
Pathsift: A Library for Separating the Effects of Topology,
Policy, and Protocols on IP Routing

Vijay Ramachandran
Colgate University

vramachandran@colgate.edu

Dow Street
LinQuest Corporation

dow.street@linquest.com

ABSTRACT
Routing in IP networks is a computation distributed across many
routers and subnetworks with inputs specified as low-level instruc-
tions in a device-by-device manner. Predicting the impact of input
changes is extremely difficult; thus, network designers must not
only decide what policies to deploy, but also must encode those
policies in a low-level configuration and then run the protocols to
see the result. Although several tools exist for the last step, almost
none exist to help with the first two, particularly when the network
of interest spans multiple domains.

In this paper we present Pathsift, a Python library for generating
and comparing sets of paths, designed to permit the exploration
of high-level routing policies. Our approach permits evaluation
of path quality resulting from different routing policies without
packet-level protocol simulation. Our library supports computa-
tion of inter- and intra-domain routes and generates visualizations
of custom metrics on sets of paths. It thus brings together into one
toolchain key components of graph libraries, network simulators,
and visualization tools.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols—Routing protocols; C.2.6 [Computer-Communication Net-
works]: Internetworking

General Terms
Design, Experimentation

Keywords
Internet (IP) routing, BGP, OSPF, routing policies and routing con-
figuration, network simulation

1. INTRODUCTION
Routing in IP networks is a process through which the set of all

possible paths in a graph is narrowed to a single data-forwarding
path for each source-destination pair. Today, this reduction is often

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2012 March 19–23, Desenzano, Italy.
Copyright 2012 ICST, ISBN .

an extraordinarily complex function of multiple interacting proto-
cols, configuration parameters, explicit policy directives, and topol-
ogy abstractions required for scalability. Thus, studying the impact
of configuration choices on the network is difficult. Pathsift is a
Python library for generation and analysis of sets of viable data-
forwarding routes in an IP network, developed for exploring the de-
sign space of IP-network configuration through simulation of route
computation. It differs from existing simulation tools because it
does not reproduce the packet-level dynamics of Internet routing
protocols, but it still contains the IP-routing semantics useful to
operational networks. Pathsift provides a high-level workflow be-
cause users are not required to translate their configuration to a set
of device-specific instructions and gather their results from compu-
tation state spread across many simulated devices. Instead, using
functions provided by the Pathsift library, users can write—in a fa-
miliar programming language—definitions of paths that satisfy de-
sired properties (i.e., a high-level description of the configuration)
and definitions of metrics on a single path or sets of paths (i.e.,
evaluation criteria for the routing output). Given an input toplogy
and these definitions, routes satisfying the desired properties can be
computed and analyzed based on metrics of interest. Routines are
also provided to visualize those metrics and to markup topologies
with computed paths and their properties. Because of its differ-
ent approach, Pathsift facilitates network-wide, rather than device-
or route-specific, analysis of route computation; and, because the
computation is not executed through a complex, distributed interac-
tion among multiple processes, the role of topology, protocol con-
figuration, and routing policy in the computation can be observed,
tweaked, and studied. This is something that is quite tedious to do
with existing tools.

In this paper, we describe the design of Pathsift and its contribu-
tions to network-routing research. In the remainder of this section,
we motivate the need for such a tool by discussing the complexities
in understanding IP routing today, and we present several target
applications for which such a tool is useful. In Section 2, we re-
view shortcomings in the workflows provided by existing tools that
could be used for these target applications, highlighting the differ-
ences in Pathsift’s approach. In Section 3, we discuss the design
of the Pathsift library and its components and give examples of its
use. We conclude in Section 4 with a discussion of future work.

1.1 Motivation and Approach
Data-forwarding routes in IP networks are computed through a

distributed, highly configurable process, making it difficult to char-
acterize the effects of individual input parameters on overall net-
work behavior. The computation is based not only on the physical
topology over which traffic is actually forwarded, but also on the
representation(s) of that topology in the multiple routing-protocol
processes (e.g., BGP [22] and OSPF [15]) through which network-

reachability information is exchanged. This mapping between the
physical topology and its protocol representation is highly variable,
complex, and dynamic, based on an expressive set of configuration
parameters that, in many cases, are set by multiple organizations
without coordination. Understanding the computational process of
these multiple interacting protocols is quite difficult, making good
simulation tools for testing network behavior under various condi-
tions essential.

Viewed from a more abstract level, route computation can be
characterized as a series of reduction operations applied to a set
of network paths, which we call a pathset. The initial pathset for
a network consists of all possible simple paths among all pairs of
network endpoints. This input pathset is reduced via a filtering
function to an output pathset which has at most one path per or-
dered endpoint pair. Ideally, the function is constructed to produce
an output pathset that satisfies some set of desirable properties. In
reality, the filtering function used in IP networks today is specified
not by describing its goals explicitly, but through the configura-
tion of routing protocols used to implement routing, including pro-
tocol parameters, explicit policy directives, and topology abstrac-
tions required for scalability. The function has two main classes
of inputs: the network topology itself, and the list of configura-
tion directives for all the protocol processes comprising the routing
system. Network operators have the unenviable job of tweaking
low-level device configurations in an attempt to achieve high-level
behavior—an output pathset with desired properties. As such, pro-
tocol configuration can enter the realm of black art, with operators
leveraging both designed and consequential properties of protocols
to coax behavior from the routing system by changing per-device
inputs. This approach can work if the network changes slowly, but
is ill-suited for predicting behavior following a sudden change in
inputs, be it due to a new configuration (possibly accidental) or a
change in topology (e.g. component failure). This is ironic, given
that rapid adaptation in response to failure is one of the core goals
of dynamic routing protocols.

Still, the current approach does achieve an important operational
goal: It has allowed the network to grow quite large (i.e., the In-
ternet), even though the emergent global filtering function is ex-
tremely complex. The IP-routing system attempts to converge to
a single set of “best” paths as quickly as possible, so as to enable
packet forwarding along these paths with little downtime. To do
so, the computation of the filtering function is distributed among
the routers in the network, each one eliminating some number of
potential paths from the pathset by executing steps of different pro-
tocols, providing partial results to its neighbors. However, because
the computation is distributed, and since each reduction step can
be tuned locally (with limited global visibility), it is difficult to
predict how a change to the configuration or input topology will
affect the resulting output. The overall computation is something
of a “gray” box, with only loosely bounded behavior, and the only
way to know the output is to run the computation. The high-level
model of Autonomous Systems (ASes)—administratively separate
regions of the network—provides a rough contour of the compu-
tation logic, e.g., the possible effect scope of some kinds of input
changes, but it is insufficient for predicting the effects of changes
at protocol boundaries, or within the inter-AS process itself.

