
Simulation of Unidirectional Links in Wireless Sensor
Networks

Reinhardt Karnapke
Distributed Systems/

Operating Systems group
BTU Cottbus - Senftenberg

Cottbus, Germany
karnapke@informatik.tu-

cottbus.de

Stefan Lohs
Distributed Systems/

Operating Systems group
BTU Cottbus - Senftenberg

Cottbus, Germany
slohs@informatik.tu-

cottbus.de

Jörg Nolte
Distributed Systems/

Operating Systems group
BTU Cottbus - Senftenberg

Cottbus, Germany
jon@informatik.tu-

cottbus.de
Andreas Lagemann

Nanotron Technologies GmbH
Berlin, Germany

a.lagemann@nanotron.com

ABSTRACT
Experiments with wireless sensor networks have shown that
asymmetric and unidirectional links are common. For this
reason, we developed different routing protocols that can use
unidirectional links, either implicitly or explicitly.

However, developing protocols that use unidirectional links
is difficult, not least because of inadequate simulation sup-
port.

In this paper we present a simulation model based on OM-
NeT++ and MiXiM that we developed to simulate networks
with unidirectional links and frequent link changes. We eval-
uate the developed simulation approach by comparison of
results achieved by different routing protocols in simulation
and in experiments with real sensor network hardware.

Categories and Subject Descriptors
I.6.3 [Computing Methodologies]: Simulation and Mod-
eling

General Terms
Experimentation

Keywords
Simulation, Wireless Sensor Networks, Unidirectional Links,
Routing

1. INTRODUCTION
Asymmetric and unidirectional links are common in wire-

less sensor networks. This has been proven in experiments
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with different hardware (e.g. Scatterweb ESB [18], XSM
Motes [15, 16], Mica Motes [21, 22], Mica 2 Motes [6], Ez430-
Chronos [10]).
The length of asymmetric and especially unidirectional

links exceeds that of bidirectional links by far. This greater
reach reduces the number of hops needed for multihop rout-
ing and, consequently, the number of communicating nodes
as well as the overall energy consumption. Therefore, pro-
tocol designers should consider designing protocols that use
unidirectional and asymmetric links [22].
Designing protocols for asymmetric and unidirectional links

is not easy, though. Detecting them on the link layer and
making them usable on the routing layer often induces a
high overhead [11]. When protocols have been designed to
detect and/or use asymmetric and unidirectional links (e.g.
DEAL [2], ETF [15]), the protocol developers face the next
challenge: Evaluation of their protocols.
The evaluation of protocols for sensor networks is usu-

ally twofold: simulations and experiments. Proving that
the link detection scheme works in a real network is hard
as it is impossible to prove that all existing links were de-
tected. Unidirectional links can be artificially inserted by
setting nodes to different transmission strengths. Then, it
is possible to check if these links were discovered. The same
method, setting different transmissions strengths to induce
unidirectional links, is also used in some simulations.
Another property of wireless sensor networks is the insta-

bility of radio connections. Depending on a number of pa-
rameters (e.g. residual energy, antenna, deployment height,
weather), links change more or less often, sometimes within
minutes [10]. When these frequent link changes are taken
into account, the evaluation of a link discovery protocol in
real deployments gets even harder. Lots of parameters need
to be considered, and it is never possible to be sure if all
existing links have been measured. Therefore, simulations
become more important.
In simulations, it is possible to evaluate protocols under

controlled, repeatable circumstances. This enables a com-
parative evaluation of protocols, i.e., which protocol discov-
ered more of the existing links.



Unidirectional links are often realized using different trans-
mission strengths for nodes in these simulations, resulting in
stable unidirectional links. In reality, however, links are far
from stable. When protocols that use asymmetric and uni-
directional links are simulated, frequent link changes should
also be taken into account.

In previous work, we developed Buckshot Routing [14],
a routing protocol for wireless networks with unidirectional
links. During the development of Buckshot Routing (and a
number of protocols developed thereafter) it became clear,
that the existing simulation approaches had their limitations
when unidirectional links were concerned. After we mea-
sured the link stability - or rather, the absence thereof - in a
sensor network that we were going to use as testbed [10], we
realized that not only the unidirectional links but also the
instability of links had to be taken into account. Introduc-
ing stable unidirectional links by setting nodes to different
transmission strength was not realistic enough. Therefore,
we developed a new, matrix based approach.

