
An Efficient Front-End for Timing-Directed Parallel
Simulation of Multi-Core System

Zhenjiang Dong, Jun Wang, George Riley, Sudhakar Yalamanchili
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332–0250

{zdong30, jun.wang, riley, sudha}@ece.gatech.edu

ABSTRACT
Manifold is a parallel simulation framework for multi-core
systems. For full-system simulation, Manifold adopts the
timing-directed simulation paradigm that separates the sim-
ulation into a functional front-end and a timing back-end.
Components in the front-end perform functional simulation
of the cores and send streams of instructions to the back-
end to simulate the timing behavior. In its current design,
Manifold uses the QSim multi-core emulator as the front-
end, which communicates with the back-end through net-
work sockets. Experiments have shown that the latency
of the socket communications has a significant impact on
the overall simulation performance. This paper presents a
novel method that attempts to hide the TCP/IP latency for
the back-end by creating proxy processes as an intermedi-
ary between the front-end and the back-end. The proxies
serve as clients to the QSim server in the front-end, and
as servers to the back-end. They interact with the QSim
server through sockets, while working with the back-end in a
producer-consumer manner using shared memory segments.
Experiments show that this method can completely hide the
TCP/IP latency for the back-end. The back-end can always
get its instructions from the shared memory without wait-
ing for the QSim server. The overhead of getting inputs for
the back-end simulation is reduced to almost zero. As con-
firmed by our experiments, this improvement causes some
side effects that together lead to significant improvements in
overall simulation performance. In testing of system mod-
els with up to 64 cores, we have achieved from 29% to 51%
improvement in simulation performance.

Categories and Subject Descriptors
C.0 [Computer System Organization]: Modeling of com-
puter architecture

General Terms
Experimentation, Performance

Keywords
parallel simulation, full-system model, timing-directed, multi-
core

1. INTRODUCTION
Simulation is an important tool used by researchers and
industry CPU architects for evaluating and analyzing fu-
ture architecture designs. In one important class of mirco-
architecture simulations, which we shall refer to as timing-
directed simulation, the simulation system is divided into
two separate but complementary parts: functional simula-
tion and timing simulation. The functional simulation, also
known as the front-end, emulates the behavior of the tar-
get system. For example, emulators such as SimOS [12],
Qsim [8] and AMD’s SimNowTM [2] are used for functional
simulation. Functional simulation is very precise in terms of
functional behavior and fast enough to run at the speed close
to that of native execution. However, functional simulations
focus on the correctness of functional behavior and typically
don’t have accurate timing for devices in the system. On the
other hand, timing simulation, or the back-end, is built with
the simulation models of architecture components and used
to evaluate the performance of target system. Timing sim-
ulation is one or more order of magnitude slower than the
functional simulation, but it models the operation latency
of architecture components.

In timing-directed simulation for micro-architectures, func-
tional simulation is responsible for generating correct in-
struction flow or events stream for architecture components
in timing simulation. Timing simulation uses the instruc-
tions or events to drive architecture components, and sends
feedback to functional simulation based on the state of ar-
chitecture components. Then, the functional simulation ad-
justs its own state according to the feedback. The interac-
tive features of timing-directed simulation make it ideal for
simulation of complex system that can change functional
behavior dynamically during run time such as multi-core
system. Also due to the interactive nature, the communica-
tion method between the two parts is important for overall
performance of simulation.

Manifold [14] is a software framework for building paral-
lel simulation of multi-core systems following the timing-
directed simulation paradigm. In a Manifold full-system
simulation, the front-end is the QSim [8] multi-core emula-
tor, and the back-end consists of timing models from Man-
ifold’s repository. QSim boots a Linux OS and executes



multi-threaded applications on emulated cores. Through
a multi-threaded server, called QSim Server, the back-end
core models can move the emulation forward and receive
the executed instructions as a result. The back-end uses the
instruction flows as input to simulate the timing.

In the current design, the back-end core model and the QSim
Server use sockets to communicate. A core model issues a
request and blocks until it receives the requested instruc-
tions. We have found the round-trip delay of the TCP/IP
packets to be a detrimental factor to better performance,
and it is desirable to hide this latency.

