
A Modelica Coordination Pattern Library for
Cyber-Physical Systems

Uwe Pohlmann
Fraunhofer IPT, Project Group
Mechatronic Systems Design,

Software Engineering
Zukunftsmeile 1, 33102
Paderborn, Germany

uwe.pohlmann
@ipt.fraunhofer.de

Stefan Dziwok
Software Engineering Group,

Heinz Nixdorf Institute
University of Paderborn
Zukunftsmeile 1, 33102
Paderborn, Germany

stefan.dziwok@upb.de

Matthias Meyer
Fraunhofer IPT, Project Group
Mechatronic Systems Design,

Software Engineering
Zukunftsmeile 1, 33102
Paderborn, Germany
matthias.meyer

@ipt.fraunhofer.de
Matthias Tichy

Software Engineering Division,
Department of Computer
Science and Engineering
Chalmers | University of

Gothenburg, Sweden
matthias.tichy@cse.gu.se

Sebastian Thiele
Software Engineering Group,

Heinz Nixdorf Institute
University of Paderborn
Zukunftsmeile 1, 33102
Paderborn, Germany

sthiele2@mail.upb.de

ABSTRACT
Today’s embedded systems often do not operate individually any-
more. Instead, they form so called cyber-physical systems, where
the overall functionality is provided by the collaboration of sys-
tems. Consequently, the design of this collaboration is an impor-
tant activity during development and strongly affects system qual-
ity. In previous work, we presented a catalog of reusable message-
based real-time coordination patterns to avoid manual creation of
new and, thus, error-prone designs. In this paper, we present an im-
plementation of this catalog by a library in the Modelica language
and an appropriate development process. The library stores ready
to reuse solutions for common coordination activities and, thus, in-
creases efficiency and effectiveness for use. Furthermore, the use
of Modelica enables early holistic simulation of cyber-physical sys-
tems including feedback controllers and message-based coordina-
tion. We illustrate the library with examples from an autonomous
railway vehicle and present an early evaluation.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—Pat-
terns; D.2.13 [Software Engineering]: Reusable Software—
Reusable libraries

General Terms
Design, Languages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Keywords
Cyber-physical systems, design patterns, Modelica, real-time coor-
dination, simulation

1. INTRODUCTION
Cyber-physical systems are systems of embedded systems where

the provision of functionality is a result of a collaboration of many
individual systems. The collaboration is typically implemented by
asynchronous message-based communication between the individ-
ual systems which are mostly subject to real-time constraints.

We distinguish two types of communication which address
different issues. One type deals with the basic application-
independent support for exchanging data consisting of the OSI lay-
ers 1-6. The other handles the application-specific communication
protocols as in OSI layer 7 to implement the required collaboration
between the individual systems. This paper specifically addresses
this application-specific communication for which we use the term
coordination [25]. Examples for the coordination are the synchro-
nization of activities between systems or delegating activities from
one system to another.

The coordination between the individual systems is one of the
key aspects for the successful deployment of cyber-physical sys-
tems. Thus, we presented a catalog of real-time coordination pat-
terns in previous works [11, 10] that can be reused to realize the co-
ordination requirements for a cyber-physical system. These design
patterns also support parameters which allow some customization,
e.g., concrete timing information. However, the patterns in the cat-
alog are not readily usable as they are not available as a library in a
development tool. Consequently, they require a manual error-prone
work to implement for each new system.

In other previous works [23], we presented a Modelica library
(based on the StateGraph2 Library) that contains modeling prim-
itives for the modeling of state machines with real-time annota-
tions and support for sending and receiving asynchronous mes-
sages. While this library supports the modeling of the coordination
behavior, it does not contain reusable blocks for higher-level co-



Figure 1: RailCab Prototypes (left) and RailCab Test Track
(right)

ordination like the aforementioned real-time coordination pattern
catalog.

Several (simulation) concepts and libraries exist that especially
ease the communication design and the application of (domain-
specific) design patterns. For example, Dalle et al. focus on ar-
chitectural design patterns and conclude that they “may add to the
overall quality of [modeling and simulation] results” [9]. Other ex-
amples are DEVSLib [28] and Tiller [29]. However, none of them
provides a reusable coordination pattern library and a process for
higher-level coordination protocols.

The contribution of this paper is a Modelica library which for-
malizes our real-time coordination patterns [10] as easily reusable
Modelica classes using our existing coordination library [23]. Fur-
thermore, we present a process for developing by using the library.
The Modelica classes from the library can be subclassed in order to
adapt the behavior for the specific application, e.g., by adding mes-
sage parameters, adding variables, splitting transitions into multi-
ple transitions, and adding states. The use of Modelica enables the
early holistic simulation of the physical system, its environment,
the feedback controllers and the asynchronous real-time coordina-
tion. Thus, the complete design can be already validated early in
the development process. We illustrate the usage of the library by
a Modelica model for an autonomous railway vehicle where the
library is used to model the coordination for creating a platoon.
Furthermore, we present the results of an early evaluation showing
increased effectiveness in use with respect to amount of work saved
by using the library.

In the next section, we present our running example. Section 3
gives a brief summary of the real-time coordination pattern cata-
log. Thereafter, we shortly discuss the real-time coordination li-
brary that we use as foundation for our pattern library in Section 4.
In Section 5, we present the Modelica real-time coordination pat-
tern library in more detail. After an early evaluation of the library
in Section 6 and a review of related work in Section 7, we conclude
in Section 8 and give an outlook on future work.

2. RUNNING EXAMPLE
The RailCab transportation system1 (c.f. Figure 1) is a novel

transportation system that is based on small and autonomous vehi-
cles on rails, called RailCabs [17]. RailCabs are not coupled me-
chanically and can therefore form platoons dynamically in order to
increase the traffic flow and reduce energy consumption by trav-
eling in the slipstream with a speed of up to 160 km/h. Steerable
wheels enable the vehicles to leave the platoon at track switches
even in case of small distance between the cabs and at high speeds.

