
Virtual Prototyping Evaluation Framework for
Automotive Embedded Systems Engineering

Sebastian Reiter1,Andreas Burger1,Alexander Viehl1,
Oliver Bringmann1,2,Wolfgang Rosenstiel1,2

1 FZI Forschungszentrum Informatik, Haid-und-Neu-Str. 10-14, D-76131 Karlsruhe, Germany,
[sreiter, aburger, viehl]@fzi.de

2 Universität Tübingen, Sand 13, D-72076 Tübingen, Germany
[bringman, rosenstiel]@informatik.uni-tuebingen.de

ABSTRACT
This paper presents an analysis framework based on virtual
prototyping to support the comprehensive evaluation of dis-
tributed, network based automotive applications. The frame-
work enables functional and timing verification, performance
and reliability analysis while reducing the evaluation com-
plexity. Additionally the framework supports design space
exploration of the overall system, considering target hard-
ware/software and the system environment. The presented
approach closes the evaluation gap between the initial design
and the final system integration test. During the whole de-
sign process the analysis supports the designers in reaching
efficient design decisions. The applicability of the proposed
framework is demonstrated by representative automotive use
cases. Highlighted are benefits like the integration of exist-
ing software prototypes or the automation capability. The
performance comparison with a widely used network simula-
tion tool shows the competitiveness of the presented analysis
framework.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support Sys-
tems; I.6.5 [Simulation and Modeling]: Model Devel-
opment; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design

General Terms
Design, Performance

Keywords
Virtual prototyping, system simulation, performance evalu-
ation, automotive, SystemC

1. INTRODUCTION
In the last two decades the amount and complexity of soft-

ware within vehicles has increased exponentially. In current

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2014 March 17-19, Lisbon, Portugal
Copyright 2014 ACM ...$15.00.

premium cars more than 70 electronic control units (ECUs)
are integrated in a networked environment, leading to an in-
creasing variety of design alternatives. During the design
process these alternatives have to be assessed to reach effi-
cient design decisions. Besides major decisions like a suitable
communication technology or topology, a wide range of pa-
rameterization alternatives exists that drastically influence
the final system behavior. Each of the decisions has to be
verified that they still fulfill the functional, reliability and
performance requirements. With today’s demanding require-
ments, the available resources have to be used efficiently; a
general resource overestimation is often not feasible. Design
decisions are nowadays based mainly on spreadsheet infor-
mation, experiences with previous products or analyses of
reference system designs. The influence of design decisions
onto the actual system are verified in late design phases when
physical prototypes are available, making it almost impossi-
ble or very cost-intensive to change the overall system design.
Another aspect is to determine the effects of design changes,
not only the actual system has to be taken into account,
but also the interactions with other system components of
the networked environment. Therefore a detailed, overall
system evaluation along the design process is needed, which
closes the evaluation gap between the initial design and the
final system integration test. Figure 1 highlights the classic
V-Model enhanced with the proposed approach.

Figure 1: Virtual Prototyping fills the evaluation gap
between the design and testing phase

The presented evaluation framework uses virtual prototypes
to evaluate the system under development along the design
process. A virtual prototype is a behavioral model of the ac-
tual system. It enables what-if analyses before committing to
one design alternative. The presented approach enables the
usage of abstract models in early design phases to evaluate
and verify coarse system aspects. With the progress of the
design process the model is refined, getting more accurate

in mirroring the behavior of the physical prototype. Each
refinement step is sophisticated enough to execute the re-
quired analyses of the current design phase. When software
prototypes are available they can be integrated and tested in
combination with the simulated system parts. In late phases
when physical prototypes are available, the virtual prototype
adds still benefits to the design process. Features like halt-
ing the complete system and monitoring each internal state,
provides an advantage over system debugging with physi-
cal prototypes. The provided deterministic behavior allows
a repeated simulation of test scenarios executed with phys-
ical prototypes. Compared to physical prototypes and HIL
simulations the evaluation overhead is generally smaller. Co-
simulation approaches increase the capability of the simula-
tion platform, e.g., by providing a target code interpretation
or the simulation of the physical environment. Implementing
this approach the following challenges emerge.

• Support for a variety of system alternatives
and system refinement

• Reusing applications in different system scenarios
• Integration of existing software prototypes
• Designing and configuration the simulation with man-

ageable effort

A solution of these challenged is presented in the following
paper. Section 3 highlights the elaborated evaluation frame-
work and motivates the choice of SystemC [6]. In Section
4 approaches to support a variety of system alternatives are
shown. Section 5 presents the configuration approach, which
enables an efficient handling of the system variant space.
Section 6 shows the resulting design flow and a graphical
environment supporting the user. Section 7 highlights con-
cepts for integrating existing software prototypes. Use case
evaluations are shown in Section 8.

2. RELATED WORK
There exist different approaches using virtual prototypes

to evaluate a variety of system aspects. In [8] virtual pro-
totyping is used to evaluate the interaction of two commu-
nication technologies, Bluetooth and WiMedia Ultra Wide
Band. A FlexRay communication controller model at the
Register Transfer Level (RTL) is used in [7] to support intel-
lectual property (IP) development. Other simulation-based
approaches are presented in [10, 14, 2]. All these approaches
focus on dedicated system parts and particular evaluation
goals, resulting in an optimized virtual prototype for dedi-
cated analyses. They do not target a generic, reusable evalu-
ation infrastructure, neglecting the models extensibility and
reusability. The overall system and the goal to iteratively
reach a comprehensive simulation platform is not the focus
these approaches. [4] presents extensions to SystemC, sup-
porting the simulation of embedded systems and the sur-
rounding network environment. Supporting a variety of sys-
tem alternatives or the efficient simulation configuration is
not regarded. Specific extensions could be integrated into
our evaluation framework, but concepts from transaction-
level modeling (TLM) are currently sufficient.
Besides the research approaches, a number of commercial so-
lutions such as [19, 20, 16] exist, allowing a component-based
assembly of virtual prototypes. These tools assemble detailed
IP components, Instruction Set Simulators (ISS) and inter-
connection networks to simulate a system. Most of these
tools don’t allow a very abstract architectural exploration,
because the provided IP blocks are already technology de-
pendent and lacking the capability of model refinement. An-
other aspect is the integration of application software. In