In this paper we present this matrix based simulation ap-
proach and its implementation for the OMNeT++ discrete
event simulator framework based on MiXiM, a model frame-
work targeting wireless network simulations. It enables de-
velopers to evaluate, e.g., routing protocols in networks with
unidirectional links and frequent link changes.

This paper is structured as follows: Our simulation frame-
work is described in section 2, followed by a comparison
between delivery ratios of routing protocols achieved within
our simulations and those achieved in real world experiments
using 36 sensor nodes. Related work is given in section 4.
We conclude the paper in section 5.

2. SIMULATION FRAMEWORK
In many simulations, unidirectional links are realized by

initializing nodes with different transmission strengths, e.g.,
one half of the nodes with transmission range X, the other
half with 2X. This approach has the severe drawback that
unidirectional links are static throughout the simulation,
whereas they can become bidirectional or change direction
in real sensor networks. Other approaches use a random
number generator to decide if a connection exists only when
a node tries to transmit a message. Even though this ap-
proach can be used to simulate a single protocol, drawing
conclusions is hard as the logical (radio) topology is not al-
ways known. Moreover, comparative studies, which compare
the results of two or more different protocols suffer a new
problem: Different protocols are sometimes presented with
different topologies, depending on the network load (Figure
1):
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Figure 1: Influence of Random Numbers

Protocol P1 transmits three messages m1, m2 and m3.
The links over which these messages are transmitted are
evaluated based on random numbers r1, r2 and r3. Assum-
ing r1 and r2 represent a connection and r3 represents a
broken link, messages m1 and m2 reach the next node but
message m3 is lost (Figure 1(a)). Due to protocol differ-
ences, protocol P2 does not transmit message m2, it only
transmits messages m1 and m3. As the sequence of random
numbers delivered by the random number generator is al-
ways the same, random number r2 is now used for the link
over which message m3 should be transmitted, resulting in a
connection between nodes A and D for protocol P2, whereas
there was no connection for protocol P1 (Figure 1(b)).
To circumvent this problem, we use connectivity matrices

which can be generated or measured in a real sensor net-
work and fed into the simulation. To take the frequent link
changes into account, we introduce time steps. When the
simulation starts, an initial connectivity matrix represents
the connections between nodes. This matrix is replaced by
a new one with every time step. By using predefined matri-
ces, a comparison of protocols with the same logical (radio)
topology is possible.

2.1 Network Communication in OMNeT++
with MiXiM

We integrated our simulation model into the discrete event
simulator OMNeT++ [19] (version 4.1) with the MiXiM
[8] extension. OMNeT provides a simulation framework for
generic networks. The MiXiM extension enables simulations
of MANET or wireless sensor network (WSN) communica-
tion.
In MiXiM, nodes are connected using so called network in-

terface cards (NICs). A NIC consists of MAC- and physical
layer. Only if NICs are connected, communication between
nodes is possible at all. Additionally, an AnalogueModel
and a Decider are included. The AnalogueModel is used
to attenuate the transmitted signals. The Decider decides
whether a message has been correctly received at the desti-
nation. AnalogueModel and Decider are connected through,
and initialized by, the physical layer.
When nodes want to transmit messages, they are handed

to the chosen MAC layer which may delay them (e.g. TDMA)
or evaluate the state of the physical layer first (e.g. CSMA).
Once the MAC layer hands the message to the physical layer,
the duration of message transmission is calculated and the
message is appended in the receive queue of all nodes whose
NICs are connected.
Due to the fact that collisions occur at the receiver, the

messages in their receive queues are evaluated when simula-
tion time has progressed to their reception time. Then, the
Decider checks if multiple messages have been received at
the same time (i.e., a collision occurred) or the channel was
free. In the first case, the message is deleted. In the second
case, if the signal to noise ratio was good, the message has
successfully been received and is handed to the upper layers.

2.2 Integration into MiXiM
To integrate our model into MiXiM, a number of modules

needed to be modified:

• MAC layer

• Physical Layer

• AnalogueModel



• Decider

• ConnectionManager

We use an empty MAC implementation, because we want
to evaluate the influence of unidirectional links on routing
protocols, not their interaction with the MAC layer. There-
fore, the NullMAC always hands messages to the physical
layer directly. If, however, the influence of different MAC
layers was to be evaluated, it would be easy to replace the
NullMAC with different MAC protocols.