In this paper we propose an innovative method to hide the
TCP/IP latency found in the current client-server design.
We introduce proxy processes as an intermediary between
the QSim server and the back-end. The proxy acts as client
to the server and as server to the back-end. It gets instruc-
tions from the server over sockets and puts the results in
shared-memory segments. The back-end, instead of inter-
acting with the server directly, obtains instructions from
the shared-memory segments. Experiments have shown that
this method successfully hides the TCP/IP latency, makes
the core models acquire inputs more efficiently, and as a
result, significantly improves the overall simulation perfor-
mance.

In the rest of the paper, we first introduce background knowl-
edge and related work in Section 2. In Section 3 we presents
the design and implementation of the proxy process. Exper-
imental results and our analysis are shown in Section 4, and
finally Section 5 contains our conclusions.

2. BACKGROUND AND RELATED WORK
With the complexity of multi-core design growing sharply in
recent years, a few parallel simulation systems have emerged,
including [14], [10], [11] and [1]. Our work is built upon
the Manifold Project [14], an open source software project
that provides a scalable infrastructure for modeling and sim-
ulation of many-core architectures.

As far as timing-directed simulation is concerned, the most
similar to Manifold is COTSon [1]. COTSon also separates
simulation into functional simulation and timing simulation.
It uses AMD’s proprietary SimNow TM [2] as the functional
simulator, which operates at each node of a cluster in a
distributed manner and produces a stream of events for the
respective CPU timing model. Graphite does not follow the
timing-directed simulation paradigm. It uses PIN [6] traces
instead. The PIN execution is instrumented to trap events
that drive the timing models. The Structural Simulation
Toolkit (SST) [11] is similar to Manifold. SST also supports
QSim. It, however, does not use the Qsim server as front-
end. Therefore, it does not have the same issue as Manifold,
namely, to get instructions efficiently from the QSim server
to the back-end.

Manifold supports both trace-driven and timing-directed sim-
ulations. In trace-driven simulation Manifold achieved rea-
sonable speedup compared to sequential simulation and demon-
strated good scalability in tests of models with up to 128
cores [4]. However, little work has been done to study and
improve the performance of the timing-directed simulation

Figure 1: Manifold’s timing-directed simulation model with
client-server design.

of Manifold, and this is the purpose of this paper.

The timing-directed simulation of Manifold can be decom-
posed into two major parts – the functional simulation front-
end and the timing simulation back-end, as shown in Fig-
ure 1. In this figure, we can see that the back-end system
model is composed of a certain number of processor nodes
and memory controllers that are connected to an intercon-
nection network. Each processor node consists of a core and
one or more levels of cache. For parallel simulation, com-
ponents are assigned to different processes known as logical
processes (LPs).

The front-end is a QEMU-based [7] thread safe multi-core
emulation library called Qsim [8]. QSim can boot a Linux
OS and emulates the execution of a multi-threaded applica-
tion on a number of virtual cores. The back-end core models
send requests to QSim, which in turn emulates the execu-
tion of instructions on corresponding virtual cores. The ex-
ecuted instructions and related information such as virtual
and physical addresses of the instructions are then sent back
to the back-end models. Instruction execution progress of
each virtual core is controlled by the corresponding back-end
core model.

For full-system simulation, QSim provides a multi-threaded
server to handle requests from the back-end. As shown in
Figure 1, the back-end models and the server communicate
over TCP/IP using sockets. When a core model needs in-
structions, it sends a request to the server and then blocks
for the response. Once the instructions are received, it re-
sumes its simulation activities. In other words, whenever a
core model in the back-end needs instructions, TCP/IP com-
munications are incurred and the core model cannot progress
until the TCP/IP transaction completes. Since we cannot
eliminate the TCP/IP latency, it is highly desirable to de-
vise a method that hides the latency as much as possible
from the back-end. We expect such a scheme would make
the back-end core models run more efficiently and improve
the overall simulation performance.

3. DESIGN OF QSIM PROXY
The client-server based design, which we introduced above,
is shown in Figure 1. In the following we shall refer to this
as the baseline design. In the baseline design, the back-



Figure 2: Manifold parallel simulation with Proxy.

end core models communicate directly with the QSim Server
using sockets. The multi-threaded server spawns one thread
for each core model. Whenever a core model runs out of
instructions, it starts a transaction with the server to get
instructions. The core model would block until it receives
the server’s reply. As stated above, it is the TCP/IP latency
that we wish to hide from the back-end in order to improve
performance.