most tools the software has to be cross-compiled to run on
an ISS, meaning a flexible hardware/software partitioning is
diminished.
Regarding the communication part there exist a range of net-
work simulation tools, such as [15, 17, 18]. These tools focus
primarily on building networks for simulation. It would be
possible to extend the discrete simulation to cover on-chip
resources, e.g., shared processing resources. SystemC on the
other hand is originating from the hardware description area
and is evolved to a system-level modeling language. In the
presented approach SystemC is given preference to existing
network simulation tools.
Other approaches suggest analytic frameworks to evaluate
different isolated system aspects. In [3, 5, 9] timing and pre-
dictability analyses of a FlexRay bus system are presented.
These approaches are based on analytic methods like Real-
Time Calculus, ILP or mathematical models. All approaches
have in common that the system behavior has to be trans-
ferred to the analysis model, e.g., Arrival and Service Curves
have to be derived for the Real-Time Calculus approach. A
mathematical model of the access times has to be specified
for [5]. The applicability of these approaches is therefore
limited to evaluate isolated system aspects.

Most of the mentioned approaches focused on the evalua-
tion of dedicated system aspects or platform dependent code,
while neglecting the overall system. The analyzed systems
are modeled at a fixed level of abstraction, the capability
of model refinement and system variation isn’t considered.
Reusing already specified system parts across different eval-
uation scenarios isn’t regarded.

3. EVALUATION FRAMEWORK
The presented evaluation framework is based on a set of

behavioral models, called virtual prototype. Virtual proto-
typing enables the evaluation of hardware/software systems
without the need of physical prototypes. With the help of a
software-based simulation kernel, the required system parts
are simulated. The event-driven simulation language Sys-
temC enables the creation of virtual prototypes that can be
used to describe the complete system or to interact with
already developed software implementations. With these
mechanisms the functional and timing behavior of combined
hardware/software systems can be simulated. Language fea-
tures like modules or ports encourage a hierarchical, com-
posable design. Based on the fact that the actual software
and the hardware are described by a software-based sim-
ulation the hardware/software partitioning can be flexibly
varied and explored. Both the timing of the software and
the hardware can be modeled and refined during the design
process. Approaches like [13] allow estimating the execution
time of software components according to the target architec-
ture and annotate them to the source code. This enables the
timed software simulation from a very abstract level to a de-
tailed architecture depend level without the need to simulate
the execution platform. With the TLM capability, SystemC
offers an extension towards system-level modeling. TLM2.0
enables the modeling of communication apart from specific
hardware implementations across a variety of abstraction
levels, such as cycle-accurate, approximately timed, loosely-
timed or untimed. The inherent concept of unified interfaces
and sockets increase the interoperability of modules. The
availability of different co-simulation approaches, for exam-
ple, the integration in a driving simulation, similar to [21],
allowing the user to dynamically interact with the virtual
prototype, supports the choice of SystemC. Another aspect
is that an increasing number of IPs is already provided with
additional SystemC simulation models.

Figure 2: Sketch of the three layered approach

One general advantage of the virtual prototyping is that
only the necessary aspects of the evaluated behavior have
to be implemented. Resulting in an evaluation oriented im-
plementation; this is generally less complex than the actual
system implementation. As example, the developed Media
Oriented System Transport (MOST) model provides imple-
mentations of the asynchronous, synchronous, control and
the isochronous data exchange. It simulates a MOST frame,
which circles the MOST ring and is clocked with the typical
MOST frequencies by a timing master. A real MOST net-
work would forward this frame in a bit-by-bit manner, via a
physical layer, most likely plastic optical fibers (POF). This
aspect is neglected in the implementation and the complete
frame is forwarded on a physical bus segment with a fixed
delay. Introducing a bit-by-bit simulation wouldn’t benefit
the current evaluations and increase the simulation runtime
and implementation complexity significantly.
The evaluation of automotive applications in combination
with different communication systems is the main focus of
the presented analysis framework. The current implemen-
tation covers network technologies like MOST, FlexRay, a
half-duplex Ethernet and abstract TLM-2.0 based commu-
nication models. Different communication protocols are im-
plemented on top of this communication layer. We focus
on a TCP/IP stack and the MOST High Protocol (MHP)
in this paper. In the scope of previous industrial projects
different applications are integrated. They range from ded-
icated industrial use cases, such as a traffic sign recognition
(TSR) or a stereo depth map (SDM) application to a set of
generic traffic generators. The traffic generators can be used
if only the communication characteristics of the application
are given. This is important if the application couldn’t be
disclosed because of confidentiality reasons or the effort to
port the application onto the virtual prototype isn’t worth-
while, for example, if only the interference of an additional
application onto a shared bus should be taken into account.
Resulting challenges: To foster the evaluation of various

systems, different parts of the simulation have to be reused.
It should be possible to use the same application with differ-
ent communication technologies, without changing the appli-
cation. Parameters of the system, such as the communica-
tion bandwidth, the internal buffer sizes or the host system
performance characteristic should be adjustable without re-
designing the simulation. If parts of the system have to be
changed, e.g., a different communication protocol version or
a different level of abstraction, replacement should be limited
to these parts. The approaches addressing these topics are
elaborated in Section 4.

4. VIRTUAL PROTOTYPE STRUCTURE
The developed concepts to foster a configurable, reusable

simulation platform are highlighted in this section. These
cover the layered approach with standardized interfaces, the
used addressing approach and the parameterizable modular
sub-structure.

Figure 3: LAAs within the TCP/IP, MHP scenario

4.1 Three Layered Approach
The virtual prototype uses a three layered approach, con-

sisting of the application, protocol and communication layer,
as shown in Figure 2. The modules of the different layers
are interconnected by TLM-2.0 interfaces. Because modules
communicating between layers are using the same standard-
ized interface, the exchange of subjacent modules is enabled.
The application layer contains data sink or data source mod-
ules. All require a TLM-2.0 interface of a subjacent commu-
nication module to transmit and receive data, depicted as
filled ellipse in Figure 2. The middle layer offers protocol
mechanism. Modules of this layer provide a TLM-2.0 in-
terface to the upper layer and request a TLM-2.0 interface
from the lower layer. They process and forward incoming
data, most likely by adding protocol specific information to
the payload, e.g., a TCP/IP header and trailer. Neverthe-
less this layer can act independently from the application
layer, in case of retransmission or segmentation. The lowest
layer implements the actual communication technology like
MOST or FlexRay. These modules offer a TLM-2.0 interface
and handle the data exchange between different devices.
With this approach it is possible to map an application onto
different communication technologies, because all provide a
standardized interface. Further it is possible to concatenate
various protocol implementations, because they provide and
require the same interfaces. Figure 2 highlights different al-
ternating communication paths. The same TSR module uses
either the MHP or the TCP module from the protocol layer.
The SDM application module is mapped either to the proto-
col layer or directly to the communication layer. The traffic
generator is used either with the FlexRay bus or with ab-
stract TLM message queues, illustrating the exchangeability
of communication modules.

