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Abstract—We investigate the problem of replication in large
wireless networks that employ caching in the case of a single file
whose popularity varies with time. As opposed to the case of static
popularity, in this case for the network resources to be efficiently
allocated the replication should vary with time. In this study, we
first outline the low-level operations of wireless networks with
caching, which involve decisions of combinatorial complexity,
such as about the contents of all network caches. To overcome
this complexity, we approximate the network optimization with
a formulation based on the frequency of file replication across
the network—a high-level perspective, amenable to mathematical
analysis. We present a solution that is based on looking ahead
into the future and has a simple graphical representation.

I. INTRODUCTION

Large wireless networks have been the subject of exten-
sive research in the last decades, due to the proliferation of
wireless services and standards, and the advent of affordable
mobile devices. The vision of joining large numbers of nodes
into wireless networks that operate without any infrastructure
support toward providing ubiquitous access has spurred many
research efforts to characterize the properties of these networks
(notably their scalability) and optimize their operation [1]–[6].

On the other hand, caching is a major technique in com-
puting that lowers the average access delay and the system
load by storing replicas of selected data across the system.
In networking, caching has been widely employed, albeit
in rudimentary ways, such as individually at each node or
between node pairs. Key is the role of caching in the novel
paradigm of Information Centric Networking (ICN) which
aspires to replace the old primitives, based on node addresses,
with new ones based on named content. The replication of the
content in a comprehensive manner across the network [7]–
[10] is a crucial element of any ICN architecture [11]–[13]. As
a result, the ICN paradigm has stimulated investigations on the
advantages of caching in large wireless networks [14]–[20].

Common in these works is the formulation of an analytic
model of the network operations which is then applied to
optimize performance. These models are often built at the
microscopic level of the actual network, considering details,
such as the precise routes of packets among the nodes, that
capture the operation in the network with high accuracy,
as in [14]–[16]. However, the resulting model is usually
quite complex; more than often, suitable approximations and
heuristics are required to analyze and optimize the network.

The alternative is a model relying on macroscopic quantities
describing the wireless network and its operation. In this
approach, the network is represented by an abstraction that
involves only high-level quantities, such as—in the case of
caching—how densely data are cached across the network
as opposed to the contents of each cache. The merit of this
approach is that the formulation becomes easier to handle
with standard mathematical tools. The disadvantage is the
additional step of translating macroscopic quantities into mi-
croscopic ones; this is often approximate and suboptimal, as
important details missing from the abstract model must be
filled in, which is sometimes not a straightforward task [19].

In this study, we investigate caching in large wireless
networks. We go briefly through the microscopic operation,
as our study is based mainly on the macroscopic model, as in
[18]–[20]. These works consider flat wireless networks where
requests are placed according to a given content popularity
uniformly across the nodes; requests are identically distributed,
independently from each other both temporally and spatially.
There, the problem of replication is cast as minimizing the
traffic over the network with the optimization variables being
the replication densities of all data and constraints on the
capacity of the individual nodes. The optimization is carried
out using the tools of Lagrange multipliers and Karush Kuhn
Tucker (KKT) conditions. Due to the translation between
the macroscopic and microscopic models, the link load is
estimated only up to a multiple of its actual value; hence, the
performance of the proposed solution is within a multiplicative
constant of the optimal. However, this order-optimal optimiza-
tion (i) can be quite useful in comparing cache replacement
policies—the goal of [18], and (ii) provides the exact order
of the link traffic (with respect to the network size), which
enables us to characterize the sustainability of large expanding
wireless networks with caching—the object of [19], [20].

In [18]–[20], due to the assumption that content popularity
is static, there is no need for the optimal replication to vary
with time. Relaxing to time-varying popularity means that the
replication should adjust to its fluctuations to be optimal. Our
formulation captures this via an additional cost term related
to the traffic generated by the adjustment of cache contents in
response to the changes in the file popularity. In this work, we
limit our study to the replication of a single file only.