Pathsift’s development was inspired by the need for simulation
tools to help explore the design space of IP-routing policies. When
considering a new routing policy, or studying the effects of a topol-
ogy change on global behavior, it is useful to have visibility into the
intermediate results of the network-wide filtering function. These
intermediate pathsets describe “potential” paths permitted by the
policies applied thus far, even though most such paths will not be

present in the final set of best paths. If the current best path be-
comes unavailable, it is one of these potential paths that will take
its place. It is also helpful if routing policies can be described in
terms of high-level attributes of nodes, edges, or the graph itself,
rather than detailed directives of individual protocol implementa-
tions. It is in these areas where we found a gap in existing tools,
leading us to develop Pathsift. On one hand, there are a number
of graph libraries (e.g., [6, 11, 24]) that can be used to efficiently
model network topologies as graphs and analyze their structural
properties. These, however, do not include the logic of IP-routing
algorithms, and so pathsets produced by standard graph algorithms
may not correspond to those produced by the routing system. On
the other hand, there are numerous discrete-event or packet-level
simulators (e.g., [7,16,18,21]) that do produce routing tables based
on IP-routing-protocol logic. These take as input low-level pro-
tocol and device configurations, just like real routers, but include
few facilities for changing configuration parameters based on topo-
logical properties. These tools generally focus on accurate simula-
tion of protocols, meaning that they efficiently compute “best-path”
pathsets, at the cost of making intermediate results less accessible.
Pathsift bridges these two types of tools, implementing more IP
routing logic than common graph libraries, but adhering to more
abstract representations of protocol and policy than routing sim-
ulators, while exposing intermediate results in the path-reduction
function.

1.2 Target Applications
Pathsift was initially developed to study routing policies in multi-

organizational military networks, e.g, [8, 19, 27]. Such networks
have several properties that distinguish them from the Internet, in-
cluding ad-hoc topology construction, mobility of infrastructure
nodes, and routing policies that are oriented toward achieving mis-
sion goals rather than business objectives. In many of these net-
works there is also a greater opportunity for top-down design of
the global routing system, making it feasible to instantiate novel
routing policies and paradigms using existing IP-routing technol-
ogy. The Pathsift library was designed specifically to support this
kind of analysis, which would be quite tedious given the workflows
available in existing tools (see Section 2).

However, Pathsift also serves a broader interest, particularly as
the Internet continues to evolve. Given the importance of the Inter-
net to modern society, and the role of routing policy on the Inter-
net’s operation, it is perhaps surprising that there has been relatively
little work on prescriptive routing policy at the interdomain level.
A lack of good tools for studying policy is partially to blame. Much
of the research literature studying the effects of policies on routing
considers worst-case behavior of protocols, giving sufficient condi-
tions to avoid anomalies such as nondeterministic routing and pro-
tocol divergence [9, 10, 14]. Caesar and Rexford [4] review several
different policy goals found in commercial networks and explain
how BGP can be used to achieve them; however, they offer little
in the way of prescriptive guidelines for the development of policy
goals in the first place. The required combination of settings at nu-
merous devices is complex enough that testing variations of those
policies would be quite difficult without going through a nontriv-
ial exercise of mapping policy variations to device-level configura-
tions. Pathsift provides a high-level programming environment in
which the properties of different pathsets can be evaluated using a
range of existing and custom metrics. The metrics, and associated
filtering policies, are defined in terms of high-level node, edge, and
graph attributes. This permits more efficient development of pre-
scriptive guidelines for the design of routing policy, as it obviates
the need to perform reconfiguration across multiple devices and

to run a simulation for every filtering function that one wants to
study. Our approach ignores the packet-level details of protocol
dynamics, instead implementing a centralized computation of pro-
tocol outputs. Compared to protocol simulators, which produce
routing tables for each node as output, our methods allow a user
to retain a more global view of the route computation; this makes
the job of comparing outputs across different configurations much
easier.

There are several concrete research areas in which Pathsift would
be useful:

1. Measuring path quality. Today’s protocol simulators do not
retain knowledge of abstract node and edge attributes, such
as geography, performance, position in a management hier-
archy, etc. However, it’s reasonable to define a routing policy
in terms of producing paths that meet particular criteria based
on these attributes. For example, nodes could be annotated
with the nation-state of their geographic location, allowing
paths to be evaluated in terms of the international borders
crossed. As another example, links that use key conduits in
the underlying infrastructure (e.g., undersea cables) can be
annotated as such, allowing for analysis of associated path
metrics important to network resiliency (i.e., physical path
diversity). Pathsift makes it easy to define different types of
metrics and compare pathsets generated by different policies
quantitatively and visually.

2. Military networks with different policy constraints. In net-
works where protocol hierarchy and policies are not prede-
termined by commercial interests, there is a much bigger set
of viable inputs to the routing system, and assumptions about
network boundaries, transit requirements, and performance
may differ from those traditionally used to study routing poli-
cies. Pathsift provides an environment where aspects of the
routing system can be changed network-wide, as opposed to
device-by-device, permitting improved study of this larger
space. For example, attributes of interest to military network
routing could include the type of node (e.g., camp, aircraft,
vehicle), unit affiliation, mission role, etc. In Pathsift, cus-
tom attributes can be used to set AS boundaries, characterize
paths, or define policies germane to that particular network’s
goals.

3. Guildelines for policy design. The research literature has
studied several classic examples of routing policies (e.g. [4,
9]), but these often have little relationship to network-man-
agement concerns, such as resiliency in failure scenarios.
Pathsift not only allows easy evaluation of these higher-level
management goals, but also reveals intermediate stages of
route computation, where multiple viable paths can be ob-
served prior to the down-select to just a single most-preferred
path. Pathsift facilitates experimentation with policies that
differ from classical characterizations, of interest due to the
changing nature of economic models behind peering agree-
ments. For example, content providers (e.g., Google) and
access networks (e.g., Comcast) now play a key role in wide-
area connectivity; recent work [13] shows that a significant
portion of interdomain traffic now flows directly between
content providers, suggesting that the role of constituent In-
ternet networks, and correspondingly their routing policies,
may be changing. Given these developments, exploring the
space of routing policies—from the perspective of effects on
properties of induced pathsets—is necessary for disciplined
network engineering.