4.2 Logical Application Address Approach
When changing the communication technology, the hetero-

geneous addressing schemes cause a problem. The TLM-2.0
interfaces use a generic payload structure to exchange data.
This structure allows specifying the data length, the actual
data pointer and the target address with a length of eight
bytes. The problem is that different protocols and commu-
nication layers are using different addressing formats, e.g.,
TCP/IP uses IP addresses and port numbers, MHP is using
a vector of FunctionBlock, InstanceID, FunctionID and Op-
erationType and the FlexRay bus uses slot IDs. Using these

Figure 4: Basic building block assembly

physical addresses within the application would eliminate the
flexibility to use one application with different communica-
tion layers. To regain this flexibility a logical application
address (LAA) is introduced. The LAA identifies a commu-
nication association, meaning if two applications send data
to the same target devices different LAAs are used. Every
time a module needs a physical address this module provides
a translation table to decode a LAA into a physical address
or vice versa. The according physical address is only used in
the communication module or encapsulated in the payload
data. Meaning all modules of the application and protocol
layer, which are using the TLM-2.0 interface for data ex-
change, are using a logical application address. Within the
communication layer only physical addresses are present. If
two communication associations have to be mapped to the
same channel, both logical application addresses are mapped
to the same physical address. In Figure 3 the different trans-
lation tables of a TCP/IP, MHP scenario are presented. Both
applications are using a different LAA to identify the commu-
nication destination. If the involved communication modules
need a physical address, a translation table is provided. For
example the TCP/IP module needs the physical address to
generate a TCP/IP header. After the header generation and
the data encapsulation, the frame is forwarded with a logical
application address. At the end both messages are mapped
to the same physical channel, with the same physical target
address.

4.3 Modular Sub Structure Approach
The three layered approach combined with the LAA offers

a first degree of flexibility. It is possible to map different
applications onto a variety of protocols and communication
mechanisms. For gaining the required flexibility to evaluate
a variety of system alternatives and variants, the functional-
ity of the different parts is further divided into sub modules.
The different communication, protocol and application mod-
ules are assembled by connecting the required sub modules,
here called basic building blocks. In the following this ap-
proach is highlighted with the help of a MOST model.
The functional description of a MOST communication mod-
ule is aggregated from a set of 17 blocks, each realizing basic
tasks. For each MOST channel type, e.g., a dedicated build-
ing block exists that extracts the data from the frame and
stores it into a buffer or vice versa. By assembling a MOST
module from these basic building blocks, it is possible to
create different amounts of channels, such as multiple syn-
chronous channels, compare Figure 4 (a) and (b). As a result,
different virtual prototypes can be realized by just changing
the block assembly.

Another aspect is that the functionality of single blocks can
be implemented in different ways. A MOST device, e.g.,
contains a buffer block that stores receive or transmit data.
In the current model two basic block implementations with
different internal memory representations and allocation al-
gorithms are present. Both implementations are using a com-
mon interface and are therefore exchangeable. The behavior
of the device changes when these blocks are exchanged in the
assembly, compare Figure 4 (a) and (c).
With the functional partitioning it is possible to describe the
same modules at different levels of abstraction. If the func-
tional and timing behavior of a basic building block is ab-
stracted because a more detailed modeling wouldn’t benefit
the evaluation goal, a more abstract block is used to increase
the simulation performance. If another evaluation needs a
more detailed functional or timing behavior, the basic block
is substituted with a more accurate implementation.
Besides the flexibility of the basic building block assembly,
most blocks provide a set of parameters that allow adjusting
the behavior. The 17 basic building blocks of a MOST mod-
ule offer a total set of 48 configurable parameters. Most of
them are used to personalize the devices, e.g., the device ad-
dress or to provide assembly dependent information such as
the LAA translation tables. Other parameters influence the
behavior of the system and allow evaluating a greater set of
alternatives, e.g., buffer sizes, interrupt rates or the provided
bandwidth. With this set of parameterizable basic building
blocks a variety of systems can be specified.

Resulting challenges: With such a degree of flexibility, it is
not suitable to assemble and configure the desired system in
source code. Each time a parameter changes or a module is
swapped, the complete system would have to be recompiled.
Especially when large sets of simulation runs have to be exe-
cuted with small changes in the parameterization, e.g., used
to find the best system parameterization, the total simula-
tion time would increase drastically. Additionally, writing a
Top Module and passing all parameters with the help of con-
structors can be a very time consuming task. The following
Section 5 presents the used system configuration approach
to solve these challenges.

5. SYSTEM CONFIGURATION
The evaluation framework uses an xml based configura-

tion approach. The composition and the parameterization
of the basic building blocks are given as separate configura-
tion file. The information of this file is used during execution
to assemble and configure the system. With this approach it
is possible to simulate different system alternatives without