The NullPhy represents the connection between NullAna-
logueModel and NullDecider and is used to initialize both.

The NullDecider ignores the signal to noise ratio and al-
ways hands the message to the upper layer. Please note
that this is possible because the decision whether a message
is received or not is made based on the matrices (see below).

While the connections between NICs are static in most
simulations, we use an extended ConnectionManager that
enables changing links at runtime. The classDynamicConnec-
tionManager is an extension of the UnitDisk Connection-
Manager supplied by MiXiM. The range used for the unit
disk graph is set to engulf the whole area simulated, theoret-
ically enabling transmission between all nodes. The Dynam-
icConnectionManager offers four additional methods. A link
between two nodes can be added or removed, in one direc-
tion or in both, during the simulation (Listing 1).

c l a s s DynamicConnectionManager
: pub l i c UnitDisk

{
protec ted :
v i r t u a l void i n i t i a l i z e ( i n t s tage ) ;

pub l i c :
/∗∗
∗ Remove a l l connec t i ons between NICs
∗ with NIC ID from and to .
∗ @param from One s i d e o f the l i n k ( s )
∗ @param to The other s i d e o f the l i n k ( s )
∗ @return 0 i f no l i n k s e x i s t e d
∗ 1 i f only a un i d i r e c t i o n a l l i n k ex i s t e d
∗ 2 i f a b i d i r e c t i o n a l l i n k ex i s t e d
∗/
char d i s connectB i ( cModule∗ from , cModule∗ to ) ;

/∗∗
∗ Dele t e s a u n i d i r e c t i o n a l l i n k .
∗ @param from
∗ Star t o f the l i n k that w i l l be de l e t ed
∗ @param to
∗ End o f the l i n k that w i l l be de l e t ed
∗ @return
∗True i f the l i n k was de le ted ,

∗ f a l s e i f the l i n k did not e x i s t
∗/
bool d i s connec t ( cModule∗ from , cModule∗ to ) ;

/∗∗
∗ Connects two NICs with a b i d i r e c t i o n a l l i n k
∗ @param from One s i d e o f the l i n k ( s )
∗ @param to The other s i d e o f the l i n k ( s )
∗ @return
∗ 0 i f a B i d i r e c t i o n a l l i n k a l r eady ex i s t ed
∗ 1 i f only a un i d i r e c t i o n a l l i n k ex i s t e d
∗ 2 no l i n k ex i s t ed
∗∗/
char reconnectBi ( cModule∗ from , cModule∗ to ) ;

/∗∗
∗ Es t ab l i s h e s a connect ion from ”from ”
∗ to ”to ” but not the other way around .
∗ @param from the o r i g i n a t o r o f the l i n k
∗ @param to the d e s t i n a t i on o f the l i n k
∗ @return True i f the l i n k was c rea ted
∗ f a l s e i f the l i n k has a l r eady ex i s t e d
∗/
bool reconnect ( cModule∗ from , cModule∗ to ) ;

} ;

Listing 1: DynamicConnectionManager: additional
Methods

With the DynamicConnectionManager, all tools that are
needed to implement the matrix based connectivity model
are available. The module MatrixSwitchModule (Listing 2)
periodically changes links. The connectivity matrices are
gathered or generated before the simulations start and stored
in files. To reduce the size of the files, only link changes are
stored. A link change is noted as a tuple (from, to, type)
where to and from are the IDs of the nodes which are af-
fected by the change and type specifies whether the link
appears or disappears. Please note that a bidirectional link
that disappears requires two entries in this notation. As the
number of link changes may vary a lot between subsequent
matrices, the MatrixSwitchModule first reads the number of
changes from the file before the changes themselves are read
and enacted.

c l a s s MatrixSwitchModule : pub l i c BaseModule{
pub l i c :
v i r t u a l ˜MatrixSwitchModule ( ) ;
v i r t u a l void i n i t i a l i z e ( i n t s tage ) ;
v i r t u a l void handleMessage ( cMessage∗ msg ) ;
v i r t u a l void f i n i s h ( ) ;
void switchLinks ( ) ;

i n t numInitStages ( ) const {
re turn 3 ;