4. Evaluating extensions to BGP. BGP [22], the Internet’s in-
terdomain-routing protocol, supports extensions and optional
path attributes to allow more expressive route semantics to be
exchanged between BGP-speaking nodes. These attributes,
e.g., extended communities [23], can be used to communi-
cate policy directives across multiple devices and domains.
Pathsift allows for testing the effects of high-level, multi-
device policy changes without needing to encode those poli-
cies in BGP attributes, or implement corresponding modi-
fications to BGP’s decision process. Moreover, BGP has
evolved in a somewhat ad-hoc fashion, with extensions of-
ten targeting specific operational problems, rather than re-
sulting from rigorous analysis of formal language properties.
As such, the bounds of BGP’s semantic expressiveness are
not fully understood, so there may be desirable policies that
are difficult, or even impossible, to implement in BGP’s ex-
isting mechanisms that would be both fully expressible in
Pathsift and of interest to future Internet routing.

5. Understanding the role of administrative boundaries. BGP
operates at the AS level of abstraction, which promotes scal-
ability: Internal route updates of one network are only seen
by other networks when changes to interdomain routes are
necessary. Today, Autonomous Systems generally map to or-
ganizations (defined commercially or administratively), and
very often AS boundaries are treated as something of a given,
or constraint, imposed from outside the routing system. It’s
quite possible, though, that an alternate global scheme for
defining boundaries could emerge. For example, it is already
common for large networks to use more than one AS num-
ber (ASN), and there has been recent interest in various geo-
political organizations to structure AS boundaries along na-
tional borders for security, stability, or legislative reasons.
This would undoubtably affect path-performance character-
istics. Another possibility follows from the recent availabil-
ity of 4-byte AS numbers [26] and movement toward the use
of IPv6, which could ease the requirements for obtaining an
ASN, in turn changing the size and nature of the AS graph.
Pathsift easily permits automated configuration of AS bound-
aries based on node, edge and graph properties, making it
simpler to study the impact of topology abstractions on com-
puted paths.

2. RELATED WORK AND TOOLS
In order to investigate the types of questions described in Sec-

tion 1, using a process of simulating route computation and quan-
tifying metrics on the resulting output, one needs elements of three
types of tools: (i) graph libraries, which permit abstract modeling
of network topologies and calculation of metrics from a network-
wide perspective; (ii) discrete-event simulators, which implement
the combination of IP-routing protocols used for route selection;
and (iii) visualization or plotting tools, which help summarize pat-
terns in the results across all endpoint pairs of interest in the net-
work. Unfortunately, there does not exist a simple workflow that
easily combines these three methodologies to study IP routing. In
this section we discuss the gaps in existing tools that motivated the
development of Pathsift.

2.1 Topology-Protocol-Policy Workflow
As a context for examining available workflows in current tools,

consider the following network-design question: Given a partic-
ular topology, how tolerant are different sets of routing policies
to failure? This question may be answered through simulation in

several ways, including: (i) quantifying the number of paths per
endpoint pair (satisfying some property), e.g., a “degree of reach-
ability,” given the constraints imposed by a routing policy; or (ii)
identifying intermediate nodes or edges that are heavily used by the
routing solution induced by a policy; or (iii) analyzing the routing
solution produced after various sets of nodes and links are removed
from the original topology to simulate various failures. Answering
these types of questions involves working with a representation of
both the topology being tested and the policy being implemented,
and using those as input to a tool that implements IP routing proto-
cols to perform the route computation.

Thus, we have a workflow involving a topology, protocols, and
policies, and look for tools to provide its components. It seems
natural to store the target topology in a graph file format and use a
graph library to perform some basic analysis on the topology, in-
cluding quantifying numbers of paths. It also seems natural to take
that topology (perhaps with modifications to simulate failure) and
provide it as input, along with the policies being tested, to a rout-
ing simulator, using the outputs to evaluate the sets of computed
routes. However, the separate tools that exist for these tasks in the
workflow have shortcomings; we now discuss these.

2.2 Graph Libraries
Analysis of a topology based on node and link attributes—e.g.,

finding lowest-latency paths, counting the number of endpoint pairs
with a path between them exceeding some minimum bandwidth,
finding a network’s diameter, etc.—is easy when the topology is
represented centrally in a convenient graph data structure. Several
programming libraries offer routines for manipulation and analy-
sis of graphs in this way, including the Boost Graph Library [24],
iGraph [6], and NetworkX [11]. These libraries offer efficient rep-
resentation of graphs and their corresponding attributes along with
implementation of many standard graph algorithms, including ran-
dom graph generation, path algorithms, and structural analysis (like
clustering and diameter). They also support input and output from
many standard file formats that can be used to store topologies,
such as GraphML [3].

In our example workflow, one could design the target network
topology using a visual graph editor and store it, along with its link
attributes (like latency and bandwidth), in a file; then, one could
write a program to import the topology, iteratively fail selected
subsets of nodes and compute paths, and then calculate statistics
for those paths, noting any cases when endpoint pairs become dis-
connected (as a sign of failure susceptibility). However, none of
these libraries implement IP-routing algorithms. A major short-
coming is that path algorithms in these libraries are not aware of
the levels of hierarchy imposed by the IP-routing protocol stack; in
particular, although it’s relatively easy to compute lowest-latency
paths in a graph by setting link weights to correspond to latency and
running an all-pairs shortest-path algorithm (e.g. Floyd-Warshall),
these paths may not be loop-free paths at the Autonomous System
(AS) level of abstraction. Therefore, they may be precluded from
the final routing solution by the BGP decision process. A similar
problem occurs when the topology is not only divided into subnet-
works corresponding to ASes, but when ASes are further divided
into multiple routing areas that are communicating using different
protocol processes or region designations (e.g., OSPF areas [15]).
In addition, path algorithms on graphs tend to assume a global no-
tion of a cost metric, e.g., that “shortest” between two different
subsets of nodes should be measured similarly. This assumption is
not required for discrete-event simulators or for IP routing in gen-
eral, which supports autonomy among different subnetworks to de-
fine their local-area notions of “best” independently. Although this

can be achieved by projecting different functions of metrics onto
weights before the computation, existing graph libraries make this
complexity of IP routing difficult to model.

Ideally, our workflow would take advantage of the programming
flexibility, efficient topology representation, and access to graph
algorithms provided by graph libraries, as those components are
missing from IP-routing simulators (as discussed below). Graph li-
braries allow a customized investigation of network properties and
development of a set of evaluation functions on paths, but, unfor-
tunately, existing path algorithms lack IP-routing protocol logic.
Pathsift was developed on top of NetworkX, providing the addi-
tional IP-routing logic needed while maintaining the flexibility of a
programming library.