Figure 5: Virtual prototype configuration approach

recompiling the system, by just changing the configuration
file. In Figure 5 a sketch of the process is shown. The basic
blocks, presented in the previous section, are summarized in
the Block Library. Each single block of the Block Library is
registered in a central Block Registry. The Block Registry is
a lookup table where each basic building block is associated
with a unique ID and a function to instantiate the block,
similar to a factory method. The second key element is the
Configuration Management. The task of this class is to parse
a configuration file and provide the contained information to
the simulation platform. After the xml file is parsed, all
contained blocks are instantiated. Therefore each block ID
is looked up in the Block Registry followed by the factory
method call, returning the created object. The Configura-
tion Management stores the created object reference by an
object ID specified in the xml file. An iterator that allows
stepping through the configuration parameters, associated
with the current block, is passed with the factory method.
Each parameter consists of a unique ID, a data type and a
value which are used to initialize the member variables. It
is possible to cascade parameters and build complex data
structures. The responsibility to interpret the configuration
parameters and assign them to the correct variables lies with
the basic building block. The Configuration Management
only provides the unified access to the information. After
all required blocks are instantiated, the blocks are intercon-
nected. To prevent the need for a dependency analysis of the
blocks and to allow circular dependencies between blocks, the
instantiation and the linkage are done in two separate steps.
The Configuration Management iterates through the links of
a block, calls the linker method and passes a reference of the
target block. The block instance uses the information to es-
tablish the connection. The object is responsible to correctly
cast the unified reference and establish the connection in a
correct manner. In the current simulation platform normal
object pointers, TLM sockets and SystemC ports are used.
By typecasting the generic block reference, configuration er-
rors within the xml file are revealed and the simulation is
terminated. After these two steps are executed for each ba-
sic building block, the Configuration Management contains
interconnected instances of blocks assembled to a complete
system. With this system simulation instance the simulation
is executed.
Changing a parameter value only requires the modification
of the xml file. The simulation can be re-executed without
recompilation. Additionally it is possible to exchange mod-
ules in the xml file.
There exits a variety of xml binding tools for various pro-
gramming languages, which enables the easy creation of pow-
erful test generators. The xml instance specification is used
to automatically generate code that allows parsing and seri-
alizing the xml files. In different analysis scenarios Python
scripts are used to automatically generate a huge amount of
xml configuration files.
Resulting challenges: Each basic building block contains

a similar factory and linker method. This repeated func-
tionality is most suited for automated code generation. The
information, parameters and links, specified for this step, can
be additionally used to generate the xml configuration files.
The graphical tool and the code generation are presented in
Section 6.

6. GRAPHICAL TOOL SUPPORT
To reduce the overhead of designing the virtual prototype,

different code generation steps are used. As explained in the
previous section the virtual prototype contains repeated code
templates, which are most suited for code generation. The

Figure 6: UML class diagram of a basic block

automatic code generation targets two different areas. First,
the generation of block skeletons, creating member variables,
factory- and linker methods and function stubs. These skele-
tons are compiled to create the simulation executable. The
second task covers the generation of xml configuration files,
which are used during runtime to assemble the simulation
platform. The basis for the code generation is a set of UML
diagrams. The Eclipse Papyrus framework is used as tooling
environment. The original framework is extended by Eclipse
Plug-ins to accomplish the code generation. Additionally the
UML is extended with custom UML profiles.
To generate the Block Library, UML class diagrams are used.
Each block is presented as single class, with the contained
member variables and functions. A custom UML profile al-
lows specifying SystemC characteristics. It is possible to
specify whether the generated class is a sc module, sc channel
or if a function should be declared as sc thread. A second
profile offers the capabilities to specify evaluation framework
specific information. It is possible to associate member vari-
ables with an ID, to allow the parameterization of this vari-
able with the xml file. Additionally it is possible to extend
associations with an ID and a type. The type covers cur-
rently pointers, sc ports or TLM sockets. With all these
information the block skeleton is generated. The class in-
heritance, the variable and function declarations and their
visibility are taken into account. The factory method imple-
mentation, with the parameter handling, is generated. The
required information such as the type and the associated ID
are specified by the UML diagram. In Figure 6 the basic
building block M PMSMEPAdapter is shown. The complete
class is stereotyped as sc module, resulting in the creation
of a SystemC module. It can be seen that the first three
properties are stereotyped as vp property. This stereotype
indicates that the created member variables are configured
using the xml file. The class is associated with other classes
or interfaces. Each association creates a parser entry in the
linker method. Dedicated stereotypes allow specifying the
type and the ID of the association. With this information
the linker method can be generated. Besides, all member
variables and function declarations are generated. In the
current implementation only the function declaration and an
empty function stub is generated. No actual functionality is
covered by the code generation. The effort needed to spec-
ify the actual functionality graphically equals or exceeds the
effort to solve the same task programmatically. Therefore

Figure 7: Resulting Analysis Flow

only the function stub is generated and the implementation
is done manually. There exists a set of established tools, such
as MATLAB/Simulink, supporting the functional code gen-
eration. The output of these tools can be used to implement
the function stubs. To allow on the one hand an automatic
code generation and on the other hand a manual extension
of the code, merge techniques known from software version-
ing are used. For each generated code an ancestor file is
maintained that allows detecting differences between a new
version of the generated code, the user modifications and the
previously generated code. The merging functionality solves
non conflicting differences and prompts the user to solve con-
flicting changes manually. This allows a comfortable side by
side editing of the automatically generated and manually ex-
tended code.
The second task that is targeted by the graphical tool sup-
port is the generation of the xml configuration files. For
each block the parameters, associations and the unique IDs
are already specified by UML class diagrams. By generat-
ing instances of these classes, assigning parameter values to
the already specified parameters and interconnecting the in-
stances the xml configuration file can be described. The Pa-
pyrus framework offers composite structure diagrams for this
task. With the help of these two diagrams block skeletons
for the Block Library, the Block Registry and the xml config-
uration files are generated automatically.
With code generation support the additional coding over-
head caused by the xml configuration approach is canceled
out. All necessary code to initialize properties and link blocks
is automatically generated, allowing the user to focus on im-
plementing the block functionality. The current extent of the
simulation platform covers, e.g., 55 blocks with a total of 212
properties and 87 links.