We attempt to achieve this by creating proxy processes be-
tween the server and the back-end, as shown in Figure 2.
Compared with the baseline design, there are two major
differences:

1. In this design we introduce to the system a number of
proxy processes. The proxies, together with the server,
form a new, improved front-end.

2. The back-end core models are modified. Instead of
interacting with the server directly, the core models
would get instructions from the proxy.

The proxy acts as an intermediary between the server and
the back-end. It serves as a client to the server and as a
server to the back-end. To get instructions from the server to
the back-end, the proxy communicates with the server using
sockets, just as the back-end does in the baseline design.
Once instructions are received, they are first stored in an
internal buffer and then copied to shared memory segments
for the consumption by the core models. We choose shared
memory segments because they are a highly efficient means
for inter-process communication. Each proxy is a multi-
threaded process, with one thread for each core model it
serves. A proxy serves all the core models running on the
same host machine.

Each proxy thread and the core model it serves form a
producer-consumer relationship. The proxy thread puts in-
structions in the shared memory segment, and the core model
removes them. This is shown in Figure 3. To simplify inter-
process synchronization, a circular buffer is implemented on

Figure 3: Implementation of Proxy.

the shared memory segment. Two additional pointers are al-
located, for the head and the tail of the circular buffer. The
producer (proxy thread) only modifies the tail and the con-
sumer (core model) only modifies the head. Therefore, no
synchronization mechanism, such as semaphore, is required.
To prevent buffer overflow, the thread uses an FIFO buffer
to hold instructions it receives from the server. Instructions
are eventually copied from the FIFO buffer to the shared
memory segment (circular buffer).

The shared memory segments serve as a kind of ”pre-fetch
buffer”. The back-end would get instructions from this buffer
with almost no overhead, instead of through the high-latency
TCP/IP link. In order to completely hide the TCP/IP la-
tency for the core models, a proxy thread only need to ensure
the circular buffer is not empty. To do this as much as possi-
ble, the thread keeps monitoring the contents of the circular
buffer. As soon as it falls below a pre-defined threshold, the
thread sends request to the server to get more instructions.
The action of the proxy thread is given in Algorithm 1.

Algorithm 1 Proxy thread.

1: while true do
2: if circular buffer size below threshold then
3: get instructions from server into FIFO
4: end if
5: while FIFO not empty AND circular buffer not full do
6: Instruction ← remove first item from FIFO
7: Write Instruction to circular buffer
8: end while
9: sleep if did some work

10: end while

The shared memory segment is wrapped in a class which
provides the following functions, among others:

• write(): this function is used by the proxy to write
instructions to the shared memory.

• read(): this function is used by the back-end to read
instructions from the shared memory.

• is_empty(): this function returns true if the shared
memory segment is empty.

• is_full(): this function returns true if the shared
memory segment is full.



4. EXPERIMENTAL RESULTS
We have implemented the two different methods for getting
instructions from the front-end to the back-end. This section
will compare the performance in terms of simulation time for
each method, and present our analysis of the results.

4.1 Design of Experiments
We have built and tested system models for multi-core sys-
tem with 16, 32, and 64 cores. For each system model, every
core has a private level 1 cache and shared level 2 cache.
All cores and their caches are connected to a single inter-
connection network, and one memory controller is created
for every 8 cores. The interconnection networks we use is
torus network, and 4 × 5, 6 × 6 and 9 × 8 torus networks
are used in 16-, 32- and 64-core system models respectively.
The core model in our tests is a cycle-level out-of-order x86
model called Zesto [9], and the cache models implement the
Modified-Exclusive-Share-Invalid (MESI) coherence proto-
col [13]. A credit-based flow control protocol has been im-
plemented along the core-cache-network path, and among
routers inside the network. All the architecture components
in the back-end are registered to the same clock and run at
the same frequency. For parallel simulations, we use an en-
hanced null message algorithm called Forecast Null Message
(FNM) [15].