1http://www.railcab.de

driving direction  

message-based 
coordination 

in hard-real-time

distance sensor

rear  driving
RailCab (fast)

front dr iving
RailCab (slow)

Figure 2: Platoon Scenario of the RailCab System

In order to coordinate their actions, RailCabs communicate via
wireless asynchronous messages (including message parameters).
This coordination must hold safety-critical requirements, e.g., a
deadlock within the coordination is not allowed. Moreover, the co-
ordination has to consider hard real-time constraints, e.g., to restrict
at which point of time a message may be sent or received. Their
message transmission delay is defined in a fixed range. Further-
more, the transmission of messages is unreliable, since messages
can be lost or might not be valid. In addition, the coordination
depends on the physical parts of the system and on environment
impacts on the system. To conclude, the development of message
protocols for the coordination of the RailCabs tends to become very
complex.

As our running example, we use the platoon scenario from the
domain of the RailCab transportation system. Its description is as
follows: Two RailCabs are on the same track and have partly the
same route (c.f. Figure 2). Both RailCabs may coordinate their
actions via wireless asynchronous messages. The rear RailCab can
measure the distance to the front RailCab using a distance sensor.
The rear RailCab drives faster than the front RailCab. Eventually,
the rear RailCab will catch up with the front RailCab. Then, the
RailCabs can form a platoon by driving with the same speed in a
close distance so that the rear RailCab can use the slipstream of the
front RailCab. While driving in platoon mode, the front RailCab is
not allowed to change its velocity independently. If the rear driv-
ing RailCab is in platoon mode and the front RailCab is not, the
front may brake and the rear RailCab crashes into the front Rail-
Cab. Therefore, such a state configuration is not allowed. The
protocol must prevent this safety-critical situation. The rear Rail-
Cab can deactivate the platoon. In this paper, we do not cover the
failure situation that the front RailCab is enforced to brake during
platooning for simplicity reasons of our example.

3. REAL-TIME COORDINATION
PATTERNS

Coordination scenarios in cyber-physical systems are highly
driven by negotiation and synchronization between the different in-
volved partners. For example, in the platoon scenario, both Rail-
Cabs have to negotiate over their driving speed and have to syn-
chronize the (de-) activation of the platoon. This coordination re-
quires an intensive communication between the systems under hard
real-time requirements.

As the coordination of cyber-physical systems tends to become
very complex, it is beneficial to focus on the coordination between
the components explicitly via coordination protocols. The language
MECHATRONICUML [3] provides an explicit modeling formalism,
which is called Real-Time Coordination Protocol. This formalism
realizes coordination tasks like negotiation and synchronization by
asynchronous messages and constraints on the message exchange
behavior. For each coordination of two communicating entities,
called roles, the developer defines a protocol.



RTSC_slaveRTSC_master

Idle

/ activationProposal

2

1

rejected /

clock c_wait

Waiting
c_wait ≤ $timeout

entry / {reset:c_wait}

[c_wait ≥ $timeout] 

accepted /

/ deactivation()

2

Collaboration 
Active

Idle

activationProposal /

/ rejected

clock c_eval

deactivation() / Collaboration
Active

EvaluateProposal
c_eval ≤ $eval-time
entry / {reset:c_eval}

activationProposal /

21

/ accepted

master slave

Synchronized
Collaboration

msg-delay:
[$minDelayTime, 
$maxDelayTime]

(1) Formal Structure Model (2) Behavior for each role defined using formal models (Real-Time Statecharts)

Figure 3: Structure and Behavior of Real-Time Coordination Pattern Synchronized Collaboration (cf. [11])

In a first step, the developer defines assumptions on the mes-
sage transmission between the two roles (e.g., the transmission de-
lay time and if messages may get lost during transmission). Af-
terwards, developers specify the roles2. For each role, the de-
veloper specifies (1) a sender and receiver interface with mes-
sages (including parameters) the role can send and receive, (2)
the incoming message buffer specification (e.g., the buffer size,
the buffer displacement strategy), and (3) the allowed message se-
quences with additional real-time constraints that restrict when to
send and receive each message. For specifying the allowed mes-
sage sequences, MECHATRONICUML defines a state-based for-
malism called Real-Time Statechart – a combination of UML state
machines [21] and timed automata [4]. A Real-Time Statechart
provides high-level modeling constructs like hierarchical states,
domain-specific constructs for sending and receiving asynchronous
messages over raise and trigger events, and real-time specific mod-
eling formalism like time constraints and deadlines that are defined
over continuous running clocks.

While specifying the asynchronous message-based coordination
of several cyber-physical systems using Real-Time Coordination
Protocols, we identified that developers have to solve reoccurring
coordination design problems. These problems are hard to solve,
because the developers have to consider real-time constraints of
the asynchronous coordination while adhering to safety-critical
requirements. Although, analysis techniques like simulation or
model checking enable the developer to identify design errors, they
do not provide a solution to remove the fault nor do they support to
have a good design in the first place. This often results in a time-
consuming development with many design iterations. Therefore,
we wanted to support the developer to ease the coordination proto-
col modeling, especially the (state-based) behavior description.

Our solution for an improved development of coordination pro-
tocols is to provide approved solutions to reoccurring design prob-
lems by means of design patterns. In literature, several pattern lan-
guages exist, e.g., by Gamma et al. [14] and Buschmann et al. [6].
However, none of them especially targets the coordination design
of cyber-physical systems by providing solutions for safety-critical
coordination problems that need to be formally verified. Therefore,
in previous work, we developed a new pattern language called Real-
Time Coordination Patterns [11]. These patterns abstract from ap-
plication-specific details (e.g., concrete time values and message
parameters) and provide general and reusable solutions for com-
monly coordination design problems. Thus, developers do not have
to design their protocols manually from scratch, but can reuse ap-

2Note, MECHATRONICUML’s definition of elements like role and
interface differs from other definitions, e.g., from Röhl et al. [27].

proved solutions. This should increase the quality of the resulting
protocol as well as the development efficiency.

As usual for a pattern language, we described in natural language
the aspects of each pattern, e.g., context, problem, solution, struc-
ture, and behavior. Additionally, we provide – in contrast to re-
lated work in this domain – formal models for each pattern that we
successfully verified using a model checker concerning important
requirements for the pattern. We identified eight different patterns
so far that, among others, support to synchronize a collaboration,
to delegate tasks, and to transmit information under real-time. We
listed all our patterns in a catalog [10] and successfully applied our
patterns while developing new cyber-physical systems.