6.1 Resulting Analysis Flow
The concepts like graphical specification, xml configura-

tion files and a pre-compiled simulation platform results in
an analysis flow, shown in Figure 7. In the first phase the
class diagrams with the contained parameters and associa-
tions are graphically specified. In the next step the block
skeletons with the function stubs are generated. Afterwards
the user manually implements the desired functionality and
compiles the complete simulation platform. Detached from
the implementation the system configurations are specified
as composite structure diagrams and generated as xml files.
The compiled simulation platform and the generated xml
files are used to simulate different systems. By changing
aspects in the composite structure diagram, e.g., changing

parameter values or associations, different systems can be
simulated. Besides generating the configuration files graphi-
cally, test generators can be used to generate test cases.
There are two general ways of system evaluation. In case
of an on-line verification, it is checked during the simula-
tion runtime whether specified properties are met. This can
be done using assertions included in the simulation platform.
The standard C++ assertions can be used to test basic value
dependent specifications. Assertions based on finite linear
time temporal logic (FLTL), similar to the approach pre-
sented in [12] allow checking one or more complex temporal
specifications. During the simulation it is checked whether
assertions are violated and in that case the simulation is ter-
minated and an error report is generated. In case of an off-
line verification the simulation creates trace files that record
the system behavior. After the simulation the correct be-
havior of the system is verified based on the recorded trace
files. This can be done by comparing the system behavior
with a set of requirements, a golden reference or with previ-
ous simulation traces. The comparison with previous system
traces is useful if aspects of a system change and the effects
of these changes should be monitored, similar to the relia-
bility analysis presented in [11]. In the current simulation
framework different modules exist that generate a variety of
trace files. Some traces are suitable for third party tools like
Wireshark or the OptoLyzer Suite (Figure 10), enabling the
usage of existing tools to analyze the simulated system be-
havior. Other modules generate custom trace files that are
human-readable or that are used with proprietary tools for
post-processing, e.g., Python or MATLAB scripts to analyze
or visualize traces (Figure 9). Users can easily determine the
observation extent by adding the appropriate module in the
composite structure diagrams. The tracing extent strongly
affects the simulation performance.

7. INTEGRATION OF SW PROTOTYPES
It is necessary that already developed software can be in-

tegrated into the virtual prototype, especially in late design
phases. This is useful to test the developed software or to
refine the behavior of the virtual system to mirror the phys-
ical system. In the area of embedded systems the software is
often written in ANSI C. Because of the similarity between
ANSI C and C++ an integration is nearby, nevertheless some
challenges emerge. The main challenge is to encapsulate the
ANSI C code, in a way that multiple, none influencing in-
stances are created. Because the virtual prototype describes
the complete system, it is most likely that the ANSI C code is
executed on different virtual devices. This implies that mul-
tiple instances of the ANSI C code are simultaneous present
in the simulation environment. Currently three different ap-
proaches are implemented.
For small software implementations it is possible to encap-
sulate the ANSI C functions within C++ class definitions.
The complete ANSI C code is copied into a C++ class def-
inition; see Figure 8 (a). Provided interfaces are therefore
added to the according class. For the required interfaces a
modification of the original code is needed. Global function
calls or variable accesses have to be mapped to class member
functions or variables. With the help of macros it is pos-
sible to integrate the unmodified ANSI C code, by defining
substitutions at the beginning of the files. For example if
the ANSI C code needs a global function to send data, this
call is substituted to call the external class that provides the
required member function. The MHP is integrated this way.
If the software is more complex this approach isn’t feasible.
The amount of files and their interdependencies would com-
plicate the approach. Another approach is to encapsulate the

Figure 8: Integration of ANSI C Code

ANSI C code into different host system processes. This way
all functions and global variables are encapsulated within one
process. Having multiple instances within the virtual system
is achieved by creating multiple processes. Based on the fact,
that different processes manage their own address space there
are no interferences between multiple instances. To interact
with the simulation environment the inter-process commu-
nication (IPC) of the host system is used, see Figure 8 (b).
Function calls, parameters and the return values are serial-
ized and transferred using the IPC. This way a loose coupling
between the simulation and the ANSI C code is established.

If a closer integration is needed a direct integration is ben-
eficial. This is the case if simulation dependent instructions
are often called or if the software code is annotated with
timing information, see [13]. To support multiple instances
a context object is created, that contains all global variables
from the ANSI C code. The ANSI C functions remain global
within the simulation platform and are simply included with
the extern keyword. Each time a function needs to access
global variables, it calls the associated setter or getter func-
tion in the context object. Therefore each function has to
know the current context object it is currently correlated to.
This is achieved by passing a pointer of the context object
as argument with each subsequent function call.
The lwIP stack is integrated this way. When a basic building
block, normally a C++ class, wants to transmit data through
the lwIP stack, it only needs a reference to a lwIP context
object. This reference is forwarded throughout the stack and
is used to access context sensitive information along the data
processing chain. The original lwIP functions are modified
so that each function has a lwIP context argument. After
the data processing within the stack is finished, a transmit
function in the context object is called to send the data with
the standardized TLM-2.0 interfaces. As mentioned earlier
the interfaces between layers are realized with TLM-2.0. The
simulation platform uses a top down approach, meaning the
top module has to poll the underlying modules whether data
is present. The lwIP stack on the other hand provides a call-
back function, which should be called when data is present.
To arbitrate between these two strategies the lwIP context
implements a SystemC process that polls the communica-
tion network. If data is received the lwIP callback function is
called. Besides managing the context sensitive information,
the lwIP context implements the required OS functionality,
like thread creation, semaphores and message boxes.
This approach provides one drawback. The ANSI C func-
tions are still global within the simulation platform. If parts
of the simulation platform use libraries with the same decla-
rations, a linkage problem occurs. The problem occurs, e.g.,
if the standard TCP/IP library of the host system should
be used for inter-process communication. In the current im-
plementation the problem is solved by moving the socket
communication of these modules to external libraries which
are accessed from the simulation platform.

8. EVALUATIONS
In the following section the developed infrastructure is pre-

sented on basis of industrial and artificial use cases. Instead
of presenting a single evaluation result in detail, diverse eval-
uation goals and considerations, e.g., regarding the simula-
tion performance are given. The aim is to highlight the po-
tential of the presented approach and foster the confidence
into the developed simulation models.