}
protec ted :
// t imer
cMessage∗ rescheduleTimer ;

DynamicConnectionManager∗ conMan ;

// s t a t e v a r i a b l e s
i n t currentMatr ix ;
i n t l a s tMatr ix ;
i n t numberOfNodes ;
i n t numNodesRead ;
i n t numConnections ;

i n t o r i g i n a t o r ;
i n t d e s t i n a t i on ;

// 1 = reconnect , 0 = d i s connec t
bool typeOfChange ;

std : : i f s t r e am ∗ f i l e ;
} ;

Listing 2: The MatrixSwitchModule



All link changes happen in the method switchLinks(). It
is called for the first time by the initialize(int stage)-method
when the stage has reached the value two. Waiting for two
stages is necessary to ensure that the NICs have already been
created. Then, a self message is created which schedules
the MatrixSwitchModule again after a certain time. The
message is received by the handleMessage(cMessage* msg)-
method, which calls switchLinks(), increases the count for
already processed matrices, and checks if there are more
matrix changes planned. If there are further changes, it
creates another self message. Otherwise, the last switch of
matrices occurred and the module becomes inactive.

3. EVALUATION
To evaluate our approach, we measured the delivery ratio

of routing protocols in simulation and on real hardware and
compared the results.

We generated connectivity matrices which were meant to
resemble the conditions described in [10]. In each of these
matrices, a (directed) link from node A to node B exists with
a probability of α/d6 where d is the distance between node A
and node B. The inverse link, from node B to node A exists
with the same probability. Therefore, the link is bidirec-
tional with a probability of (α/d6) × (α/d6), unidirectional
(in any one direction) with α/d6 × (1 − (α/d6)) and non
existing with (1 − (α/d6))2. The quotient (d6) reflects the
attenuation induced by the distance between nodes while α
represents the probability that a link between geographically
adjacent nodes exists.

Please note that the attenuation effect seems to be stronger
than what is used in literature (d6 vs. d4), but the resulting
connectivity graphs resemble those measured in [10] more
closely. This stronger effect is possibly caused by the usage
of low quality antennae.

Nodes were arranged on a regular grid to reflect applica-
tion scenarios which need area coverage, e.g., vehicle track-
ing. As all nodes were arranged on a grid, nodes that are
directly above, below, right, or left of a node are called di-
rect neighbors and their distance was defined as 1. α was
varied between 0.9, 0.95 and 1, and for each value of α ten
sets of matrices with different seeds for the random number
generator were generated.

Please note that due to the fact that the matrices were
generated randomly, there is no guarantee that there always
was a path from sender to destination. Therefore, no up-
per limit can be calculated, but Flooding is used as refer-
ence protocol: The number of application messages deliv-
ered byFlooding is taken as 100% and the delivery ratio of
all other protocols is calculated accordingly.

The implemented application represents a sense-and-send
behavior that is often found in sensor networks: All nodes
within the network want to transmit all their messages to
the same destination.

In each simulation, each node wants to transmit a total of
110 messages to the sink. After the initialization phase of
the network, one message is transmitted every 100 millisec-
onds. To ensure that route discovery is finished, the logging
remains inactive until all nodes had started the transmis-
sion of their fifth message. The connectivity matrices are
changed every second. Please note that the absolute values
of the time units are not important for the simulation, only
their relation (1:10). They could also have been set to 6
seconds and one minute, yielding the same results.

Figure 2 shows the OMNeT++ representation of our sim-
ulations. An array of nodes of size numNodes represents
the sensor network. The connectionManager enables chang-
ing connections between nodes, while the switches from one
connectivity matrix to the next are realized by the ma-
trixSwitch-module. Additionally, a global logging compo-
nent has been added, which records (among others) the num-
ber of successfully delivered messages.