One of our Real-Time Coordination Patterns is Synchronized
Collaboration, which we will use for realizing our platoon sce-
nario in Modelica using our new library (cf. Section 5). In the
following, we will describe the five aspects mentioned earlier. Its
context is that two cyber-physical systems can activate a certain
collaboration at run-time; the collaboration handles advanced tasks
more efficient, but also adds potential risks. The pattern deals with
the following problem: Due to the asynchronous communication, it
may happen that (1) system s1 is in collaboration mode, but system
s2 is not, and (2) s2 is in collaboration mode, but s1 is not. The
pattern assumes that either variant (1) or (2) can result in a hazard
and therefore must be avoided. The pattern’s solution is that the
two systems should act in different roles. A role master can pro-
pose the activation and can deactivate the collaboration. The role
slave answers the proposal and reacts on the deactivation. If variant
(1) can result in a hazard, then s1 should be the master and s2 the
slave; if variant (2) can result in a hazard, then it is the other way
round.

The structure of the pattern Synchronized Collaboration is on the
left side of Figure 3. The name of the pattern is written within
a dashed hexagon. The pattern consists of the two roles master
and slave (depicted as two squares and a line that connects the
squares with the hexagon). Both may send and receive messages
(depicted by the two black triangles). The buffer size of each role
is at least three. Buffer displacement may not happen. Further,
message transmission may fail. Moreover, the connector assumes a
defined message delay time that consists of a minimal and maximal
value (defined by the time parameters $minDelayTime and $maxDe-
layTime). Therefore, messages that arrive before the minimal delay
are not immediately inserted into the buffer, but are deferred; mes-
sages that arrive after the maximal delay will never be inserted into
the buffer and are considered as lost and are not processed.

Figure 3 shows on the right side the behavior of the pattern, i.e.,
one Real-Time Statechart per role. In the following, we focus on
the Real-Time Statechart of role master. Its informal description



is as follows: First, the collaboration between master and slave is
inactive. If the master wants to activate it, it sends an activation
proposal via an asynchronous message and changes to state Wait-
ing. Here, the master waits for an answer of the slave. The slave
must accept or reject the proposal within the defined evaluation
time (specified with the time parameter $eval-time). If it accepts,
then the message accepted is sent; if it rejects, then the message
rejected is sent. If one of both messages message get lost, i.e., the
message is not inserted into the incoming buffer within the maxi-
mum delay, the master will not receive an answer at all. Then, the
master will change back to state Idle when the pre-defined timeout
occurs. At the transition from Waiting to Idle, a clock constraint re-
ferring to clock c_wait prevents that the state is left before the time-
out (specified with the time parameter $timeout); the state invariant
of state Waiting checks that the state is left when the timeout occurs.
As a consequence, the timeout may only happen if no message can
arrive anymore. Hence, the developer has to define a timeout value
that must be greater than two times the maximum message delay
plus the slave’s evaluation time. If the master receives the message
rejected within time, it will change back to state Idle; if the mas-
ter receives the message accepted, it will activate the collaboration
and change to the corresponding state CollaborationActive. As long
as the master stays in this state, the collaboration with the slave
will remain active. Only when the master decides to deactivate the
collaboration, the slave will also deactivate it.

Due to the safety-critical context and the complex functionality,
developers have to execute a holistic, discipline-spanning verifica-
tion of the cyber-physical system under development including the
real-time coordination protocols. This is (in most cases) not possi-
ble using formal verification like model checking due to the state
explosion problem as the system contains both discrete states and
continuous-time equations. Therefore, simulation has to be used
for validation.

4. REAL-TIME COORDINATION
MODELICA LIBRARY

A multi-domain, object-oriented, declarative simulation lan-
guage for developing complex cyber-physical systems is Model-
ica [20]. Modelica is a textual simulation language with a graph-
ical syntax based on textual annotations. It is supported by vari-
ous tools, e.g., Dymola, SimulationX, System Modeler. “The fun-
damental structuring unit of modeling in Modelica is the class.
Classes provide the structure for objects, also known as instances.
Classes can contain equations [and algorithms] which provide the
basis for the executable code that is used for computation in Model-
ica. [. . . ] Connections between objects are introduced by connect-
equations in the equation part of a class.” [20] Modelica uses hy-
brid differential algebraic equations as mathematical model and has
it strength in modeling and simulation of complex and large phys-
ical systems [19]. Therefore, it is used by many system engineers
to develop physically realistic models. Further, Modelica can han-
dle event-based behavior like other hybrid languages as MATLAB
Simulink/ Stateflow [7] or Ptolemy [12].

We developed the Real-Time Coordination Library3 [23] in
Modelica to provide system engineers the possibility to extend their
existing physical models with coordination behavior, within there
known language and tooling. The Real-Time Coordination Library
represents the MECHATRONICUML concepts for Real-Time Coor-
dination Protocols including Real-Time Statecharts. The library is
freely available under the Modelica 2 licence. Modelica 3.2 [20]

3https://github.com/modelica-3rdparty/
RealTimeCoordinationLibrary

Collaboration_Master Collaboration_Slave

Accept
Box

Waiting

Collaboration
Active

T10 Accept

Collaboration
Active

Evaluate
Proposal

T4

State Transition Mailbox
Output

Delegation
Port

Input
Delegation

Port
Message

Legend

Figure 4: Interacting State Machines Modelled with the Model-
ica Real-Time Coordination Library and StateGraph2 (cf. [23])

offers the StateGraph2 Library [22] to model state-based behavior.
StateGraph2 provides a class Step for states and a class Transition.
By instantiating both classes as objects and connecting their in-
terfaces with Modelica connectors, a developer can specify state
machines. However, StateGraph2 lacks support for any message-
based communication constructs. Therefore, our library extends
StateGraph2 by providing support for (1) synchronous and asyn-
chronous communication and (2) rich modeling of real-time be-
havior. Synchronous communication means that two transitions
from different parallel automata can synchronize their firing be-
havior. Asynchronous communication means that an automaton
can send a message and can immediately proceed without wait-
ing for an answer. The receiver of a message has a mailbox that
queues incoming messages. The receiver decides when to consume
the message. A mailbox can only store a maximum number of
messages and may have displacement strategies. The provided el-
ements by the Real-Time Coordination Library are Message, Mail-
box, Clock, TimeInvariantLess(OrEqual), ClockConstraintLess(OrEqual),
ClockConstraintGreater(OrEqual), InputDelegationPort, and OutputDele-
gationPort.

