction, the simulator de-
codes, executes the instructions and get notifications from
the pipeline model.
The automaton is constructed as shown in the Figure 13.

The condition to concatenate is: (ic1 = 0 ∨ ic2 = 0) ∧ (p1 =
0 ∨ (ic2 = 0 ∧ p2 = 0))

6. TESTS AND PERFORMANCE
In this section, we present tests and performance of our

model, in comparison with the interpreted simulation.
In these tests, we simulate a similar architecture to Pow-

erPC 5516 from Freescale, with a e200z1 core. The pipeline
is resized from 4 to 5 stages to increase the size of the model.
We ran benchmarks of Mälardalen [5]. Simulations are made



1: Creation of the successor
2: if instruction is a taken branch and is entered in the

pipeline then
3: if instruction is an indirect branch then
4: Search of the call state corresponding with the re-

turn
5: end if
6: if instruction is a call then
7: Record of the current index in the successors
8: if successor does not exist then
9: Initialisation of the structure
10: else
11: Add information in the structure
12: end if
13: end if
14: end if
15: if successor exists and does not point on the same state

then
16: Call state point on the first call state
17: Fusion of information in the first call state
18: Computation of successors for all possible returns
19: end if
20: Creation of the transition
21: Push state in the list of processed states
22: if successor is not included in the list of processed states

or states to process then
23: Push state in the list of states to process
24: end if

Figure 10: Algorithm to compute a successor

with an Intel Core i7@3,4GHz computer. We execute 50 000
times each program.
The new model that we propose in this paper allows to

reduce the automaton’s size in comparison with the previous
version of ComCAS model. We give in Table 1 the gain of
this reduction. In [2], a calculus gives a theoretical value for
the number of states, if the function call stack is not used.
It is exactly the same result that we get, here. We can note
that some programs have the same number of states with
the two models. The reason is that the PC stack is not fully
used: functions are called once during the execution. For
the special case of programs using software floating point
computation, the reduction is considerable, as we can see
with the program basicMathVerySmall.
The use of macro-instructions leads to a reduction of the

model. Macro-transitions are mainly limited by forks in the
automaton. These forks are caused by branches and exter-
nal resources. In the best case, i.e., for a linear control flow
with no data dependencies, a fork appears every time an
instruction cache line boundary is crossed. In our example,
a line of the instruction cache contains 8 instructions. Con-
sequently, the reduction is bounded by 87,5%. In the Table
2, we observe an average reduction of 47,1%.
In the Figure 14, performance of our new ComCAS model

is presented in comparison with the interpreted method. We
observe a reduction of the execution time of 53% on average.
The model from [2] leads to a 45% decrease of the execu-

tion time. However, the simulation of programs using soft-
ware floating point computation was impossible. With this
new model, it becomes possible. The technique of macro-
instructions reduce the time devoted to the handle of the

i1.i2.i3

i1

i2

i3

Figure 11: i1.i2.i3 is called a macro-instruction. It is
delimited by two branches.

er1 : ic1(n1 : 0 : nc1)

er2 : 0(n2 : p2 : nc2)

er1 : ic1(n2.n1 : p2 : nc1 + nc2)

Figure 12: The construction of a macro-transition

automaton. It leads to improve the decrease of the execu-
tion time to 53% at average, and up to 57% at best, as we
can see on Figure 14. The Figure 15 shows a wide com-
parison between execution time, especially with ISS. This
comparison shows the reduction on the CAS specific part,
and what improvement are still possible without speeding up
the ISS. This benefit shows the interest for techniques that
allows the compiled simulation in the validation of real-time
embedded systems.

7. CONCLUSION
The contribution presented in this paper brings new tech-

niques to implement high speed Cycle Accurate Simulator.
We use a Pushdown Automaton in our model in order to
extend the Compiled Cycle Accurate Simulator to programs
using a large number of functions, like software floating point
computation. Moreover, we have implemented a new tech-
nique: the use of macro-instructions. It consists in the gath-
ering of instructions in a single block. We have compared
performance of our model with the associated interpreted
method. This leads to an average of 53% decrease of execu-
tion time in comparison with the interpreted simulator.
Future works will be about the use of the ComCAS model

in a Just In Time simulator. This technique could bring a
solution for the different problems of the compiled simula-
tion, especially indirect branches. The Just In Time sim-
ulator would run like the interpreted simulator and would
reduce the automaton during the execution stage, on the fly.
When a loop would encountered, the simulator would switch
to a reduced automaton, in order to improve performance



1: while concatenations done do
2: for all state s do
3: Account of successors of s
4: if only one successor to s then
5: for all input transition t of s do
6: if condition of concatenation then
7: Concatenation of t to the successor of s
8: end if
9: end for
10: end if
11: end for
12: end while

Figure 13: Algorithm for the construction of macro-
transitions

Program States with States with Gain
inlining PA

adpcm 18 229 12 096 33,6%
basicMathVerySmall 322 615 4 302 98,6%
bs 587 587 0%
compress 5 901 5 059 14,3%
cover 1 123 1 123 0%
crc 3 616 2 038 43,6%
duff 669 669 0%
expint 1 395 1 395 0%
fdct 3 707 3 707 0%
fibcall 479 479 0%
fir 1 016 1 016 0%
janne complex 645 645 0%
jfdctint 3 134 3 134 0%
lcdnum 568 568 0%
matmult 1 941 1 516 21,9%
ndes 8 378 6 114 27%
ns 837 837 0%
prime 1 871 1 138 39,2%

Table 1: Influence of the inlining on the size of the
model

dynamically.
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