Figure 2: Sensor Network Simulation Components

In the real experiments, each node wants to transmit a
message every minute. The experiments run for one hour
each, therefore, 60 messages are transmitted by the applica-
tion on each node. In all experiments, 36 nodes are placed
in a square of six times six. Each node records the num-
ber of application messages it received and all nodes record
the number, type, and size of all messages they transmit or
forward. The sensor nodes were placed in four different lo-
cations: on a desk, affixed to poles, placed on a lawn, and
placed onto a stone pavement. The transmission power was
set to 0dBm.
For all real world experiments, eZ430-Chronos Sensor nodes

from Texas Instruments [4] were used. The eZ430-Chronos
is an inexpensive evaluation platform for the CC430. It fea-
tures an MSP430 micro controller with an integrated CC1100
sub-gigahertz (868MHz) communication module [1]. The
evaluation board is delivered as a compact sports watch con-
taining several sensors, e.g., a three-axis accelerometer and
five buttons which are connected through general purpose
I/O pins. The sports watch casing has been removed in
order to use the eZ430s as sensor nodes.
Figure 3 shows the used eZ430-Chronos sensor nodes. An

external battery pack has been soldered to the nodes, and
replaces the internal coin cells. This enables the usage of
freshly charged batteries for each experiment.
Apart from the modification for the batteries, the sensor

nodes were used as they were delivered, no calibration was
made. This should reflect the fact that future users would
neither be able nor willing to calibrate a large number of
nodes. Instead, they are used ”out of the box”. The trans-
mission power was also left at the preset level of 0 dBm,
which lead to a small transmission range. This small trans-
mission range is also due to the absence of a real antenna
on the eZ430-Chronos: The metal surrounding the display
acts as the antenna.



(a) affixed to poles (b) on a stone
pavement

(c) placed on the
lawn

Figure 3: A modified eZ430-Chronos Sensor Node

Desk Experiments.
This deployment is a single hop layout, where each node is

able to receive messages from every other node. The nodes
lay directly next to each other. An old set of batteries was
used without re-charging them, because range did not really
matter in these experiments. They were used to validate the
correct operation of the protocols.

Poles.
For the pole experiments, small poles were deployed on

the lawn in front of the main building of our university, with
about one meter distance between each of them. Then, the
sensor nodes were affixed to them using cable straps, at a
height of about 20 cm (Figure 3(a)). The pole placement
was usually used at 8am.

Lawn.
After the pole experiments were finished and evaluated,

the nodes were reset and placed on the ground directly next
to the poles as shown on Figure 3(c). The resets were done
by disconnecting the batteries and reconnecting them di-
rectly afterwards. The same set of batteries as before was
used on each node without charging. The lawn experiments
started at about 10 AM.

Stones.
After the lawn experiments, the nodes were disconnected

and poles as well as nodes and batteries collected. The ex-
periments on the stones always started at about 1 PM, us-
ing the same set of 72 AA batteries used in the morning
without re-charging, but the pairing of batteries and nodes
might have changed, i.e., the batteries that were connected
to node 4 in the pole and lawn experiments might be con-
nected, e.g., to node 27 in the stone experiments. These
experiments were conducted on the stone pavement on our
campus (Figure 3(b)).

3.1 Comparison between Simulations and Ex-
periments

There are nearly no limits to network size in the simu-
lations. However, the comparison should be made between
networks of the same size and diameter. As the real world
experiments were conducted with 36 nodes, networks also
consisted of 36 nodes in the simulations. The matrices were
generated with ten different seed values for the random num-
ber generator. Also, three different values for link proba-
bility were used. Moreover, the destination was switched

between nodes. This resulted in 1080 simulations for each
protocol. In the real world experiments, the placement on
the desk represented a single hop environment and the poles
only provided two hops distance. Therefore, these two sets
of experiment locations are dismissed for the evaluation.
We evaluated the performance of four routing protocols:

Dynamic Source Routing (DSR) [7], Tree Routing, Flooding
and Buckshot Routing [14].
DSR has been chosen because it was one of the first rout-

ing protocols which took unidirectional links into account.
It offers two modes of operation: One for only bidirectional
links and one for unidirectional links. In both modes, Route
Request (RREQ) messages are flooded through the network
to find the initial route from source to destination. Once
a RREQ has reached the destination, a route reply mes-
sage (RREP) is transmitted. If only bidirectional links are
present, the RREP takes the same route as the RREQ and
the route is discovery is finished when this RREP reaches
the source. When unidirectional links are considered, the
route taken by the RREQ might contain unidirectional links
and not be usable in the reverse direction. Therefore, the
RREP, which contains the route from source to destination,
is also flooded. When the first RREP message arrives at the
source, the path from source to destination is known. Then,
the destination still needs to be informed about the route
from destination to source, which the RREP collected on its
way to the source. This path is then transmitted in a single,
not flooded message, as the path from source to destination
is known.
Tree Routing still remains the most used routing protocol