Figure 4 shows an excerpt of the behavior of our scenario imple-
mented in Modelica using the Real-Time Coordination Library. In
the example, the RailCabs coordinate each other to form a platoon
collaboration. On the assumption that the front RailCab is in the
state EvaluteProposal and transition T4 fires, the front RailCab (the
slave) sends the Accept message via delegation ports to the mailbox
AcceptBox of the rear RailCab (the master). This mailbox enqueues
the message until T9 fires and consumes the message. As a result
of the available message Accept in the mailbox, transition T9 of the
rear RailCab fires and the rear RailCab changes from state Waiting
to CollaborationActive.

Figure 5 shows an enriched version of the rear RailCab behav-
ior. Developers add timing behavior in form of the clock c, a clock
constraint, and an invariant. The invariant constraints the amount of
time in which the state Waiting is allowed to be active. Therefore,
the clock value c_wait must be smaller or equal than the parameter
value Invariant.bound. If a simulation run violates this constraint,
the simulation run stops at this point in time with a concrete er-
ror, which developers have to fix. The clock c_wait is reset to zero



clockValue <=
bound

Collaboration
Active

clockValue <=
bound

Invariant

c_wait
y

T10

Waiting

Accept
Box

Legend

y
Clock

Clock
Constraint

Time
Invariant

Figure 5: Modelica State Machine Including Timing Behavior
(cf. [23])

Figure 6: Synchronized Collaboration Pattern from Modelica
Library

when the state Waiting gets active. The used clock constraint limits
the time in which the transition T9 is allowed to fire. In the ex-
ample, T9 is only allowed to fire until c_wait is smaller or equal to
Constraint.bound.

5. MODELICA REAL-TIME
COORDINATION PATTERN LIBRARY

Using our Real-Time Coordination Library, we enable develop-
ers to model and simulate their real-time coordination protocols.
However, we realized that the effort for modeling protocols is quite
a lot. Therefore, we enriched our Real-Time Coordination Library
with our catalog of Real-Time Coordination Patterns to increase the
effectiveness and the efficiency of the development. To be more
precise, we implemented for each of the eight patterns a Modelica
package4 (each package contains Modelica classes of type model
for the communication roles). Additionally, we define a systematic
process for applying a pattern-based development.

As an example, Figure 6 shows the Modelica package for the
Synchronized Collaboration pattern, with its Modelica model classes
Collaboration_Slave and Collaboration_Master for both involved roles.
Each of these model classes contain objects for states, transitions,
messages, mailboxes, clocks, invariants and clock constraints.

Figure 7 shows in the left part the Collaboration_Master class and
in the right part the Collaboration_Slave class. Each class consists of
three states and five transitions from the StateGraph2 Library. The
required objects for Messages, Mailboxes, and DelegationPort are in-
stantiated from the Real-Time Coordination Library. For simplicity
reasons, the diagram does not show the instantiated Clock and Invari-
ant objects in this paper.

4https://github.com/modelica-3rdparty/
RealTimeCoordinationLibrary/blob/master/
CoordinationPattern.mo

Pattern Catalog

master slave

Synchronized
Collaboration

Select Pattern & 
Change it to a Protocol

Platoon
Coordination

rear front

Figure 9: Select a Pattern from the Catalog and Change it to
an Application-Specific Protocol

Figure 8 shows the process for using the library. The process
can be embedded in a more advanced discipline-spanning devel-
opment process [16]. Our process starts with (informal) coordina-
tion requirements and defines five steps for specifying application-
specific coordination protocols using the Real-Time Coordination
Pattern Library and a sixth step that integrates these protocols in a
holistic Modelica simulation model. In the following paragraphs,
we will describe these six steps.

1st Step – Pattern Selection.
First, developers have to choose a pattern for coordination based

on the given (informal) requirements. For our platoon scenario,
Synchronized Collaboration is appropriate (cf. Figure 9). The collab-
oration is the platoon, which may be active or inactive. The addi-
tional risk, mentioned by the pattern, arises if the platoon is active,
because driving in a small distance can result in a crash. Further-
more, the critical situation appears only if the rear RailCab is in
platoon mode, but the front RailCab is not.

2nd Step – Protocol Role Creation.
Second, developers create a new class for the rear RailCab that

fulfills the master coordination protocol role and a class for the
front RailCab that fulfills the slave coordination protocol role. De-
velopers could also create a RailCab model that is able to ful-
fill both roles, but we omit this case here for simplicity rea-
sons. Developers model each of the new created protocol role
classes as a Modelica class of type model that inherits from the
role class of the pattern. Our example obtains two new Mod-
elica classes: Protocol_Slave_Role and Protocol_Master_Role. List-
ing 1 shows the master protocol class which extends the master
pattern class CoordinationPattern.SynchronizedCollaboration.Collabo-
ration_Master. As a result, the protocol role is a child of the pattern
role class. A different possibility is that developers make a copy of
the pattern role class. In this case, the complexity of the pattern im-
plementation is not hidden and a bug correction of a pattern would
have not an effect on existing protocol role implementations. The
advantage is that object names could be set freely and the new class
could be adapted without any restrictions.



Collaboration_Slave

InDeact

Proposal
Box

Deact
Box

Idle

Accept

Collaboration_Master

Deact

T6 T9T7 T8

Reject
Box

InAccept

OutDeact

InReject

timeout

Proposal

Waiting Collaboration
Active

Idle

OutAccept

Collaboration
Active

Evaluatue
Proposal

OutReject

OutProposal InProposal

Reject

Accept
Box

T3T1 T2

T5

T4T10

Figure 7: Master and Slave Role of the Synchronized Collaboration Pattern

artefact process step planned
iteration

Legend

Select Real-Time
Coordination Pattern

Connect
Protocol Role

Objects

Create New
Protocol Role

Classes

Instanstiate Protocol
RoleClasses as

Objects1 2 4Requirements 3

Adapt Protocol Role
Classes5

Holistic Modelica
Simulation
Model

Connect Protocol
with Holistic

Modelica Model6

Figure 8: Process for Developing with Modelica Real-Time Coordination Pattern Library

Listing 1: Create Child of Role Master of Pattern Synchronized
Collaboration
model Protocol_Master_Role
extends CoordinationPattern.
SynchronizedCollaboration.Collaboration_Master(

...);

InProposal

InDeactOutDeact

InAccept

InReject

OutProposal

OutReject

OutAccept

rear:
Protocol_Master_Role

front:
Protocol_Slave_Role

Figure 10: Modelica System Class with Both Connected Proto-
col Roles

3rd Step – Protocol Role Instantiation.
Afterwards, developers create a new class for the whole sys-

tem and instantiate both protocol role classes as objects. List-
ing 2 shows the class System which instantiates the class Proto-
col_Slave_Role with the name front and the class Protocol_Master_Role
with the name rear.