We conduct our simulation on a Linux cluster that has 8
nodes with two Intel Xeon X5670 6-core CPUs on each node.
The Intel Xeon X5670 6-core CPU has two logical threads
on each core. Therefore there are 24 total hardware threads
on each node. The operating system is RHEL release 6.3
with Open MPI 1.5.4. In all tests, the QSim server is as-
signed to its own node that runs no simulation processes,
and we ensure each LP of the timing simulation has its own
hardware thread. The back-end has two different types of
LPs – core-cache LPs each assigned 2 Zesto cores and their
caches, and network LPs each assigned a certain number of
routers. In tests for the 16-core system model, 1 node is
used to run the proxy and all the back-end. Simulations for
32-core system use 2 nodes, all 6 network LPs are assigned
to one node with 6 core-cache LPs, and the rest of core-cache
LPs are assigned to the other node. For the 64-core system,
we use 3 nodes to run our simulation, one of them runs all 8
network LPs along with 8 core-cache LPs, while the rest of
core-cache LPs are divided into two equal groups and each
group is assigned to one of the two remaining nodes.

The size of the shared memory segments we used for all
the tests is 262144 (256K) bytes, which is the best value
we find during our preliminary tests. Tests for each sys-
tem have been conducted against 6 randomly chosen bench-
marks. The benchmarks we used are from two different
benchmark sets, vips, streamcluster and freqmine are from
the PARSEC [3], while barnes, cholesky and fmm are from
the SPLASH-2 [16]. Tests are conducted for 50 million simu-
lation cycles. For simplicity, we only examine the wall-clock
simulation time of the core-cache LPs in this paper. The
simulation time is further decomposed into time for get-
ting instructions, safety check, processing events, sending
null messages, and receiving incoming messages. The time
for getting instructions is the total time it takes for a Zesto
core in one LP to get instructions from Qsim server or proxy.
The time for safety check is the time consumed by LPs to

check if it is safe to process the next events, which is nec-
essary in null-message-based parallel simulation. The time
for processing events is the time for each LP to process lo-
cal simulation events (time for getting instructions is part of
this time). The time for sending null messages is the average
time spent by LPs to send null messages. Finally, the time
for receiving incoming messages is the time spent by an LP
in processing incoming messages from other LPs. The total
time is recorded with Linux time command, and the rest of
time consumptions are recorded with the clock gettime() [5]
function. We insert two calls of the clock gettime() function
at the beginning and end of the sections that respectively
perform safety check, event processing, sending null mes-
sages, and receiving incoming messages, and the execution
time of each section is accumulated throughout the simula-
tion.

4.2 Comparison of Designs and Analysis
The experiment results show clearly the advantage that the
Proxy design has over the baseline design. Further, the la-
tency of the communication with the front-end appears to
have side effects on the performance of other tasks as listed
above. The side effects lead to performance difference far
beyond the effect of communication latency itself and hid-
ing the communication latency is the major reason for the
better performance of the Proxy design.

4.2.1 Comparison of Designs
Tables 1, 2, and 3 show six types of time consumption in sec-
onds for each benchmark and the percentage of performance
improvement of Proxy design over the baseline design in the
parentheses. As shown in Tables 1, in tests for the 16-core
system, the Proxy design has better performance than base-
line design for all benchmarks. The simulation time is from
30% to 49% less compared to baseline design. The difference
of event processing time between the two designs is relatively
small compared to that of other time consumptions. How-
ever, the other five types of time consumptions show great
difference when the front-end changes from Qsim Server to
Proxy. The time for getting instructions in the baseline de-
sign is well above 15 times more than that of Proxy design,
while Proxy design has 54% to 72% less time for sending
null messages, 48% to 67% less time for safety check, and
49% to 67% less time for processing incoming messages.

Table 1: Simulation running time in seconds for 16-core
model.