in wireless sensor networks. In tree routing, the sink trans-
mits a tree building message. All nodes that receive this
message record the sink as their parent node and transmit
a tree building message of their own. All nodes that receive
such a message and do not yet have a parent node follow the
same principle, until a routing tree has been built. In our
implementation, we used tree routing with two retransmis-
sions per hop.
Flooding is the most simple routing protocol, it only needs

a duplicate suppression algorithm. No routing tables are
filled or maintained. A node that wants to transmit a mes-
sage to the sink simply transmits it. Every node that re-
ceives this message checks its duplicate suppression mecha-
nism. If the node has already forwarded the message before,
it is discarded. Otherwise it is retransmitted.
Buckshot Routing has been specifically designed for wire-

less networks with unidirectional links. It is based on a
multi path approach which implicitly uses unidirectional
links. When a node received a message, it normally checks
whether it is the intended next hop. If it is not, the message
is discarded in other protocols. In Buckshot Routing, the
node does not check if it is the intended next hop. Rather,
it checks its neighbor table to find out if it is a neighbor of
the next but one hop (the hop after the next). This way, not
only the intended next hop but also all its siblings forward
the message, leading to a spread around the original route.
This spread represents redundancy, which enables the im-
plicit usage of unidirectional links, supplies a circumvention
around failed nodes and ignores temporarily broken links.
However, this redundancy has a price: Buckshot Routing
transmits more messages than traditional routing protocols.
These transmission cost are justified by the increased deliv-
ery ratio.
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Figure 4: Delivery Ratio of each Protocol; Experi-
ments vs. Simulations

Figure 4 shows the median of the delivery ratio for all eval-
uated protocols for the two multihop (4-5 hops) experiments
(lawn, stones) and the median from 1080 simulations for
each protocol. Naturally, the results of Flooding in the sim-
ulation are much better than those achieved in the real world
experiments, as Flooding suffers heavily from the broadcast
storm problem in the real experiments. The CSMA MAC
layer provided by the hardware simply cannot handle the
huge number of messages. Apart from Flooding, the simu-
lation results and those of the two experiment settings are
quite similar and minor differences can be explained with
irregularities during the experiments.

For DSR, which can operate with unidirectional links, the
frequency of link changes presented a huge problem. While
it is able to work perfectly with static unidirectional links,
link changes and route breaks result in a large number of
messages transmitted during route repair. Therefore, DSR
is a prime example for the reason why simulation models
that only use different transmission strengths, i.e., static
links, are inadequate.

For Tree Routing, the small network diameter and the 2
retransmissions on each hop were sufficient to deliver about
50% of application messages. When the network diameter
grows (simulations not shown here), it runs into huge per-
formance problems.

For Buckshot Routing, which has been explicitly designed
for networks with unidirectional links, the network size was
too small. The main advantages, implicit route repair and
multiple routes, only make a real impact in larger networks
(simulations not shown here).

In summary it can be said that the used simulation ap-
proach has some limitations, as it does not include the medium
access control protocol used in the real experiments. How-
ever, the results show that the usage of connectivity matrices
and the way they were generated is close to reality, and can

be used to evaluate the influence of unidirectional links and
frequent link changes on routing protocols. This is exactly
what the simulations were intended for as the used MAC
layer and other side effects of the used hardware might (and
hopefully will) change for future deployments.
Another advantage of the developed simulation model is

the fact that connectivity data gathered during connectivity
measurement experiments can easily be included. When a
network deployment is planned, it is possible to place the
nodes in the field and measure the connectivity. Transform-
ing the measured data into connectivity matrices can be
done automatically. These matrices can then be used as in-
put for our simulation model, which can in turn be used to
evaluate the proposed communication protocols before the
actual deployment.