4th Step – Connection.
In the forth step, developers have to connect all ports of the ob-

jects rear and front. Therefore, they use the Modelica connect state-
ment as shown in the equation section in Listing 2. Figure 10 shows
the graphical Modelica representation.

Listing 2: Instantiation and Connection of Role Child Classes
model System
Protocol_Slave_Role front;
Protocol_Master_Role rear; ...
equation
connect(rear.InReject,front.OutReject);
connect(rear.InAccept,front.OutAccept);
connect(front.InDeact,rear.OutDeact);
connect(rear.OutProposal,front.InProposal);

5th Step – Adaptation.
As stated in Section 3, Real-Time Coordination Patterns abstract

from application-specific details like concrete timing information
so that developers can apply them in different applications. As a
consequence, the developers need to adapt the created role child
classes to the needs of their application. For the adaptation, we dis-
tinguish three kinds: (1) Mandatory adaptation: Developers must
define the values of the pattern parameters. This includes concrete
timing values, a concrete message delay, and concrete buffer prop-
erties like the buffer size. (2) Optional lightweight adaptation: This
group consists of optional adaptations that do not effect the intent
of the pattern. These adaptations include (2.1) adding a String vari-
able for custom names (e.g., protocol, roles, states) to concretize
their application-specific meaning, (2.2) adding new message pa-
rameters, (2.3) changing the state hierarchy (increasing or flatten-
ing), (2.4) adding variables and clocks, and (2.5) splitting transi-
tions into several transitions with intermediate states. (3) Optional
heavyweight adaptation: This group consists of optional adapta-
tions that can effect the intent of the pattern. This group consists



Listing 3: Send Current Cruising Speed Via Accept Message
model Protocol_Slave_Role
(// begin modifications
OutAccept(redeclare Integer integers[0] ,
redeclare Boolean booleans[0],
redeclare Real reals[1])...);
Modelica.Blocks.Interfaces.RealInput

cruisingSpeed;
equation

connect(Accept.u_reals[1], cruisingSpeed)

Listing 4: Customize Protocol Role Master Synchronized Col-
laboration
model Protocol_Master_Role
...
(// begin modifications
AcceptBox(numberOfMessageReals=1,

delayTime=0.05),
T10(numberOfMessageReals=1),
InAccept(redeclare Integer integers[0],
redeclare Boolean booleans[0],
redeclare Real reals[1]), ...);

of all possible adaptations that are not part of the other two groups,
e.g., adding entirely new states, transitions, messages, invariants,
clock constraints. We do not forbid these adaptations, because we
would otherwise decrease the reusability of our patterns. As a tech-
nical limitation, deleting objects and connections from a pattern is
not possible, because this is not possible in Modelica when using
inheritance. If the pattern roles are copied and then adapted objects
can also be deleted.

In our scenario, the front RailCab adds its current velocity as pa-
rameter to the platoon accept message, such that the rear RailCab is
able to adapt its velocity when getting the accept message. There-
fore, developers add the variable Modelica.Blocks.Interfaces.RealInput
cruisingSpeed to the class Protocol_Slave_Role as Listing 3 shows and
connects the variable cruisingSpeed to the input of the message Ac-
cept in the equation section. Further, the outgoing delegation ports
of this message, the incoming delegation ports, the receiving mail-
box, and transitions which receive this message have to be adapted.

Listing 4 shows these mandatory adaptations of the receiving
protocol role in the modification part. The redeclare construct re-
places the declaration of the parent class. In Listing 4 the variables
integers, booleans, and reals of the delectation port InAccept are re-
placed. The array reals[1] gets the size one instead of zero because
the velocity of the slave RailCab is communicated. For our exam-
ple, the maximum delayTime for sending a message from the sender
to the receiver is 0.05seconds. Therefore, the mailbox gets a delay
of this time period before a message is enqueued.

In the example, the rear RailCab as the master adapts its veloc-
ity when getting the accept message with the velocity of the front
RailCab. Therefore, developers have to assign the value first to the
local variable velocityOfSlave when transition T10 fires. Listing 5
shows that the variable velocityOfSlave gets the value of the first real
parameter of the received Accept message at transition T10 from the
class Protocol_Master_Role, when T10 fires.

Developers need an adaptation of the pattern if they want to reach
different states if the platoon is rejected or a timeout occurs. There-
fore, developers can split up transitions or states by redeclaring
them. For example, they create a new class Adaptation, which ex-
tends the Modelica_StateGraph2.PartialParallel class. Figure 11 shows
this adaptation class which has the explicit states Reject and Time-
out. Depending on the Boolean value of the variables reject and

Listing 5: Add Action to Transition T1 of class Proto-
col_Master_Role
model Protocol_Master_Role
...
Real velocityOfSlave;
algorithm
when T10.fire then

velocityOfSlave :=
T10.transition_input_port[1].reals [1];

end when;
equation
if CollaborationActive.active then

myVelocity = velocityOfSlave;
else

myVelocity = cruisingSpeed;
end if;

Figure 11: Modelica State Machine Modeled in the Adaptation
Class

timeout the corresponding states get active. The variable reject gets
true if transition T8 fires (Figure 7) and the variable timeout gets
true if T7 fires. Listing 6 shows how the state Idle within the Proto-
col_Master_Role class is adapted by redeclaring it with the Adaptation
class to integrate the adapted behavior.