The rest of the work is organized as follows: Section II
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provides a microscopic wireless network model and its op-
erations, which Section III abstracts away in a macroscopic
model. We then optimize the file replication and present its
solution. Section IV discusses next steps in this thread of
research.

II. NETWORK MODEL—MICROSCOPIC PERSPECTIVE

A. Wireless Network and Topology

Consider a set N of identical peers arranged on the plane
in a square grid and let N , |N |. As in [19], each node is
connected to its four neighboring nodes at the same row or col-
umn, with non-interfering links. Unlike the random topology
of [2], [18] and other works, this graph has a deterministic,
regular structure. As explained in [19], it is a good model for
a planar wireless networks as it bypasses the complexity of
the PHY and MAC layers induced by interference, preserving
at the same time the essential features of multihop wireless
networks, i.e., (i) short links (many short links are better than
a few long links due to better spatial reuse [2]) and (ii) the
network diameter scales as

√
N—the key reason behind the

1/
√
N law of [2] on the per-flow throughput.

B. Content, User Requests and Caches

Users located in the nodes generate requests to access files.
In this work, we focus on a single file and consider only
the associated requests. Its popularity can be described by the
arrival rate of the user requests for it at each node, λ(t) > 0,
a function of time t (we let time be continuous). Note that
the request arrival rate is common to all nodes; this symmetry
is an essential simplifying element of our study. Moreover,
all requests across both time (i.e., past and future requests)
and space (i.e., requests at different nodes) are independent of
each other. Hence, the requests at all nodes form independent
Poisson processes of a time-varying rate.

The file requests are served by caches attached to every
node. In this study, we assume that caching comes at a price
γ(t) per node and unit of time (i.e., the storage of the file in
any node w for a short duration ∆t costs γ(t)∆t). The rate
γ(t) is common to all nodes, but may vary with time (e.g.,
due to competition for storage from other files). Depending
on its popularity, the file is stored in the set W(t) of nodes,
a subset of N . If a user request is placed at time t on a node
n that belongs to W(t), then it is immediately served without
engaging the network. Otherwise, node n has to place a request
over the network to some node w of W(t).

In this work, we aim to optimize the traffic generated by
user requests for the file against the cost of the file storage
and the traffic load due to the updates of the set W(t). The
trade-off is evident: a dense replication minimizes the traffic
due to the user requests but is costly due to the high number
of nodes required in W(t); moreover, the addition of nodes in
W(t) induces load on the network. Given that popularity λ(t)
varies with time, the setW(t) should be accordingly adjusted.
Intuitively, nodes should join or leave W(t) according to the
current value of the popularity λ(t) as well as its future
evolution.

C. Delivery of User Requests and Cache Updates

In the static popularity context of [19], to serve a request
at node n, one has to specify a delivery/routing path Rn of
adjacent nodes from node n to some node w ∈ W; no cache
ever needs to get updated, hence W and Rn are constant in
time. In the dynamic problem, as W and Rn vary with time,
a mechanism to update them should be provided.

In order to minimize traffic, the network should support
the delivery of the file to many nodes with a single operation
through multicast trees. Then, to keep any considerations about
the timing of the deliveries out of the model, we employ the
Zero Download Delay (ZDD) assumption of [10]. According
to it, a user file request is immediately served and any update
on the contents of a cache takes place instantaneously when
decided. As in the context of Poisson arrivals multiple user
requests cannot happen at the same time, ZDD precludes
serving multiple user requests in a single multicast delivery.
Summing up, each delivery operation is multicast and serves
up to one user request and any number of cache updates.

Due to space constraints, we refrain from specifying the
delivery variables in more detail.

D. Optimization Formulation

Given the above model, we can precisely express the traffic
over the network and optimize it jointly with the storage
cost over an interval [0, T ] into their sum Jµ(T ). The time
horizon T should be chosen high enough so as to minimize
the boundary effects at the interval ends. As initial condition,
we specify a single replica at t = 0 at an arbitrary node.