Performance Evaluation. One area of application is the
system performance evaluation. With the help of the virtual
prototype, performance characteristics of the system can be
evaluated long before physical prototypes are available. This
information can be used during the design process to achieve
efficient design decisions very early. A requirement of cur-
rent automotive systems, e.g., is routing data from consumer
devices, such as smart phones or laptops, via the in-vehicle
network. Most of the available standards in this field use
IP based protocols. Therefore IP based protocols find their
way into automotive networks. For both fields, automotive
networks and IP based communication, design experiences
were collected over the last years, but the combination of
both creates new design challenges. When both protocols
were used in previous projects, the already developed virtual
prototypes could be reused during the evaluation of the com-
bined system.
In the following use case, a TCP/IP and MHP connection
is established via a MOST network. The designers will face
questions like: how will both protocols affect each other, be-
cause both share a common communication channel? Which
parameterization guarantees a fair bus allocation? Is it even
possible to reach a fair bus usage by parameterization or is
a different topology necessary? All these questions can be
addressed with the help of virtual prototypes. In the follow-
ing use case the virtual prototype consists of one sender and
one receiver device. The sender device establishes a TCP/IP
connection via the MOST Ethernet Protocol (MEP) and in
parallel a MHP connection. The receiver device provides
limited buffer space which is read by the application with
a fixed rate. By providing this software timing abstraction,
the inherent communication stack timing and the bus tim-
ing, different transmissions can be simulated and the result-
ing performance can be monitored.
With the help of the virtual prototype it is shown that the
proposed configuration causes MHP to have a high bus uti-
lization. In the worst case this results in the starvation of the
TCP transmission. This is based on the faster retransmis-
sions and the used package size. If both protocols experience
a message loss, MHP recovers faster and allocates the shared
channel more quickly. This way it is not possible for TCP to
share the channel equally. One option is to increase the poll
period in the receiver device to prevent message losses, but
this only works in dedicated scenarios where the buffers are
the bottleneck. Another approach is to change the TCP re-
transmission and receive window parameters and increase the
MHP package gap. These different designs can be simulated
with the virtual prototype and the resulting performance can
be monitored. Additionally the average transmission perfor-
mance can be verified with different traffic shapes.
In Figure 9 an excerpt of the trace, created with the origi-
nal proposed parameterization, is shown. The physical frame
utilization (a) is visualized as bars which indicate the pay-
load size contained in one frame at the given point in time.
Similarly the outgoing messages of the TCP/IP and MHP
protocol are plotted as bars according to their size. Graph
(e) shows when messages are dropped because of limited re-
ceive buffer space. It can be seen that MHP (c) and TCP/IP

1000 2000 3000 4000
0

200
400

(a) Packet Frame Utilization

1000 2000 3000 4000
0

500
1000

(b) MEP Out Node01

1000 2000 3000 4000
0

1000
2000

(c) MHP Out Node01

1000 2000 3000 4000
0

2000
4000

(d) Rx Buffer Utilization Node00

1000 2000 3000 4000
0

0.5
1

(e) Rx Buffer Msg Loss

10E−6 simsec

10E−6 simsec

10E−6 simsec

10E−6 simsec

10E−6 simsec

by
te

by
te

by
te

by
te

Figure 9: Excerpt of a TCP/IP, MHP trace

over MEP (b) both start to transmit data via a shared chan-
nel that offers a suitable bandwidth (a). Both transmissions
experience message loss (e), whereas MHP recovers fast and
TCP enters a long retransmission time-out, indicated by the
pause at the end of (b). The use case illustrated how the vir-
tual prototyping approach offers a detailed insight into the
system behavior.

Application Verification. In this section it is shown how an
application is analyzed with different degrees of abstraction.
A traffic sign recognition (TSR) application is distributed
over different computation nodes, using a communication
network to exchange data. In a first evaluation the applica-
tion is mapped to abstract TLM-2.0 channels, meaning the
application data is transmitted at once and with an estimated
timing for each transmission. In case of the TSR application
the data consists mostly of image frames. To verify the be-
havior of the application, virtual test drives are executed
and the algorithm is tested with different input scenarios,
e.g., multiple traffic signs in one frame. Different parameters
of the algorithm, such as the size and position of the region-
of-interest, the radii of the detected circles or the training
data of the support vector machine are tested. All scenarios
are repeatable, can be paused at any time and all internal
states are accessible, improving the functional evaluation of
the application and replacing the usual worst case assump-
tions. Besides the functional verification, aspects such as the
duration between capturing a traffic sign and displaying the
classified speed value are assessed. Different system param-
eters, such as application interrupt rates or communication
delays are adjusted and the timing effects are analyzed.
During the design process the abstract communication mod-
ules, are refined with the target bus technology, such as the
MOST bus. After this the same evaluations are executed,
but this time with a more accurate communication behav-
ior. Protocol mechanisms of the bus technology, like packet
structures, segmentation, retransmission behavior or channel
timings are taken into account. Additionally technology spe-
cific tools are used to analyze the bus traffic. In Figure 10 a
sketch of both evaluation scenarios is given. In the upper part
the TSR application uses abstract TLM-2.0 based message
queues. The simulation is monitored with custom logging
mechanisms, such as video or text output. In a second part
the MOST bus and the according protocols are integrated
into the simulation. Technology dependent logging tools are
used, such as the OptoLyzer tool suite.
In the following the performance of the virtual prototype

should be inspected more closely. In Figure 11 the simu-
lation runtime of different application scenarios is shown.
The measurements were taken on a simulation host with
an Intel�CoreTMi5-750 processor, 8 GB of RAM and Linux
Kernel 3.2.0. The presented applications cover a stereo depth
map (SDM) calculation, the already presented TSR appli-
cation and traffic generators that communicate over MHP
respectively TCP. Each scenario is simulated for 60 simsec
(simulated seconds) using TLM-2.0 message queues or suit-
able channels of the MOST bus. The TSR scenario uses
the isochronous channel for the camera data, MHP for the
cropped signs and the control channel for the classified speed
values, see Figure 10. The SDM application uses very com-
plex calculations, in the actual embedded system, dedicated
hardware is used for parts of the calculations, therefore the
simulation duration is longer than the simulated time. The
other use cases are much faster than the simulated time,
providing the potential to have an extended test space com-
pared to physical prototypes, e.g., to execute longer virtual
test drives. Additionally it can be seen that adding the
simulation of the MOST bus increases the simulation du-
ration, because more parallel events have to be simulated.
Another parameter that significantly affects the simulation
performance is how often the application polls the underly-
ing communication network. The shorter the poll period,
the more events are generated. The huge set of parame-
ters makes it difficult to provide a general degree for the
performance of the developed simulation platform. Table 1
shows the performance characteristics of the different sim-
ulated scenarios. The values represent average values with
an average coefficient of variation of about 1.47%, regarding
the runtime. When the SDM is executed without the MOST
network only a few events occur. This is based on the fact
that all calculations regarding a single image are aggregated
into one event. Therefore the events are proportional to the
exchanged images. The last column shows the relation be-
tween the simulated time and the runtime; the smaller the
number, the faster the simulation. Only the SDM simulation
needs more time than the simulated time, characterized by a
value greater than one. The SDM use case has the greatest
increase of events, when adding the MOST bus simulation.
This is based on the fact that the application transfers the
greatest amount of data, which have to be further segmented
to be transferred via the MOST bus. Regarding the protocol
simulation of TCP/IP and MHP the event increase isn’t that
significant, because the protocols already segment the data
into suitable sizes.