Next, the developers have to assign application-specific values
to the role parameters. In our scenario, the slave has the parameter
$evaluationTime that specifies the time that the slave is allowed to
evaluate the collaboration proposal. In our example, developers
set it to 0.1 seconds. The master has the parameter $timeout that
specifies the time that the master waits at most for the answer of
the slave for a request of building a platoon. The $timeout is at
least the sum of the $evaluationTime of the slave and two times the
maximum message delay. In our example, it is set to 0.2 seconds.
Listing 7 shows the customized example of Listing 2.

To conclude, we only applied mandatory and lightweight
changes to our scenario, but no heavyweight changes. Thus, the
intent of the pattern is not affected.

If the scenario would be more complex, new message delega-
tion ports could be introduced, which have to be connected again.
Therefore, step four and five could have several iterations.

6th Step – Holistic Modeling.
Finally, developers can add the objects for feedback controllers,

physical parts, like the RailCab drive, and environmental parts for

Listing 6: Redeclare Idle State as Adaptation Class
model Protocol_Master_Role

extends ...
( // begin modifications

redeclare Adaptation Idle);



Listing 7: Adapted Inherit Parameter Values of the Protocol
Roles
model System
Protocol_Master_Role front(evaluationTime=0.1);
Protocol_Master_Role rear(timeout=0.2);
...

rear:
Protocol_Master_Role

InProposal

InDeact

OutDeact

InAccept

InReject

distance myVelocity

 rear 
RailCabDrive

front 
RailCabDrive

di
st

an
ce

OutProposal

OutReject

OutAccept

myVelocity

front:
Protocol_Slave_Role

timeTable timeTable
cruising
Speed cruising

Speed

timeTable

ready

Figure 12: Adapted Modelica System for the Platoon Scenario

a testing scenario. As a result, developers get a holistic Modelica
simulation model of the coordination behavior. Therefore, they can
simulate a complex coordination scenario behavior in interaction
with physical parts and the environment. Figure 12 shows the final
simulation model, which is also included in the library.

6. EVALUATION
To get significant indications that our engineering solution with

patterns is better than without patterns, the following goal should
be reached: “Analyze the specification process of the coordination
behavior for cyber-physical system for the purpose of evaluate the
(1) effectiveness5 and (2) efficiency6 in use from the viewpoint of
developers that add coordination protocols to an existent Modelica
model”.

The two research questions for our evaluation are: (1) “Is the
effectiveness in use higher when engineering coordination proto-
cols by using the pattern library?” and (2) “Is the efficiency in use
higher when engineering coordination protocols by using the pat-
tern library?”. The metric for effectiveness for our pattern library
is how many tasks are solved completely by developers in relation
to the measured fault density. The fault density is defined as the
number of encoded errors within a Modelica model, related to the
size of the model. An error is a violated safety requirements of
the developed protocol, e.g., the protocol is not deadlock-free, it is
possible that the master thinks it collaborates but the slave thinks it
does not. The efficiency in use could be measured by the time that
developers need to solve a task, or the number of modeling tasks,
in relation to the effectiveness. Our hypothesis is that the effec-
tiveness and efficiency in use become better when using the pattern
library.

To get a first impression of the modeling effort, comparing mod-
eling with and without the library, we count the number of tasks

5Effectiveness in use: “The degree to which specified users can
achieve specified goals with accuracy and completeness in a speci-
fied context of use.” [18]
6Efficiency in use: “The degree to which specified users expend
appropriate amounts of resources in relation to the effectiveness
achieved in a specified context of use.” [18]

Number of Tasks for Editing
Task Collaboration Collaboration

_Slave _Master
Create States 3 3
Create Transitions 4 4
Create Messages 2 2
Create Message Boxes 2 2
Create Clock 1 1
Create Time Invariant 1 1
Create Clock Constraint 1 1
Create Parameter 1 1
Change Parameter 8 7
Create Connections 19 21
Create Ports 4 4

Sum 46 47
Overall Sum 46+47=93

Table 1: Effort for Modeling Pattern Synchronize Collabora-
tion Roles

during modeling our scenario. The modeling effort is important for
the efficiency in use. For the measurement, we define a list of tasks
that developers have to perform during creating the model that Fig-
ure 12 shows. Table 1 shows the required tasks for creating the
roles of synchronized collaboration pattern of the Real-Time Coor-
dination Pattern Library. For creating the pattern, developers have
to do 46+47 = 93 tasks. This modeling effort has to be done only
once while creating the pattern library. Developers, who use the
Real-Time Coordination Pattern Library, save this effort.

Developers, who create their application specific protocols, like
the synchronization of the platoon behavior for the RailCabs, can
extend existing pattern implementations. After creating the role
classes, some tasks have to be performed for the application-
specific details. The tasks vary depending on the concrete appli-
cation. For our example, we performed 65 tasks (cf. Table 2) for
creating the protocol roles and 29 tasks for creating the adaption
class, which are not shown here in detail. Further, developers have
to instantiate protocol roles and connect roles. Afterwards, devel-
opers have to connect existing physical and environmental parts
with the protocol roles. Therefore, 19 tasks are required, which are
also not shown in detail here. These tasks also need to be done if
Real-Time Coordination Library is not used. The overall amount
of tasks to do with the help of the library are 65+29+19 = 113.

All of these tasks – except the state redeclaration – have also to
be done when developing without the library. Developers have to
perform 93+(65−1)+29+19 = 205 tasks, modeling without us-
age of the pattern library. This effort does not include all the work
which is necessary for thinking about good solutions and for debug-
ging error-prone models. To conclude, if we just consider the num-
ber of tasks, the developers’ effort is only 113 ∗ 100/205 ≈ 55%
when using our Real-Time Coordination Pattern Library compared
to their effort with the Real-Time Coordination Library.

An empirical experiment for the evaluation would be that a group
of students gets an introduction into Modelica modeling, the Real-
Time Coordination Library, and the pattern catalog [10]. After-
wards, the group is split up in two groups. Both groups get dif-
ferent scenario descriptions, e.g., the description of our scenario in
Section 2, and an appropriate Modelica model containing the phys-
ical, and environmental parts of the system. The first group has to
define the coordination behavior only with the Real-Time Coordi-
nation Library; the second group has to define the behavior with
the Real-Time Coordination Pattern Library. During the experi-



Number of Tasks for Editing
Task Protocol Protocol

_Slave_Role _Master_Role
Change Parameter 8 8
Do Port Redeclarations 12 12
Do State Redeclarations 0 1
Create Variables 2 3
Create When Tasks 0 6
Create If Tasks 0 4
Create Connections 3 0
Create Ports 3 3

Sum 28 37
Overall Sum 28+37=65

Table 2: Effort for Modeling Protocol Synchronize Collabora-
tion Roles

ment, we measure the metrics that we defined before. Up to this
point in time, the experiment has not been carried out.