The optimization decisions regard (i) the value of W(t) at
each time t, i.e., about where the file is replicated over the
network, and (ii) what delivery operations are taken to update
W(t) and serve user file requests. Cache updates can happen
either in response to changes in the content popularity alone
or along with the user requests, as explained before. Hence,
the microscopic problem is essentially a joint optimization
on replication and delivery of a high complexity due to the
exponential number of possibilities for the cache contents.
The macroscopic formulation problem described next comes
particularly useful in designing an efficient suboptimal solution
for this microscopic problem (however, this is deferred to an
upcoming extended version of this work).

Our optimization formulation is centralized and non-causal.
The former implies the existence of a central controller that
has instant and perfect knowledge about all the workings in
the network and optimizes the operations globally. The latter
means that the controller knows about the future evolution of
popularity λ(t) and price γ(t) and manages the network in the
most optimal way. Although these conditions would hardly
hold in reality, they are useful in providing a bound on the
network performance under the most favorable circumstances.

III. MACROSCOPIC REPLICATION PROBLEM

A. Macroscopic Problem Formulation

The above joint replication-delivery problem can be ab-
stracted to an optimization on replication only, that involves



the macroscopic density of files across the network. In [19],
the planar density d was defined as the fraction of caches
that store the file under consideration. Here, we use the linear
density, a related quantity whose inverse approximates the
distance between nodes storing the file replicas:

ρ(t) ,

√
|W(t)|
N

=
√
d(t). (1)

Compared to the static formulation of [19]–[21], the macro-
scopic problem must allow for changes in the density ρ(t) in
response to changes in the popularity λ(t) and price rate γ(t).
This means that the optimization target of [19]–[21] should be
accordingly modified. Toward this end, we express the density
ρ(t), a function of time t, as a difference of two weakly
increasing functions ρi(t) and ρd(t): ρ(t) = ρi(t) − ρd(t).
This arrangement ensures that increases and decreases in ρ(t)
are realized through increases in ρi(t) and ρd(t) respectively;
as a result, it enables us to express in a simple way the network
load that arises from the changes in the file replication.

PROBLEM 1 [MACROSCOPIC]:
Minimize JM(T, ρi, ρd) over ρi and ρd where

JM(t, ρi, ρd) , ρi(t)−ρi(0)+

∫ t

0

[
λ(τ)

ρ(τ)
+ γ(τ)

(
ρ(τ)

)2]
dτ,

(2)
and ρ(t) , ρi(t)− ρd(t), subject to

1) for any t, 1/
√
N ≤ ρ(t) ≤ 1,

2) ρi and ρd are weakly increasing functions,
3) ρd(0) = 0 and ρi(0) = 1/

√
N .

The objective function (2) is a sum of the expected volume
of traffic carried per network link in the interval [0, t] plus the
associated cache usage cost per node; in fact, JM(t) can be
shown to be to a constant factor of the microscopic Jµ(t).

Indeed, the inverse of the linear density ρ(t) approximates
the average number of hops needed to reach the file from
a random node at time t; scaled by the user arrival rate
λ(t), it expresses the instantaneous network load related to
serving user requests. The product γ(t)(ρ(t))2 corresponds to
the replication cost per node: (ρ(t))2 is the planar density
which represents the fraction of nodes that replicate the file
under consideration, and is scaled by cache price γ(t). These
two terms are integrated over the interval [0, T ] to find the
aggregate traffic due to user requests and total replication cost.

Last, the term ρi(t) corresponds to the traffic required
to increase density—this is given without proof (it is a
key element of the derivation that links the microscopic to
the macroscopic problem which will appear in an extended
version of this work). The aggregate increases of ρ(t) are
reflected in ρi(T ), which expresses the overall traffic carried
for cache contents adjustment in the interval [0, T ), and,
hence, in JCD(T ). In contrast, decreases in density are realized
by increasing ρd(t). This does not induce any traffic: i.e.,
in the microscopic problem, no reallocation in the caches
takes place—just a subset of the caches replicating the file
are released. Last, as our modeling assumes that the first

t

ρ∧(t)

ρ∨(t)

ρu∗(t)

Fig. 1: Example of optimal density ρu∗(t), shown in black line, against the
bounds ρ∧(t) and ρ∨(t), shown in gray lines.