Figure 10: Structure and traces of the TSR scenario

1 2 3 4
0

2

4

6

8

10
x 10

4

si
m

ul
at

io
n

ru
nt

im
e

[m
s]

MOST Bus
TLM Payload

SDM TSR MHP TCP

Figure 11: Runtime of different applications

Protocol Verification. The virtual prototype does not only
support the application development, but also the commu-
nication protocol design. Both the MOST and the FlexRay
specification contain different state diagrams specifying the
behavior of the communication controller. To verify the cor-
rect behavior in an early design stage, these state machines
are implemented within the virtual prototype. This allows
the evaluation of the protocol design in different bus scenar-
ios. One of the most beneficial evaluations is the design of
timers. Both specifications give ranges for different timers,
e.g., MOST specifies a maximal duration for the device start-
up. With the help of the virtual prototype different bus con-
figurations, amounts of devices, device propagation delays
or timer configurations can be simulated. It can be verified
that in all scenarios the timer boundaries are not violated.
Because the configuration space is still very large, making it
infeasible to verify each parameter combination, techniques
like corner case analysis are applied.

INET/OMNeT++ Comparison. In the following the de-
veloped virtual prototype is compared to the TCP/IP model
from the INET/OMNeT++ framework [1]. First the func-
tional equivalence of the two models is compared. Therefore
a sender and receiver device is connected with a bandwidth
restricted bus. Scenarios with 100 Mbit/s and 60 Mbit/s are
simulated. In the upper left part of Figure 12 the transmitted
bytes are plotted. The red graphs show the amount of data
in the INET model and the blue graphs the bytes of the
SystemC based virtual prototype. It can be seen that the
graphs are almost identical, increasing the confidence into
the model. The small deviation is based on the fact that the
two models have a different internal structure. The SystemC
based model, e.g., simulates a polling mechanism between
the TCP/IP stack and the communication controller, mir-
roring a transceiver chip with non interrupt-driven I/0 or
a fixed service loop. The INET model doesn’t have such a
polling mechanism, instead the protocol is triggered when
data is received. In the upper right graph the distribution
of the TCP/IP frames of the 60 Mbit/s scenario is shown.
The TCP/IP frames are classified into data frames and sole
administrative frames, such as acknowledgements from the

#ev ev/simsec sec/simsec

SDM - MOST 99788424 1663140 1,54141
SDM - TLM 19785 330 1,27548
TSR - MOST 55953138 932552 0,22937
TSR - TLM 36556 609 0,04205

MHP - MOST 25038057 417301 0,09860
MHP - TLM 3711442 61857 0,02991
TCP - MOST 30252391 504207 0,12564
TCP - TLM 8728427 145474 0,03879

Table 1: Performance summary of different models

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

current simulation time

tr
an

sm
itt

ed
 b

yt
es

 p
er

 1
0m

s

SystemC 100Mbit/s
SystemC 60 Mbit//s
INET 100Mbit/s
INET 60Mbit/s

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

current simulation time

tr
an

sm
itt

ed
 b

yt
es

 p
er

 1
0m

s

SystemC TCP Payload−Frame
SystemC TCP Ack−Frame
INET TCP Payload−Frame
INET TCP Ack−Frame

1 2 3 4 5 6 7 8 9
0

2000

4000

6000

8000

server/client pair amount

si
m

ul
at

io
n

ru
nt

im
e

[m
s]

SystemC

INET/OMNeT++

Figure 12: Functional and performance comparison
of SystemC and INET/OMNeT++

receiver device. It can be seen that both simulations possess
an equal distribution, indicating that both models behave
equally. Comparing the two trace files in Wireshark sup-
ports this conclusion.
In the second part the simulation runtime of both simula-
tions is compared. The sender/receiver scenario is simulated
multiple times in parallel. The monitored simulation time is
shown in the lower part of Figure 12. It can be seen that
the performance of the proposed virtual prototype is com-
petitive to the INET/OMNeT++ model. In both models
the available logging/tracing mechanism are disabled. The
OMNeT++ simulation is executed with the command line
user interface, minimizing the overhead from the user inter-
face. Both measurements were taken on the same simulation
host as the previous section. The simulation time is averaged
with 100 repeated simulation runs and shows an average co-
efficient of variation of about 0.82%.
Besides comparing the performance of different models, in
the following the performance of the used simulators is com-
pared. Therefore a synthetic module is implemented that
consists of a single loop that periodically executes a set of
additions. The amount of additions and the period duration
is configurable. Similar to the previous comparison all sim-
ulations are executed with the command line user interface
and disabled logging. In Figure 13 the results of three dif-
ferent configurations are shown. Each scenario is executed
with periods of 0.1, 0.01, 0.001, 0.0001, 0.00001 simsec and
a total simulated time of 100 simsec. The first scenario OM-
NeT++/SystemC 100 executes a block of 100 additions each
period and the second a block of 10000. The scenario OM-
NeT++/SystemC 10x100 simulates 10 modules each execut-
ing a block of 100 additions in parallel. The monitored run-
time is shown in Figure 13. It can be seen that the SystemC
simulator is competitive to the OMNeT++ simulator. In
all cases SystemC provides the shorter simulation runtime.
The presented evaluations show that by choosing SystemC
no inherent performance drawbacks are introduced to the
simulation framework. It is possible to keep in line with a
state of the art general purpose simulation framework such
as OMNeT++.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
2

10
4

10
6

thread period [simsec]

si
m

ul
at

io
n

ru
nt

im
e

[m
s]