7. RELATED WORK
DEVS [8] is a formalism to specify discrete event systems by

state transition tables. DEVSLib [28] is a Modelica library, which
provides messages and mailboxes. In contrast to messages and
mailboxes of our Real-Time Coordination Library, which is written
in pure Modelica, DEVSLib uses the external function interface to
C of Modelica. A C-library provides the functionality to store the
message information. DEVSLib uses Modelica connections to ex-
change the virtual address of the external storage and to provide a
shared memory. In contrast to our Real-Time Coordination Pattern
Library, DEVSLib currently provides no reusable implementation
of existing coordination solutions.

Ptolemy [12] is a hybrid approach, which supports the notion
of discrete event, finite-state machine. Ptolemy supports sending
and receiving of message which have parameters like our mes-
sages [2], but has no pattern-based support for developing these
message-based coordination protocols. Further, Ptolemy only sup-
ports continuous time in form of ordinary differential equations.
In contrast to Modelica that “has significant advantages, particu-
larly for specifying physical models based on differential-algebraic
equations” [19].

Hamri and Baati [15] adapt existing design patterns (e.g.,
Gamma et al. [14]) to improve the design of DEVS-based models
and simulators. Ferayorni and Sarjoughian [13] enrich DEVSJAVA
(an object-oriented version of DEVS using Java) by making the de-
sign patterns of Gamma et al. (Composite, Facade, and Observer)
available to the software developer of the astronomical observatory
domain. In contrast to both works, we focus on domain-specific de-
sign patterns for the message-based coordination of cyber-physical
system and provide a process for applying and adapting the pat-
terns.

Reo [1] is a channel-based coordination model for component-
based systems or applications. Using Reo, designers can compose
complex connectors out of simple ones. In contrast to our Real-
Time Coordination Pattern Library, Reo’s main focus is the con-
nector design and not the behavior design of each role. Moreover,
Reo does not provide concepts for defining the component behav-
ior based on the designed coordination. Brandt et al. simulate Reo
circuits using Modelica [5]. However, they do not provide reusable
Modelica models or a library of design patterns.

The TrueTime Modelica network library [26] offers elements to
simulate the sending of variables over different network protocols.

Thus, the library offers classes for data-link layer protocols (OSI
layer 2) of wired and wireless networks. A network is modeled as
a set of FIFO input and output queues and a shared communica-
tion medium. In contrast to our Real-Time Coordination Pattern
Library, they offer no support for the OSI layer 7 to specify the
collaboration between the individual systems.

Tiller [29] describes six Modelica design patterns. In contrast
to our library, Tiller focuses on architectural patterns and provides
Modelica code snippets. Dalle et al. [9] also focus on architectural
patterns and conclude that all of the analyzed patterns are appli-
cable to modeling and simulation software. We, instead, focus on
coordination patterns and provide a corresponding reusable library.

ModelicaML [24] is a UML profile that enables to generate
Modelica code from a subset of UML models. The provided code
generator transforms UML state machines with asynchronous com-
munication into Modelica algorithmic code. In contrast to our
Real-Time Coordination Pattern Library, they do not provide a
mechanism for reusing approved coordination solutions.

8. CONCLUSION
A key aspect of cyber-physical systems is the coordination of

individual systems in real-time to provide a desired functionality.
We increase the effectiveness and efficiency of the development of
high-quality real-time coordination by providing a catalog of real-
time coordination patterns. Such patterns enclose recurring and
well-proven coordination solutions in an application-independent
and easily reusable way.

In this paper, we extend a previously developed version of the
pattern catalog and make it available as a Modelica library. We
define a systematic process for developing concrete application-
specific coordination behavior using the pattern library. This way,
we enable Modelica experts to model and simulate high-quality co-
ordination behavior together with the feedback controllers and the
dynamic behavior of the physical parts of cyber-physical systems.
A first evaluation shows that developers need to perform signifi-
cantly fewer tasks for developing coordination behavior when us-
ing our library.

We have four major topics for future work: (1) We will carry
out a more sophisticated evaluation of our approach as already in-
dicated in Section 6. (2) In order to develop a concrete application-
specific coordination protocol, a pattern from the library needs to
be adapted manually (step 5 of our process). Currently, we offer
no support for checking automatically whether these adaptations
violate essential properties of the pattern like deadlock-freedom or
safety-properties. However, our MECHATRONICUML modeling
tool does not only offer the pattern-based modeling of coordination
behavior but also its formal verification with the model checker
UPPAAL. Therefore, we plan to develop an automatic transforma-
tion of MECHATRONICUML coordination models into the Model-
ica language based on our new library. Coordination behavior can
then be modeled and verified with the MECHATRONICUML tool
and translated into Modelica for a holistic simulation. (3) A system
is often involved in several different coordination protocols at the
same time. In our RailCab example, the rear driving RailCab might
transmit its current speed regularly to the front driving RailCab us-
ing the pattern PeriodicTransmission, but only when both RailCabs
are in an active SynchronizedCollaboration. This would require a syn-
chronization of the involved protocol roles across hierarchical lev-
els. So far, the Real-Time Coordination Pattern Library is lacking
adequate modeling constructs for such a synchronization as well
the process is lacking explicit support for combining protocols. (4)
The underlying communication infrastructure, i.e., the lower OSI
levels 1-6, may have various effects on the coordination which we



consider only in the form of fixed message delays so far. In future
work, we will take more of these effects into account like message
loss or dynamic message delays due to network utilization by inte-
grating existing libraries into our own library, e.g., the library True
Time [26].

Acknowledgments
This work was partially developed in the Leading-Edge Cluster ’In-
telligent Technical Systems OstWestfalenLippe’ (it’s OWL). The
Leading-Edge Cluster is funded by the German Federal Ministry
of Education and Research (BMBF).