2.3 Discrete-Event Simulators
Network simulators attempt to re-create the control-plane and

data-plane dynamics of IP networks; their main achievement is
efficiently reproducing in a centralized environment the compli-
cated interactions normally distributed across many devices, while
providing the ability to monitor events as they occur. In particu-
lar, routing computation is performed by simulating the routing-
protocol packets exchanged by participating routers; furthermore,
the input, current state, and output of the computation is maintained
at each device being simulated. Performance characteristics of the
network can be calculated by simulating traffic flow on the network
and monitoring packet-level statistics. There are good tools for this
type of analysis, both open-source and commercial, including ns-
2 [16], ns-3 [17], OPNET [18], and SSFNet [5]. OPNET contains
software models for various commercial routers, allowing a user
to simulate very realistic network dynamics based on the capabil-
ities of the devices chosen for the network; it contains a GUI for
configuring and running simulations and uses a proprietary file for-
mat for storing a topology configuration (although this information
can be exported to an XML-based file format). The ns-2 simula-
tor (through BGP++ [7]) and SSFNet contain implementations of
IP-routing protocols that can be configured on a particular topol-
ogy through OTcl and DML files, respectively; they produce out-
put traces in text format that can be analyzed through scripts. And,
although it is still in development, the ns-3 simulator looks to sig-
nificantly improve upon ns-2, but it shares many of the fundamental
characteristics cited above (including BGP functionality). It does
replace OTcl with Python bindings.

While the packet-level simulation offers a view into the dynamic
properties of routing algorithms, the encoding of the topology and
its attributes into device-specific configurations, and the mainte-
nance of state across many simulated devices, makes tedious the
type of analysis needed to answer questions in our example work-
flow. For example, to obtain sets of paths we’d like to evaluate—
even those that could be computed from the graph directly—we
would have to develop a mapping from our topology and routing
policy to device-specific configurations, creating instructions for
each device corresponding to a node in our network. In Figure 1,
the top-level workflow illustrates this approach: In order to com-
pute a set of output paths, a mapping M from high-level policies
to configuration directives must be applied, which can then be used
as input to the simulator; the actual logic of how policies interact to
produce the output is a bit of a “gray box” that cannot be observed
easily. Then, because simulators maintain the state of the computa-
tion across the various devices as protocols are executed, we must
(1) determine, from monitoring updates in the network, at what
time the route computation is complete; and (2) gather the routing-
table or forwarding-table states from all devices and assemble them
into a set of paths to analyze. Furthermore, we may have to return

.........

.........

.........

.........

.......

.........

.........

.........

.........

......

ALL
PATHS

(P)

ALL
PATHS

(P)

A

A

.........

.........

.........

.........

.........

.........

....

B

.........

....

C

B C

CONFIG
DIRECTIVES

NO CONFIG
DIRECTIVES

F1 F2 F3
P.F1.F2.F3

HARDCODED PROTOCOL 'FILTERS'

.........

....

HIGH LEVEL
POLICIES

HIGH LEVEL
POLICIES

BEST PATHS
(UNISET)

REMAINING
PATHS

(UNISET OR
MULTISET)

M

P.F(ALL)

P.F1 P.F1.F2

PARTIAL
RESULTS

ROUTING
SIMULATOR

PATHSIFT

Figure 1: Comparison of network-simulator and Pathsift work-
flows.

to an alternate representation of node and link attributes, as metrics
that depend on attributes that do not have an encoding in a device-
specific configuration would not be retained by the network simula-
tion. This is also a problem when answering a question like work-
flow approach (ii), when trying to analyze utilization of network
components—doing so requires more information than the device-
specific view on the routing solution provided by a simulator. Fi-
nally, to perform analysis like our workflow approach (iii), where
we change the topology by removing nodes and links, we would
have to re-encode the topology and re-run the simulation for each
variant; if we had a more global view of the sets of viable paths, we
could more efficiently remove paths containing failed components
from our pathset than recomputing a routing solution from scratch.
Although the approach used by simulators and routing protocols
of keeping just enough information to get to “best” paths quickly
is highly efficient, too much information is lost to quantify certain
metrics of interest for this type of study.

Fundamentally, because state of the routing computation is main-
tained for the purpose of protocol execution, which produces a best
path for each endpoint pair, it becomes difficult to answer ques-
tions like workflow approach (i) which seeks to quantify the num-
ber of viable paths offered by a particular policy. Furthermore, the
intermediate state that can be observed is only enough for the pro-
tocol to continually make choices of best paths; we cannot easily
extrapolate what alternate paths might be available given failures,
changes to tie-breaking rules, or the like. Thus, the types of high-
level questions that can be explored with existing tools are limited,
even though these tools provide an efficient, accurate way to ob-
serve the dynamics of IP-routing computation.

2.4 BGP Solvers
BGP [22], the Internet’s interdomain-routing protocol, is not a

lowest-cost-path routing algorithm, but rather a path-vector routing
algorithm that supports expressive policies and autonomy among
constituent networks. Thus, its routing logic is quite complex, and
several tools exist to help simulate BGP’s route computation with-
out the overhead of packet-level simulation between virtual IP pro-
tocol stacks. C-BGP [21] (implemented in C) and simBGP [20]
(implemented in Python) are two such examples. These BGP sol-
vers are the most similar in spirit to Pathsift, in that they permit test-
ing the effects of routing policy configuration on computed paths
at a level of abstraction higher than individual devices. However,
these tools still require a mapping of a topology and high-level pol-

icy goals (e.g., “do not carry transit traffic” or “use latency to deter-
mine IGP weight”) into device-specific instructions; in particular,
the configuration files used as input require specification of IP ad-
dresses, routing-table entries for BGP sessions, and pattern-match
rules to implement route preferences. In addition, querying the tool
for output still requires examining individual devices’ routing ta-
bles. Thus, these tools do not appreciably simplify the workflow
of examining, at a high level, the relationship among pathsets that
are induced by different topologies and polices. These tools are
primarily designed to check the configuration of a single BGP au-
tonomous system (AS), rather than the interaction among, or study-
ing the effect of boundaries among, multiple ASes. BGP solvers
do, however, provide a good way to check the results of a mapping
from high-level policy to device configuration, and to examine dif-
ferent ways for a high-level policy specification to be implemented
successfully; therefore, we hope to include a mapping from a net-
work configuration in Pathsift to a BGP solver in the future.

2.5 Graph Visualization
The number of potential paths between endpoint pairs grows

very quickly as the size of the network increases. These paths, as
well as the nodes and edges comprising them, have numerous prop-
erties of interest which can be compared, correlated, and measured
for various routing approaches—all leading to a massive number
of data-points. Effective data visualization is therefore critical to
gaining insights into these large, multi-dimensional data-sets. We
have chosen to focus on two types of visualization: (i) marking up
network diagrams to expose notable subgraphs, attributes of inter-
est, and pathset overlays; and (ii) statistical plots (e.g., heatmaps of
pathset metrics) that condense numerical data computed on large
pathsets. These types of visual representations make it easier to
compare properties of pathsets derived from different routing in-
puts and to find patterns within the data.