4. RELATED WORK
”A Link-Layer Tunneling Mechanism for Unidirectional

Links” [3] has been proposed by the unidirectional link rout-
ing group (UDLR) [13] at the Internet Engineering Task
Force (IETF) [5]. Its main goal is to make unidirectional
links usable in the internet. There, unidirectional links have
a different nature then those dealt with in this paper. As
RFC 3077 deals with internet connections, the links are sta-
ble, and unidirectional links exist over a really long period.
An example for unidirectional links as mentioned in RFC
3077 are satellite connections, where the satellites can trans-
mit to a lot of receivers (”local”broadcast), but the receivers
cannot transmit back to the satellite.
One assumption made by the authors of the RFC is that

nodes can be divided into three categories: Receivers, Send-
only feed and Receive capable feed. Receivers are on
the lower end of a unidirectional link, i.e., have an incoming
only link. Send-only feeds, e.g., satellites, have an outgo-
ing unidirectional link. Receive-capable feed are routers
that have ”send-and-receive connectivity to a unidirectional
link” [3].
Another assumption made is that each router has more

than one IP connection, allowing for the tunneling of mes-
sages.
The basic idea behind the tunneling mechanism is the

forwarding of link layer messages of one interface using the
routing layer of another interface on the same node when
this link is unusable.
This approach offers the possibility of using any routing

protocol over the tunneling mechanisms, and hides the exis-
tence of unidirectional links from them. It cannot, however,
hide the longer delay, which can be a huge problem for time-
outs used in the routing protocols. Also, as stated by the
authors, this tunneling mechanism does not work ”where a
pair of nodes are connected by 2 unidirectional links in op-
posite direction” (using different interfaces). This refers to
the fact that all links on the tunnel have to be bidirectional.
If the link from node B to node C in the example above was
unidirectional, the mechanism described in RFC 3077 would
have failed, even though a detour existed.
The authors of [12] propose a combined evaluation method

that uses experiments with real hardware, emulation and
simulation techniques in order to speed up the deployment
of new protocols. The combination of all three methods en-
ables the developer to identify problems and shows where
further investigation is necessary. The routing protocols
AODV, DSR and OLSR were used to evaluate the proposed



approach to protocol monitoring. They found that latency
and timing are crucial to the performance of reactive proto-
cols like AODV and DSR, because of buffering times. The
queue-ups that can result from this buffering were apparent
in their experiments, but not in the emulations.

In conclusion of this paper, it can be said that all three
methods of evaluation have their own advantages for a pro-
tocol developer, if they are used correctly. For simulations,
the choice of the underlying communication model is crucial.
The emulation can be fed with real world connectivity data
and can be used to evaluate the implications of the network
stack used on the real devices. Experiments are needed to
generate this connectivity data. It is important that for all
three methods exactly the same implementation of the pro-
tocol is used, and that this implementation is the one that
can be used directly on the hardware which is used in the
real experiments.

Reflex [20] is an operating system for deeply embedded
systems and sensor nodes that has been developed by the
distributed systems/operating systems group at the Bran-
denburg University of Technology Cottbus, Germany. It is
based on the event flow principle which removes the need
for explicit synchronization within components.

Reflex is implemented in C++, which enables the ap-
plication programmer to use state of the art object oriented
programming methods. Also, this fact enables Reflex to
be used on a range of different platforms, because all that
is needed to deploy it is a C++ compiler and a few lines of
assembler code for hardware specific drivers. To enable its
use in wireless sensor networks, a power management scheme
has been integrated [17] and is continuously being improved.
All protocols are implemented operating system indepen-
dent, but an operating system has to be used nonetheless.
For the reasons listed above, Reflex has been chosen as
operating system for the real world experiments and simu-
lations.

OMNeT++ [19] is a discrete event simulator that can be
used to simulate different kinds of networks. OMNeT sup-
plies a framework of modules which can be combined to form
compound modules.

Both types of modules contain gates, which can be con-
nected using channels, to allow the modules to communi-
cate with each other. This is done by passing messages from
one module to the other. OMNeT is implemented in C++,
which made the integration of Reflex into OMNeT possible
[9].

MiXiM [8] is a simulation framework for OMNeT++. It
provides an abstraction for communication layers, namely
MANET and sensor network communication. Explicit sim-
ulation of unidirectional links using a connectivity matrix
has been added to MiXiM in our simulation model.

5. CONCLUSION
In this paper we presented a matrix based simulation ap-

proach for wireless sensor networks with unidirectional links
and frequent link changes. Links are represented by con-
nectivity matrices and replaced with new ones frequently.
We evaluated our simulation model by comparison of simu-
lation and experiment results for selected routing protocols.
In the future we hope to obtain more connectivity data from
real network deployments which can replace the randomly
generated matrices.
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