9. REFERENCES
[1] F. Arbab. Reo: a channel-based coordination model for

component composition. Mathematical Structures in
Computer Science, 14(3):329–366, 2004.

[2] K. Bae, P. C. Ölveczky, T. H. Feng, E. A. Lee, and
S. Tripakis. Verifying hierarchical ptolemy ii discrete-event
models using real-time maude. Science of Computer
Programming, 77(12):1235–1271, 2012.

[3] S. Becker, C. Brenner, C. Brink, S. Dziwok, C. Heinzemann,
R. Löffler, U. Pohlmann, W. Schäfer, J. Suck, and
O. Sudmann. The MECHATRONICUML design method.
Technical Report tr-ri-12-326, Software Engineering Group,
Heinz Nixdorf Institute, University of Paderborn, 2012. v0.3.

[4] J. Bengtsson and W. Yi. Timed automata. In J. Desel,
W. Reisig, and G. Rozenberg, editors, Lectures on
Concurrency and Petri Nets, volume 3098 of LNCS, pages
87–124. Springer, 2004.

[5] C. Brandt, F. Santini, N. Kokash, and F. Arbab. Modeling
and simulation of selected operational it risks in the banking
sector. In M. Klumpp, editor, Proc. of European Simulation
and Modelling Conf., EUROSIS-ETI, pages 192–200, 2012.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture, Volume 1:
A System of Patterns. Wiley, 1996.

[7] R. Colgren. Basic matlab. Simulink And Stateflow, AIAA
(American Institute of Aeronautics & Ast, 2006.

[8] A. Concepcion and B. Zeigler. Devs formalism: A
framework for hierarchical model development. IEEE TSE,
14(2):228–241, 1988.

[9] O. Dalle, J. Ribault, and J. Himmelspach. Design
considerations for m&s software. In Winter Simulation
Conference, pages 944–955, 2009.

[10] S. Dziwok, K. Bröker, C. Heinzemann, and M. Tichy. A
catalog of real-time coordination patterns for advanced
mechatronic systems. Technical Report tr-ri-12-319,
Software Engineering Group, Heinz Nixdorf Institute,
University of Paderborn, Feb. 2012.

[11] S. Dziwok, C. Heinzemann, and M. Tichy. Real-time
coordination patterns for advanced mechatronic systems. In
M. Sirjani, editor, COORDINATION 2012, LNCS 7274,
pages 166–180, June 2012.

[12] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Y. Xiong. Taming
heterogeneity-the ptolemy approach. Proceedings of the
IEEE, 91(1):127–144, 2003.

[13] A. E. Ferayorni and H. S. Sarjoughian. Domain driven
simulation modeling for software design. In Proc. of the
2007 Summer Computer Simulation Conf., SCSC ’07, pages
297–304, San Diego, CA, USA, 2007.

[14] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Boston, MA, USA, 1995.

[15] M. E. Hamri and L. Baati. On using design patterns for
DEVS modeling and simulation tools. In Proc. of the 2010
Spring Simulation MultiConf., SpringSim ’10, pages
121:1–121:9, San Diego, CA, USA, 2010.

[16] C. Heinzemann, O. Sudmann, W. Schäfer, and M. Tichy. A
discipline-spanning development process for self-adaptive
mechatronic systems. In Proceedings of the 2013
International Conference on Software and System Process,
ICSSP 2013, pages 36–45. ACM, New York, NY, USA, May
2013.

[17] C. Henke, M. Tichy, T. Schneider, J. Böcker, and W. Schäfer.
Organization and control of autonomous railway convoys. In
AVEC’08, pages 318–323, 2008.

[18] ISO/IEC. 25010 systems and software engineering – system
and software product quality requirements and evaluation
(square) – system and software quality models, 2011.

[19] E. A. Lee. Disciplined heterogeneous modeling. In Model
Driven Engineering Languages and Systems, pages 273–287.
Springer, 2010.

[20] A. Modelica. Modelica - a unified object-oriented language
for physical systems modeling, language specification,
version 3.2, 2010.

[21] Object Management Group. Unified modeling language,
superstructure, 2011.

[22] M. Otter, M. Malmheden, H. Elmqvist, S. E. Mattsson, and
C. Johnsson. A New Formalism for Modeling of Reactive
and Hybrid Systems. In Proc. of the 7th Modelica Conf.,
pages 364–377, 2009.

[23] U. Pohlmann, S. Dziwok, J. Suck, B. Wolf, C. C. Loh, and
M. Tichy. A Modelica library for real-time coordination
modeling. In Proc. of the 9th Int. Modelica Conf., Munich,
Germany, pages 365–374, 2012.

[24] U. Pohlmann and M. Tichy. Modelica code generation from
ModelicaML state machines extended by asynchronous
communication. In Proc. of the 4th Int. Workshop on
Equation-Based Object-Oriented Modeling Languages and
Tools, Zurich, Switzerland, pages 75–84, Sept. 2011.

[25] M. Radestock and S. Eisenbach. Coordination in evolving
systems. In O. Spaniol, C. Linnhoff-Popien, and B. Meyer,
editors, Trends in Distributed Systems CORBA and Beyond,
volume 1161 of LNCS, pages 162–176. Springer, 1996.

[26] P. Reuterswärd, J. Åkesson, A. Cervin, and K.-E. Årzén.
Truetime network–a network simulation library for
Modelica. In F. Casella, editor, Proc. of 7th Int. Modelica
Conf., pages 657–662, Como, Italy, 2009.

[27] M. Rohl and A. M. Uhrmacher. Definition and analysis of
composition structures for discrete-event models. In
Simulation Conference, 2008. WSC 2008. Winter, pages
942–950, 2008.

[28] V. Sanz, A. Urquia, and S. Dormido. Introducing messages
in Modelica for facilitating discrete-event system modeling.
In P. Fritzson, F. E. Cellier, and D. Broman, editors, EOOLT,
volume 29 of Linköping Electronic Conf. Proc., pages
83–93, 2008.

[29] M. M. Tiller. Patterns and anti-patterns in Modelica. In
B. Bachmann, editor, Proc. of 6th Int. Modelica Conf., pages
647–656, Bielefeld, Germany, 2008.