Existing discrete-event simulators, for the most part, do not make
overlays of a network visualization easy. For example, OPNET [18]
allows a user to highlight a computed best path between one source-
destination pair, but does not allow arbitrary visualizations of mul-
tiple paths at once. Some graph tools, such as CytoScape [25],
Gephi [1], and yEd [28] implement advanced graph-layout algo-
rithms for visualizing network topologies; while their graphical in-
terfaces can be used to generate, read, write, and view IP-routing
topologies (even though some, like CytoScape, were originally de-
signed with other applications—in particular, biological analysis—
in mind), they do not permit rich visualization of path data over the
main network visualization.

Since Pathsift is written in Python, and it interfaces with Net-
workX [11] for its underlying graph data structure, it is able to
take advantage of an existing Python interface to Graphviz [2] for
network visualization. We have extended basic Graphviz topol-
ogy rendering with custom functions, permitting multiple layers
of subgraph visualization, which allows the user to markup a net-
work topology with a selected pathset in a manner that highlights
properties of interest. In addition, Pathsift takes advantage of mat-
plotlib [12], a Python plotting library, to generate statistical graphs
and visualize pathset metrics based on users’ definitions.

3. PATHSIFT LIBRARY
Pathsift is a Python library for generating and comparing path-

sets. It is built on top of NetworkX [11], and contains enough rout-
ing protocol semantics to allow investigation of IP networks, while
still permitting node and edge attributes, and corresponding routing
policies, to be defined at a high level of abstraction.

3.1 Architecture and Components
The Pathsift library operates on annotated graphs, computed path-

sets, and pathset statistics called statsets. Graphs are stored on disk
as GraphML [3] files or represented in memory as NetworkX ob-
jects (generally directed multi-graphs). Nodes and edges in the
graph are marked up with user-defined attributes relevant to the
area of study. The library includes built-in support for common
properties, such as AS numbers for nodes, and latency and capac-
ity values for edges. Pathsets are computed either from the graph
directly, or derived from an existing pathset through the application
of a filtering function. Filtering functions are written in terms of the
high-level attributes, and passed to a pathset parser.1 A pathset can
be categorized as either a uniset, which has at most one path per
source-destination pair, or a multiset, which may have more than
one path per source-destination pair. Note that once routing policy
is applied, it is possible for a given pair to have zero valid paths,
even in graphs that are connected at the node level (e.g., due to AS
loops). Due to resource constraints, especially when working on
large topologies, Pathsift’s routines support working with pathsets
and statsets stored in files on disk rather than fully in memory.

Pathsift supports several algorithms for generating an initial path-
set from a graph. Our baseline algorithm computes all loop-free
paths for all node pairs, referred to here as an allpaths pathset. Be-
cause allpaths grows quickly as the size of the network increases,
the library also supports setting constraints on the allpaths com-
putation, namely maximum hops and maximum path length based
on an edge attribute representing cost. These pathset-generation
functions return a multi-pathset, which can then be further reduced
through the application of additional filtering functions. Other path-
set-generation algorithms directly compute uni-pathsets, such as
the library routine for simulating the route computation produced
by running BGP and OSPF on the network.

Because the NetworkX library is used for storing and manip-
ulating graphs, existing graph algorithms that operate on topology
attributes can be leveraged for route computation, e.g., computation
of all-pairs shortest paths. The shortest-paths pathset can serve as
a useful reference to assess how far a given policy-induced pathset
diverges from at least one definition of optimal. Arguably more im-
portant to the study of IP routing, though, is our native implemen-
tation of simplified BGP logic, where path segments for each AS
are computed using a lowest-cost algorithm (to mirror OSPF [15]),
and AS-level paths are computed based on BGP’s decision pro-
cess [22]. This algorithm is particularly useful for comparing BGP
best paths to other BGP-constrained multi-pathsets, such as a path-
set of all BGP feasible paths (i.e., AS-loop-free paths). At present,
the BGP pathset generator implements only a subset of the BGP
decision tree; other filters, such as removing paths based on the
presence a particular AS in the path, are performed by applying
reduction functions to a multi-pathset, rather than included in the
initial pathset generation. Because route computation via path-
set generation does not model packet-level dynamics of routing
protocols—instead, policies that describe pathsets are written as
high-level functions in Python—no encoding of policy into low-
level device configuration is necessary, and intermediate stages of
applying policy can be observed. A diagram comparing this work-
flow to that of packet-level network simulators is shown in Figure 1.

Pathsift contains analysis functions for parsing a pathset and gen-
erating path statistics, or statsets. During statset generation, the
parser also references the input graph to retrieve node and edge
attributes (i.e., most attributes are not stored in the pathset itself).

1Functions are first-order objects in Python; see Sections 3.2–3.3
for examples.

Objects:

• graph (normally a NetworkX DiGraph)

• pathset (list/dictionary or a file)

• statset (list/dictionary or a file)

Library functions:

• AS-setting functions (input: graph, output: graph)

• general / other attribute-setting functions
(input: graph, output: graph)

• pathset generation functions (input: graph, output: pathset)
Note: this includes BGP and OSPF route computation

• pathset filtering functions
(input: pathset, path-filtering function, output: pathset)

• predefined path-filtering functions
(input: path, output: boolean)

• statset generation function
(input: pathset, graph, output: statset)

• visualization functions
(input: graph, pathset or statset, output: visualization)

Table 1: Major components of the Pathsift library.

Like filtering functions, statset-generation logic is also parameter-
ized by user-defined functions to quantify metrics of interest to the
user. Statsets are then used to create high-datapoint visualizations;
we use Graphviz [2] to render network-style graph markups, and
matplotlib [12] for generating statistical graphs (e.g., heatmaps or
boxplots). This workflow enables the visual comparison of large
pathsets, often derived from a common starting input topology, but
with different topology changes (such as failures) or routing poli-
cies applied. In this context, a policy could be a complicated set
of filters based on abstract node and edge attributes, or a simpler
graph-oriented property, such as shortest paths by hop count. Ta-
ble 1 summarizes the major components of the library.

A final type of function in Pathsift is used to automate the setting
of AS boundaries. Due to the way BGP prohibits paths with AS
loops by default, the act of selecting AS boundaries is, in itself,
an important policy choice (although one that in many networks is
more driven by organizational forces or scalability concerns). In
fact, a first filter that is often applied in practice is to remove all
paths with AS loops, because this artifact of BGP operation alone
vastly reduces the number of viable IP-forwarding paths.