Proxy
Benchmark Inst. Safe Proc. Null Msg. Total
barnes 9.5 607.0 1928.7 218.0 655.5 3409.2 (30%)
cholesky 14.1 515.2 2148.6 181.5 569.8 3415.1 (43%)
fmm 14.0 511.9 2134.3 177.3 565.9 3389.4 (49%)
freqmine 13.4 506.1 2063.6 176.6 560.0 3306.2 (44%)
streamcluster 13.8 513.3 2121.2 176.5 568.5 3379.5 (42%)
vips 12.8 533.9 2070.7 186.8 584.9 3376.4 (47%)

Baseline
Benchmark Inst. Safe Proc. Null Msg. Total
barnes 145.9 1180.6 1930.2 475.3 1285.7 4871.8
cholesky 275.0 1426.8 2458.0 585.2 1571.9 6042.9
fmm 307.9 1588.2 2635.2 634.9 1730.6 6588.8
freqmine 272.0 1411.8 2393.0 557.3 1543.6 5905.7
streamcluster 266.5 1382.1 2390.2 574.4 1524.0 5870.7
vips 286.7 1515.4 2527.5 647.4 1690.4 6380.7

Table 2 presents the results for tests for the 32-core system.



The Proxy design consistently runs from 32% to 41% faster
than baseline design. In comparison of the time for sending
null messages, safety check, and processing incoming mes-
sages, the Proxy design spends from 40% to 53% less time
in these three execution sections than the baseline design,
which indicates the baseline design spends significantly more
time in waiting without making actual progress of simula-
tion. And, the event processing time for the baseline design
is just about 15% more than that of the Proxy design. Ap-
parently the useful execution time is roughly the same when
leaving out the difference in time for getting instructions.

Table 2: Simulation running time in seconds for 32-core
model.

Proxy
Benchmark Inst. Safe Proc. Null Msg. Total
barnes 6.4 860.5 1429.7 367.6 965.5 3623.3 (41%)
cholesky 6.2 898.0 1374.0 377.6 1000.3 3649.9 (33%)
fmm 6.0 862.1 1345.6 364.0 963.1 3534.9 (34%)
freqmine 5.5 852.7 1307.3 363.3 948.0 3471.4 (33%)
streamcluster 6.1 875.3 1362.9 365.7 961.4 3565.5 (36%)
vips 5.7 878.8 1339.6 370.6 968.4 3557.4 (34%)

Baseline
Benchmark Inst. Safe Proc. Null Msg. Total
barnes 137.5 1766.9 1628.1 776.7 2001.2 6172.9
cholesky 131.2 1492.2 1558.8 624.0 1690.0 5414.4
fmm 123.7 1479.4 1552.6 653.3 1675.7 5360.9
freqmine 119.6 1420.8 1536.6 638.1 1616.6 5212.4
streamcluster 135.4 1546.4 1578.6 682.9 1755.6 5563.6
vips 119.6 1464.4 1566.2 654.9 1667.3 5352.6

In tests for the 64-core system, the Proxy design outper-
forms baseline design for more than 45% in four out of six
benchmarks, and more than 30% in the rest two bench-
marks. The time for getting instructions for the baseline
design is one order of magnitude larger than that of the
Proxy design. Similar to tests for 32-core system, the time
for event processing, sending null messages, safety check,
and incoming message processing is doubled for the baseline
design in barnes, cholesky, fmm and streamcluster, and for
vips and freqmine the baseline design has 30% more time in
these three categories. And, the Proxy design has around
20% less event processing time than the baseline design in
all six benchmarks.

Table 3: Simulation running time in seconds for 64-core
model.

Proxy
Benchmark Inst. Safe Proc. Null Msg. Total
barnes 7.0 1487.4 1595.3 620.8 1638.2 5341.6 (45%)
cholesky 10.6 1536.4 2053.3 624.0 1696.7 5910.4 (51%)
fmm 12.4 1537.9 2283.8 618.5 1707.6 6147.7 (47%)
freqmine 2.4 1528.9 1038.7 639.8 1669.9 4877.3 (30%)
streamcluster 9.9 1508.4 1987.2 616.3 1678.0 5789.9 (48%)
vips 1.5 1525.6 930.5 629.2 1641.4 4726.7 (29%)

Baseline
Benchmark Inst. Safe Proc. Null Msg. Total
barnes 159.1 3084.0 1979.8 1292.7 3441.5 9798.0
cholesky 236.6 3752.9 2625.7 1519.8 4159.6 12058.0
fmm 225.6 3567.2 2521.0 1467.8 3974.3 11530.2
streamcluster 203.8 3520.5 2358.3 1439.9 3897.6 11216.3
vips 46.2 2209.6 1110.8 926.7 2452.7 6699.7

In Table 4 we compare the simulation time in seconds for
proxy design and baseline design against sequential simula-
tion that only uses one thread. The numbers in brackets are
the speedup against the sequential simulation. As we can

see, the overall speedup for both design increases with sys-
tem scale, while the Proxy design consistently outperforms
the baseline design and shows better scalability than the
baseline design. In tests for all system models, Proxy has
42% to 104% better speedup, which no doubt is a significant
improvement.