SystemC 100

OMNeT++ 100

SystemC 10000

OMNeT++ 10000

SystemC 10x100

OMNeT++ 10x100

Figure 13: Synthetic comparison of SystemC and
OMNeT++

9. CONCLUSION AND OUTLOOK
In this paper a comprehensive approach is demonstrated

that uses virtual prototyping to support the analysis and as-
sessment of distributed automotive systems. With the help
of software-based system simulations, the design under test
is evaluated along the design process. The continuous design
support is reached by the refinement capability of the vir-
tual prototype. Based on mechanism like a layered structure,
standardized interfaces, modularity and parameterization, a
versatility is reached that allows evaluating a variety of sys-
tem alternatives based on a small set of basic building blocks.
This promotes the iterative and incremental development of a
comprehensive simulation platform. With the help of graph-
ical tool support the overhead of the proposed infrastructure
is canceled out, providing additional support to the user.
The presented configuration approach fosters the evaluation
automation, decreasing the simulation runtime significantly.
Industrial use cases demonstrate how the virtual prototype
is used to support what-if analyses, evaluating the influence
of different parameters. A TSR use case shows the integra-
tion of actual software implementations, allowing the func-
tional and timing verification of software in conjunction with
hardware, before physical prototypes are available. Compar-
ing the presented approach with the OMNeT++ framework
shows the competitiveness of the approach. The presented
concepts are transferable to other simulation tools. The ad-
dressing and layering approach, e.g., could encourage a gen-
eral design of OMNeT++ models. The configuration ap-
proach is transferable to other component-based tools.
Extending this framework with generic error stimulation

modules and combining the reliability assessment flow pre-
sented in [11] with the presented flow will be target of future
work. By the combination of these approaches an analysis
framework is created that allows to evaluate safety-critical
systems in early design phases, taking functional and tim-
ing effects onto the complete system into account. It would
be possible to change different variables within the simu-
lation, mirroring the possible errors of the physical system,
and monitor the effects onto the complete system, taking the
error tolerance of the system into account.

Acknowledgement
This work has been partially supported by the German Min-
istry of Science and Education (BMBF) in the project Ef-
fektiV under grant 01IS13022 and the FP7 project OpEneR
(Grant No. 285526).

10. REFERENCES
[1] R. Bless and M. Doll. Integration of the freebsd

TCP/IP-stack into the discrete event simulator
OMNET++. In Simulation Conference. Proceedings of the
2004 Winter, 2004.

[2] S. Chai, C. Wu, Y. Li, and Z. Yang. A NoC Simulation and
Verification Platform Based on SystemC. In Computer
Science and Software Engineering, 2008 International
Conference on, 2008.

[3] D. B. Chokshi and P. Bhaduri. Performance analysis of
FlexRay-based systems using real-time calculus, revisited.
In Proceedings of the 2010 ACM Symposium on Applied
Computing, 2010.

[4] F. Fummi, D. Quaglia, and F. Stefanni. A SystemC-based
framework for modeling and simulation of networked
embedded systems. In Specification, Verification and
Design Languages, 2008. FDL 2008. Forum on, 2008.

[5] A. Hagiescu, U. D. Bordoloi, S. Chakraborty, P. Sampath,
P. V. V. Ganesan, and S. Ramesh. Performance analysis of
FlexRay-based ECU networks. In Proceedings of the 44th
annual Design Automation Conference, 2007.

[6] IEEE. IEEE Standard for Standard SystemC Language
Reference Manual. Sept. 2012.

[7] W. S. Kim, H. A. Kim, J.-H. Ahn, and B. Moon.
System-Level Development and Verification of the FlexRay
Communication Controller Model Based on SystemC. In
Future Generation Communication and Networking, 2008.
FGCN ’08. Second International Conference on, 2008.

[8] A. Lewicki, J. del Prado Pavon, and J. Talayssat. A Virtual
Prototype for Bluetooth over Ultra Wide Band System
Level Design. In Design, Automation and Test in Europe,
2008. DATE ’08, 2008.

[9] L. Ouedraogo and R. Kumar. Computation of the Precise
Worst-Case Response Time of FlexRay Dynamic Messages.
In Automation Science and Engineering, IEEE
Transactions on, 2013.

[10] R. Pichappan and S. Aziz. A Bus Level SystemC Model for
Evaluation of Avionics Mission System Data Bus. In
TENCON 2005 2005 IEEE Region 10, 2005.

[11] S. Reiter, M. Pressler, A. Viehl, O. Bringmann, and
W. Rosenstiel. Reliability assessment of safety-relevant
automotive systems in a model-based design flow. In Design
Automation Conference (ASP-DAC), 2013 18th Asia and
South Pacific, 2013.

[12] J. Ruf, D. Hoffmann, T. Kropf, and W. Rosenstiel.
Simulation-guided property checking based on multi-valued
AR-automata. In Design, Automation and Test in Europe,
2001. Conference and Exhibition 2001. Proceedings, 2001.

[13] S. Stattelmann, O. Bringmann, and W. Rosenstiel. Fast and
accurate source-level simulation of software timing
considering complex code optimizations. In Design
Automation Conference (DAC), 2011 48th
ACM/EDAC/IEEE, 2011.

[14] A. Sulflow and R. Drechsler. Modeling a Fully Scalable
Reed-Solomon Encoder/Decoder over GF(pm) in SystemC.
In Multiple-Valued Logic, 2007. ISMVL 2007. 37th
International Symposium on, 2007.

[15] A. Varga and R. Hornig. An overview of the omnet++
simulation environment. In Proceedings of the 1st
International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems &
Workshops, 2008.

[16] Website. Mentor Graphics R©Visual EliteTM.
http://www.mentor.com.

[17] Website. NetSim hompage. http://tetcos.com/.
[18] Website. NS-3 hompage. http://www.nsnam.org/.
[19] Website. Synopsys DesignWare R© IP solutions and

VirtualizerTM virtual prototyping tool.
http://www.synopsys.com.

[20] Website. Wind River R©Simics. http://www.windriver.com.
[21] J. Zimmermann, S. Stattelmann, A. Viehl, O. Bringmann,

and W. Rosenstiel. Model-driven virtual prototyping for
real-time simulation of distributed embedded systems. In
Industrial Embedded Systems (SIES), 2012 7th IEEE
International Symposium on, 2012.