Pathsift is written in Python, a language particularly well-suited
for this kind of library. As mentioned, Pathsift leverages NetworkX,
also written in Python, for its base graph structures, and subse-
quently can make use of existing bindings to both matplotlib and
graphviz (via pygraphviz) for generating custom visualizations. Py-
thon also has good support for call-outs to C code when needed
for performance (e.g., all-paths computation on large topologies)
and libraries for reading XML/GraphML files. Moreover, the Py-
thon language itself has several properties that make it ideal for this
kind of analysis, independent of the aforementioned benefits: First,
Python has powerful built-in functions for easily manipulating lists
and dictionaries, which map well to pathsets (lists of lists) and their

0
1

2

3

4

8

5

6

9

7

Figure 2: Example topology for Section 3.2.

annotated nodes and edges (dictionaries); second, Python supports
using functions as first-order objects, allowing functionality to be
parameterized in expressive ways, which we leverage in both path-
set filters and stats file generation; finally, as is often claimed, we
have found Python to be excellent for rapid prototyping compared
to coding similar functionality in C/C++ or Java.

3.2 Using the Library
In this subsection we walk through examples of using Pathsift

for analysis of various pathset metrics on an example topology.
Consider the simple 10-node graph shown in Figure 2; assume this
graph is available as a NetworkX Graph object G, created using a
script or in the Python interpreter. As a baseline pathset, we can cre-
ate a file containing the set of all simple source-destination paths:

allpaths(G, ’G.paths’)

As described above, assignment of nodes to AS numbers (ASNs)
is an important, but often overlooked, element of protocol con-
figuration that limits the set of available IP-forwarding paths. In
Pathsift, we can manually assign AS numbers to nodes by setting
attributes in a script or topology file, or we can programmatically
assign AS numbers based other topological attributes using prede-
fined or custom-defined functions. Figure 3 shows our topology af-
ter two different ASN-assignment functions are applied: (a) reflects
a manual assignment to create a topology G1, while (b) reflects exe-
cuting the following function that sets AS boundaries to encompass
connected even- or odd-numbered nodes to create a topology G2:

def even_odd_as(G):
cur_asn = 0
for n in G:

if ’asn’ not in G.node[n]:
assign_asn(G, n, cur_asn)
cur_asn += 1

for m in G[n]:
if ’asn’ not in G.node[m] \
and m % 2 == n % 2:
assign_asn(G, m, int(G.node[n][’asn’]))

G2 = G.to_directed()
even_odd_as(G2)

Although perhaps a trivial (re)assignment, note that topology (b)
contains more interdomain links, which could increase the control-
plane overhead of BGP, and that the two topologies differ in the
locations of edges whose failure would cause connectivity loss due
to the creation of discontiguous ASes. We can investigate these dif-
ferences using Pathsift’s pathset generation and analysis routines.

First, we can quantify the number of paths excluded because of
our two imposed ASN schemes. To do this, we first define a multi-
set filter function that excludes paths containing AS-level loops:

(a)

0
1

2

4

3

8

5

6

7

9

(b)

0
1

2

3

4

8

5

6

7

9

Figure 3: Pathsift-generated plots (via pygraphviz) of our ex-
ample topology, marked-up to show AS membership according
to two different assignment functions.

def bgpff(G, p):
asp = as_path(as_list(G, p))
return not detect_path_repeat(asp)

The first line translates a node-level path p into its corresponding
AS-level path using Pathsift routines that use graph attributes to
lookup ASNs. The second line returns a boolean value instructing
paths with ASNs repeated to be filtered.

We can compare the number of viable IP-forwarding paths using
the heatmap visualization provided by Pathsift. Figure 4 shows the
number of potential source-destination paths when (a) BGP is not
used, and thus no paths are precluded because of AS-level loops;
(b) BGP is used under the manual ASN assignment; and (c) BGP
is used under the even-odd ASN assignment. Rows and columns
correspond to source and destination nodes, respectively; color in-
tensity strengthens with a greater number of potential paths. In this
graph, the maximum number of paths per pair in (a) is 14, but only
10 in (b) and 7 in (c). Note how the even-odd ASN scheme sig-
nificantly limits the number of paths among nodes in the network
because of the addition of AS boundaries (i.e., node-level paths that
exit and re-enter the same AS are removed). These heatmaps were
produced from multi-pathsets obtained by applying the BGP AS-
loop filter defined above to the all-paths pathset for the topology:

PS = filtercount(G, ’G.paths’, lambda G, p: True)
PS1 = filtercount(G1, ’G.paths’, bgpff)
PS2 = filtercount(G2, ’G.paths’, bgpff)
heatmap(G.nodes(), PS)
heatmap(G1.nodes(), PS1)
heatmap(G2.nodes(), PS2)

The filtercount function returns an enumerated pathset contain-
ing routes from the input pathset (given here by the filename for the
all-paths pathset, ’G.paths’) that survive the filter function. The

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9 1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

(a)
0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

10

(b)
0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9
1.6

2.4

3.2

4.0

4.8

5.6

6.4

(c)

Figure 4: Pathsift-generated heatmaps showing number of viable IP-forwarding paths in our example topology under different
conditions: (a) reflects the set of all paths; (b) reflects AS-loop-free paths when ASNs are set as in Figure 3(a); (c) reflects AS-loop-
free paths when ASNs are set as in Figure 3(b).

(a)

0
1

9
9

3

12
4

0

2

12

6

5
15

6

2

64

12

8
99

7
8

9
4

9

5 11

7

8

12

8

12

5

4

5

(b)

0
1

9
9

3

10

2

12

4
16

20

5
6

12

8
9

6

0

617

9

9
0

7
4

16

4 0

3

14

12

2

7

2

12

9

Figure 5: Pathsift-generated markups of the example topology
showing edge utilization, i.e., each edge’s label, width, and in-
tensity indicates the number of source-destination BGP/OSPF
paths that use the edge under the two ASN functions shown in
Figure 3.

first line using Python’s lambda syntax to declare a trivial func-
tion inline that does no filtering; this is used to produced the data,
PS, for the all-paths heatmap in Figure 4(a). The second and third
lines provide our BGP AS-loop filter as an argument, removing
these paths to generate the data for the remaining two heatmaps.
Note that the information for these heatmaps, in particular, multi-
pathsets that satisfy particular properties, are not readily available
in packet-level network simulators; furthermore, AS membership,
used here to define pathsets, is generally represented only in config-
uration settings for BGP sessions between individual devices. This
is one example of how Pathsift’s high-level approach to network
modeling simplifies this type of analysis.