Table 4: Comparison with Serial Simulation.

16-core
Benchmarks Sequential Proxy Baseline
barnes 15711.9 3409.1 (4.6x) 4871.8 (3.2x)
cholesky 17906.1 3415.1 (5.2x) 6042.8 (3.0x)
fmm 16594.0 3389.3 (4.8x) 6588.7 (2.5x)
freqmine 17811.0 3306.2 (5.4x) 5905.7 (3.0x)
streamcluster 17690.1 3379.5 (5.2x) 5870.7 (3.0x)
vips 18327.1 3376.4 (5.4x) 6380.7 (2.9x)

32-core
Benchmarks Sequential Proxy Baseline
barnes 26038.1 3623.2 (7.2x) 6172.9 (4.2x)
cholesky 25321.0 3649.9 (6.9x) 5414.4 (4.7x)
fmm 24777.1 3534.9 (7.0x) 5361.0 (4.6x)
freqmine 24252.3 3471.4 (7.0x) 5212.4 (4.6x)
streamcluster 23643.6 3565.5 (6.6x) 5563.6 (4.3x)
vips 24139.4 3557.4 (6.8x) 5352.6 (4.5x)

64-core
Benchmarks Sequential Proxy Baseline
barnes 60487.7 5341.6 (11.3x) 9798.0 (6.2x)
cholesky 64611.1 5910.4 (10.9x) 12058.0 (5.4x)
fmm 73299.5 6147.7 (11.9x) 11530.2 (6.4x)
freqmine 38808.0 4877.3 (8.0x) 7013.6 (5.5x)
streamcluster 63508.5 5789.9 (11.0x) 11216.3 (5.7x)
vips 34195.6 4726.7 (7.2x) 6699.7 (5.1x)

4.2.2 Analysis of Results
As mentioned above the only difference between the two
designs is how the core-cache LPs get instructions, and in-
tuitively performance gap, if any, should be mainly deter-
mined by the difference of time it takes to get instructions,
which is also the communication latency between the front-
end and the back-end. However, as shown in Tables 1, 2,
and 3, the difference in communication latency does not ac-
count for the overall performance gap, and that difference
alone only contributes to a fraction of the difference in total
simulation time between the two designs. The effect of com-
munication latency can spread to other parts of the timing
simulation, with higher communication latency the time for
safety check, sending null messages, and processing incom-
ing messages grows correspondingly in the baseline design.
The reason we found is that, when communication latency
increases, core-cache LPs that run out of instructions stall
for longer time without making progress and could have an
impact on other core-cache LPs that have dependency, caus-
ing them to make less progress.

Figure 4 shows the count for core-cache LPs entering differ-
ent sections of the simulation during a 50 million cycle simu-
lation. As we can see, the counts for doing event processing
that actually moves the overall simulation forward is identi-
cal for both designs. However, simulations with the baseline
design enter the sections for sending null messages, safety
check, and processing incoming messages much more often
than the Proxy design, and as system scale increases these
three counts grow sharply for the baseline design. Tremen-
dous increase in counts means more time spent in these ac-
tivities for the baseline design, during which the simulation
does not move forward.



Figure 4: Counts for simulation entering different execution
sections.