We can quantify the effects of our two ASN schemes on network
resiliency. The bgp_path_dict function takes a topology with
an ASN assignment and simulates the computation of BGP [22]
and OSPF [15], namely, lowest-cost paths are selected between
endpoints in the same AS, with BGP’s decision process (involving
shortest AS-path length, in the absence of local-preference settings)
used to select paths between endpoints in different ASes. This func-
tion produces a uni-pathset, reflecting “best” paths chosen by the
protocols, just like the aggregated output of a protocol computa-
tion in a packet-level simulator. Figure 5 shows the topology un-
der the two different ASN schemes marked-up using the results of
this computation; in particular, the following code to generate the
edge-prominence graphs uses Pathsift routines that invoke the BG-
P/OSPF algorithm to indicate the number of paths using each edge
in the graph, and then adjust color and line weight in the diagrams:

def prominence_plot(G, outfile):
drawG = G.copy()
col_edges_bgp_paths(drawG)
edge_width_by_bgp_paths(drawG)
networkx.to_agraph(drawG).draw(outfile)

We can just as easily run the BGP/OSPF pathset algorithm on m
variations of the topology, where m is the number of edges in the
original graph G, and each variation is G with a single (different)
edge removed, to compute the effect of failures:

def test_edge_failure(G):
ps = bgp_path_dict(G)
data = []
for e in G.edges():

H = G.copy()
H.remove_edge(e[0],e[1])
psh = bgp_path_dict(H)
data.append(compare_pathset_dicts(ps,psh))

change_boxplot(data)

Figure 6: Pathsift-generated boxplots showing the effects of
single-edge failures on reachability when BGP/OSPF paths are
computed under the two ASN functions shown in Figure 3.

This code produces the boxplots in Figures 6(a)–(b), showing the
5-number summary (median, 1st quartile, 3rd quartile, min, max)
of changes to pathsets over all single-edge failures under the two
ASN schemes. Red lines show the mean number of paths affected.
As expected, the even-odd ASN scheme, with additional interdo-
main links in the topology, shows a higher average number of paths
with changes to border routers or AS paths, resulting in potentially
greater BGP update churn due to link failure than the manual ASN-
assignment scheme. Obtaining the pathsets and their visualizations
involves little code and time with Pathsift, while performing a sim-
ilar study with a packet-level simulator would involve repeating the
simulation of protocol computation from scratch on different input
topologies.

3.3 Example: Internet Routing Policy
Gao and Rexford [9] describe a class of routing policies justi-

fied by the economics of AS peering on the commercial Internet:
It is assumed that neighboring pairs of ASes have either customer-
provider or peer-peer relationships, depending on the settlement
agreement between them, and that preferences over routes depend
on the economic incentives associated with carrying traffic over
these classes of relationships. Gao and Rexford show that this class
of policies, though implemented locally, guarantees global stability
of the routing system. An important consequence of the policy is
that network paths are valley-free: The AS-level path computed be-
tween any two endpoints consists of some number (possibly zero)
of customer-to-provider links, at most one peer-peer link, and some
number (possibly zero) of provider-to-customer links. Caesar and
Rexford [4] explain how to implement a BGP policy that filters
non-valley-free paths.

The Gao-Rexford constraints form a sufficient condition on net-
work stability; in particular, this means that deviations from the
rules may still be safe. The constraints may be overly restrictive
for a given topology, and changing economics or non-commercial
settings may remove the natural incentives for the constraints al-
together; e.g., insisting on valley-freeness may preclude paths that
have better performance or provide better options in the case of
failure. Thus, it’s reasonable to ask, given different metrics, what is
lost by implementing the Gao-Rexford constraints. Pathsift makes
it easy to explore the answer to this question.

Assume that our network topology is stored in a file T.graphml,

and we have an initial pathset of all AS-loop-free paths in a file
T.AV.paths. Furthermore, assume we have a dictionary reln

that describes AS relationships, so that reln[10][20] is −1, 0, 1
if AS 10 is a customer, peer, or provider of AS 20, respectively.
The following path-filter function corresponds to variants of valley-
freeness:

def grex_vf(G, path, reln, peers=1):
asp = as_path(as_list(G, path))
rl = [reln[i][i+1] for i in range(len(asp)-1)]
vl = [rl[i+1] - rl[i] for i in range(len(rl)-1)]
return min(vl) < 0 or rl.count(0) > peers

For each node-level path on which the function is called, the first
line gets the corresponding AS-level path; the second line gets the
value of adjacent relationships in that AS path; the third line com-
putes the change in relationship for each pair of adjacent links in
the AS path; the fourth line simply checks if those changes are non-
monotonic (corresponding to a valley) or whether more than peers
number of peer links are used. Thus, when peers is set to 1 (the de-
fault), the filter corresponds exactly to valley-freeness; alternately,
we may decide to allow up to k peer links. These two variants can
be instantiated and analyzed as follows:

T = read_graphml(’T.graphml’)
ff_vf1 = lambda G, p: grex_vf(G, p, reln)
ff_vfk = lambda G, p: grex_vf(G, p, reln, k)
num_vf1 = filtercount(T, ’T.AV.paths’,

ff_vf1, outfile=’T.vf1.paths’)
num_vfk = filtercount(T, ’T.AV.paths’,

ff_vfk, outfile=’T.vfk.paths’)

The filtercount function will selectively apply the policy filters
to the set of viable paths, eliminating paths that fail to meet the de-
fined variations of valley-freeness. At the end of these four lines of
code, num_vf1 and num_vfk will have the number of BGP-viable
forwarding paths satisfying the single- and multiple-peer defini-
tions, respectively, and the files T.vf1.paths and T.vfk.paths

will contain the filtered pathsets. These pathsets can then be ana-
lyzed further based on other metrics, e.g., average latency per hop
of paths in the pathset:

lat_vf1 = [total_latency(G, p)/len(p) \
for p in get_list_paths(’T.vf1.paths’)]

lat_vfk = [total_latency(G, p)/len(p) \
for p in get_list_paths(’T.vfk.paths’)]

avg_vf1 = sum(lat_vf1)/len(lat_vf1)
avg_vfk = sum(lat_vfk)/len(lat_vfk)

Here, the total_latency function represents a path metric de-
fined on attributes of the links defined in the network topology; it
can be defined using one line using a workhorse function in the
Pathsift library parameterized by the name of the attribute being
used for analysis, latency:

def total_latency(G, p):
return pwise_edge_attr(lambda x, y: x+y,
G, p, ’latency’)

Similar pathset evaluations can be based on metrics predefined in
the Pathsift library or that can be defined analogously.

Contrast this with a similar analysis using existing tools: Sepa-
rate encodings of our valley-free properties, using different pattern-
match rules on optional BGP attributes and the AS path, would
need to be provided to a simulator; then, the set of routes chosen—
limited to one per endpoint pair, based on any tie-breaking rules in
the computation—would then be assembled from the routing tables
output by the simulator, and a supplemental script with access to
link-latency data could perform an analysis over the pathset. Path-
sift not only provides a high-level method of describing properties

such as valley-freeness, but also maintains a global enough view of
the route computation to easily allow aggregate analysis of com-
puted routes.