5. CONCLUSIONS
In timing-directed simulation of multi-core systems with full-
system model, how efficiently the timing back-end acquires
instructions for its architecture components from the func-
tional front-end is critical for overall simulation performance.
In comparison with our baseline design that connects the
back-end models directly to the QSim Server in the front-
end, our new Proxy design proposed in this paper achieved
much better performance. The reason for such performance
gap can be traced to the Proxy design’s success in hiding the
TCP/IP latency between the front-end and the back-end.
The reduced overhead in the communication with the front-
end seems to have a much larger effect than the reduced
overhead itself. Our study has shown that this reduced
overhead also affects other activities of null message-based
timing-directed simulation of multi-core systems. These ef-
fects together contribute to a significant improvement of per-
formance. The proxies, along with QSim server, form an
efficient front-end with negligible overhead. For our future
work, we plan to create a distributed version of QSim server
which would remove TCP/IP communication with the back-
end, but would still adopt ideas presented in this paper to
reduce inter-process communication overhead.

Acknowledgment
This work is supported by the National Science Foundation,
under grant CNS-855110.

6. REFERENCES
[1] E. Argollo, A. Falcon, P. Faraboschi, M. Monchiero,

and D. Ortega. Cotson: Infrastructure for full system
simulation. ACM SIGOPS Operating Systems,
43(1):52–61, January 2009.

[2] R. Bedicheck. Simnow: Fast platform simulation
purely in software,. In Hot Chips 16, Aug 2004.

[3] C. Bienia and K. Li. Parsec 2.0: A new benchmark
suite for chip-multiprocessors. Proceedings of the 5th
Annual Workshop on Modeling, Benchmarking and
Simulation, 2009.

[4] Z. Dong, J. Wang, S. Yalamanchili, and G. Riley. A
study of the effect of partitioning on parallel
simulation of multicore systems. IEEE 21st
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication
Systems (MASCOTS’13), Aug 2013.

[5] http://www.qnx.com. clock gettime.
http://www.qnx.com/developers/docs/6.4.1/

neutrino/lib_ref/c/clock_gettime.html.

[6] Intel. Pin - a dynamic binary intrumentation tool.
http://software.intel.com/en-us/articles/

pin-a-dynamic-binary-instrumentation-tool.

[7] Intel. Qemu, a fast and portable dynamic translator.
In USENIX 2005 Annual Technical Conf., pages
41–46, Apr 2005.

[8] C. Kersey, A. Rodrigues, and S. Yalamanchili. A
universal parallel front-end for execution driven
microarchitecture simulation,. Proceedings of the 2012
Workshop on Rapid Simulation and Performance
Evaluation Methods and Tools, p(p):25–32, 2012.

[9] G. Loh, S. Subramaniam, and Y. Xie. Zesto: A
cycle-level simulator for highly detailed
microarchitecture exploration. International
Symposium on Performance Analysis of Software and
Systems, pages 53–64, 2009.

[10] J. Miller, H. Kasture, G.Kurian, C. Gruenwald,
N. Beckmann, C. Celio, J. Eastep, and A. Agarwal.
Graphite: A distributed parallel simulator for
multicores. Proceedings of the 16th International
Symposium on High-Performance Computer
Architecture, pages 1–12, 2010.

[11] A. Rodrigues, K. Hemmert, B. Barrett, C. Kersey,
R. Oldfield, M. Weston, R. Risen, J. Cook,
P. Rosenfeld, E. CooperBalls, and B.Jacob. The
structural simulation toolkit. ACM SIGMETRICS
Performance Evaluation Review, 38(4):37–42, March
2011.

[12] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta.
Complete computer system simulation: The simos
approach. IEEE Parallel Distrib. Technol., 3(4):34–43,
1995.

[13] M. S.Papamarcos and J. H.Patel. A low-overhead
coherence solution for multiprocessors with private
cache memories. ISCA ’98 25 years of the
international symposia on Computer architecture,
pages 284–290, 1998.

[14] J. Wang, J. Beu, R. Bheda, T. Conte, Z. Dong,
C. Kersey, G. Riley, W. Song, H. Xiao, P. Xu, and
S. Yalamanchili. Manifold: A parallel simulation
framework for multicore systems. 2014 IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2014.

[15] J. Wang, Z. Dong, S. Yalamanchili, and G. Riley.
Optimizing parallel simulation of multicore systems
using domain-specific knowledge. 2013 ACM SIGSIM
Conference on Principles of Advanced Discrete
Simulation (ACM SIGSIM PADS), 2013.

[16] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
The splash-2 programs: characterization and
methodological considerations. in 22nd Annual
International Symposium on Computer Architecture.,
pages 24–33, 1995.