4. CONCLUSION AND FUTURE WORK
As we have demonstrated, Pathsift allows for rapid experimenta-

tion and analysis of a wide range of routing policies written in terms
of common and custom node, edge, and graph attributes. By expos-
ing intermediate results of the route computation function, thereby
isolating the effects of different topology, policy, and protocol fac-
tors, Pathsift facilitates the study of questions not easily answered
by other tools.

As noted above, Pathsift was originally developed to study multi-
organizational military networks, and so many of the path charac-
teristics we have investigated so far have been particular to that do-
main. Going forward, we intend to use the library to further study
properties and potential policies for Internet routing. We acknowl-
edge that even if a beneficial set of abstract policies were to be
discovered, they would not see operation unless they are mappable
to specific BGP mechanisms. This drives another area of our fu-
ture work: building an interface between Pathsift and a BGP solver
like C-BGP or simBGP. As mentioned throughout, we expect the
translation from high-level policy to low-level configuration to be
non-trivial in many cases, and so did not attempt this in our first
phase of work. Finally, although we generally run Pathsift func-
tions from a Python shell, visualizations are a key component of
our work flow, and so building a GUI to help “organize” rendered
images, rather than shuffling through numerous individual graphic
files, would be beneficial.

5. ACKNOWLEDGMENTS
The authors would like to thank Dr. Santanu Das (U.S. Office

of Naval Research) for funding that partially supported this work.
The authors would also like to thank Dr. Glenn Carl and Mr. Terry
Gibbons (MIT Lincoln Laboratory) and Dr. Allen Shum (SPAWAR,
U.S. Navy) for many helpful technical discussions.

6. REFERENCES
[1] M. Bastian, S. Heymann, and M. Jacomy. “Gephi: an open

source software for exploring and manipulating networks.”
In Proc. AAAI 3rd Int’l Conf. Weblogs and Social Media
(ICWSM’09), May 2009.

[2] A. Bilgin, D. Caldwell, J. Ellson, E. Gansner, Y. Hu, and
S. North. “Graphviz—Graph Visualization Software.”
http://www.graphviz.org

[3] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and
M. S. Marshall. “GraphML Progress Report: Structural
Layer Proposal,” In Proc. 9th Int’l Symp. Graph Drawing
(GD’01), LNCS 2265, pp. 501–512, Sep. 2001.

[4] M. Caesar and J. Rexford. “BGP Routing Policies in ISP
Networks.” IEEE Network 19(6):5–11, Nov. 2005.

[5] J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski. “Towards
Realistic Million-Node Internet Simulations.” In Proc. Int’l
Conf. on Parallel and Distributed Processing Techniques and
Applications (PDPTA’99), pp. 2129–2135, Jun. 1999.

[6] G. Csárdi and Tamás Nepusz. “The igraph library for
complex network research.”
http://igraph.sourceforge.net

[7] X. A. Dimitropoulos and G. F. Riley. “Efficient large-scale
BGP simulations.” Computer Networks 50(12):2013–2027,
Aug. 2006.

[8] C. E. Fossa and T. G. Macdonald. “Internetworking Tactical
MANETs,” In Proc. IEEE Military Comm. Conf.
(MILCOM’10), Nov. 2010.

[9] L. Gao and J. Rexford. “Stable Internet Routing without
Global Coordination.” IEEE/ACM Trans. Net. 9(6):681–692,
Dec. 2001.

[10] T. G. Griffin, F. B. Shepherd, and G. Wilfong. “The Stable
Paths Problem and Interdomain Routing.” IEEE/ACM Trans.
Net. 10(2):232–243, Apr. 2002.

[11] A. Hagberg, D. Schult, P. Swart, D. Conway,
L. Séguin-Charbonneau, C. Ellison, B. Edwards, and
J. Torrents. “NetworkX: High productivity software for
complex networks.” http://networkx.lanl.gov

[12] J. Hunter. “Matplotlib.”
http://matplotlib.sourceforge.net

[13] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide,
and F. Jahanian. “Internet Inter-Domain Traffic.” In Proc.
ACM SIGCOMM’10, pp. 75–86, Aug. 2010.

[14] F. Le, G. G. Xie, D. Pei, J. Wang, and H. Zhang. “Shedding
Light on the Glue Logic of the Internet Routing
Architecture.” In Proc. ACM SIGCOMM’08, pp. 39–50,
Aug. 2008.

[15] J. Moy. “OSPF Version 2.” RFC 2328, Apr. 1998.

[16] ns-2. “The Network Simulator.”
http://www.isi.edu/nsnam/ns/

[17] ns-3. “The Network Simulator.”
http://www.nsnam.org/

[18] OPNET Technologies, Inc. “OPNET Modeler.”
http://www.opnet.com/solutions/network_
rd/modeler.html

[19] J. Pulliam, Y. Zambre, A. Karmarkar, V. Mehta, J. Touch,
J. Haines, and M. Everett. “TSAT Network Architecture.” In
Proc. IEEE Military Comm. Conf. (MILCOM’08),
Nov. 2008.

[20] J. Qiu. “simBGP: Simple BGP Simulator.”
http://www.bgpvista.com/simbgp.php,
Apr. 2006.

[21] B. Quoitin and S. Uhlig. “Modeling the routing of an
Autonomous System with C-BGP.” IEEE Network
19(6):12–19, Nov. 2005.

[22] Y. Rekhter, T. Li, and S. Hares. “A Border Gateway Protocol
4 (BGP-4).” RFC 4271, Jan. 2006.

[23] S. Sangli, D. Tappan, and Y. Rekhter. “BGP Extended
Communities Attribute.” RFC 4360, Feb. 2006.

[24] J. Siek, L. Lee, and A. Lumsdaine. “The Boost Graph
Library.” http://www.boost.org/doc/libs/
release/libs/graph/

[25] M. Smoot, K. Ono, J. Ruscheinski, P. Wang, and T. Ideker.
“Cytoscape 2.8: new features for data integration and
network visualization.” Bioinformatics 27(3):431–432,
Feb. 2011.

[26] Q. Vohra, E. Chen. “BGP Support for Four-octet AS Number
Space.” RFC 4893, May. 2007.

[27] T. Yuan, Y. Chen, and M. LeTourneau. “Joint Tactical Radio
System Common Network Services,” In Proc. IEEE Military
Comm. Conf. (MILCOM’07), Oct. 2007.

[28] yWorks. “yEd Graph Editor.” http://www.yworks.
com/en/products_yed_about.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