(primary) copy of a file appears at some node of the network
at t = 0 spontaneously without incurring any traffic, we have
to subtract the respective density of 1/

√
N from file’s ρi(T ) in

JCD(T ). Note, however, that the subtraction of 1/
√
N does not

affect the optimal solution (ρ∗i (t), ρ∗d(t)).
Regarding the problem constraints, the ones on ρd(0) and

ρi(0) come from the microscopic problem initial condition
at t = 0 about the single replica. Last, the lower and upper
bounds 1/

√
N and 1 on ρ(t) express the fact that there should

be at least one copy of the file in the network, and, at most,
the file is replicated at all nodes, respectively.

Towards finding the solution, we relax the pair of constraints
on the value of ρ(t) into non-negative numbers as follows:

PROBLEM 2 [MACROSCOPIC UNCONSTRAINED]: Minimize
JM(T, ρi, ρd) over ρi and ρd, subject to

1) ρi and ρd are weakly increasing non-negative functions,
2) ρd(0) = ρi(0) = 0.

The minimization of the objective function (2) can, in
principle, be formulated as a problem of Calculus of Variations
by expressing ρi(t) as an integral of its derivative leading to

JM(t, ρi, ρd) =

∫ t

0

[
ρ̇i(τ) +

λ(τ)

ρ(τ)
+ γ(τ)

(
ρ(τ)

)2]
dτ,

However, the Euler-Lagrange equation, the standard solution
in Calculus of Variations, is not applicable as it requires
the optimal ρi and ρd to be twice differentiable functions
of time—it turns out that this is not true in our case; in
terms of Calculus of Variations, we have to find the points
of non-differentiability and treat separately the optimal ρi and
ρd at these points. In essence, the difficulty stems from the
fact that the optimization has to look ahead into the future
(possibly up to time T ), as revealed next from the solution.
Although the solution can be computed numerically with the
tools of Dynamic Programming, here we present an alternative
method that brings out the solution structural properties and
is amenable to a graphical interpretation.

B. Problem Solution

Next, we introduce the solution ρu∗(t) of Problem 2 first at
a high level (see Fig. 1) and then move down to the details.
The results are presented next without proof. The proof will
appear in an extended version of this work.

Problem 2 has a solution described by two density bounds
ρ∧(t) and ρ∨(t), both functions of time. These define an
interval P(t) , [ρ∧(t), ρ∨(t)]: for all t, the optimal density
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(
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)
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+ ρ21

2ρ32
(
Γ (t)− Γ (t0)

)
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(a) An example of ρ1 < ρ∧(t0) < ρ2

tt0 t1 t2

Λ(t)− Λ(t0)

2ρ31
(
Γ (t)− Γ (t0)

)
− ρ21

2ρ32
(
Γ (t)− Γ (t0)

)
2ρ32

(
Γ (t)− Γ (t0)

)
− ρ22

2ρ31
(
Γ (t)− Γ (t0)

)

(b) An example of ρ2 < ρ∨(t0) < ρ1

Fig. 2: The user requests Λ(t)− Λ(t0) (black line) are compared against 2ρ3(Γ (t)− Γ (t0)) and 2ρ3(Γ (t)− Γ (t0))± ρ2 (gray lines) to find ρ∧(t0) and
ρ∨(t0). Solid gray lines correspond to density ρ = ρ1 that satisfy (3)–(4) or (5)–(6), respectively, while dashed lines correspond to ρ = ρ2 with no solution:

(a) User requests Λ(t)−Λ(t0) are compared against 2ρ3(Γ (t)− Γ (t0)) + ρ2 and 2ρ3(Γ (t)− Γ (t0)) to determine ρ∧(t0). For ρ = ρ1, (3) is satisfied
for t∧ = t1, and (4) is true for t ∈ [t0, t∧]. Hence, ρ∧(t0) is at least equal to ρ1. However, for ρ = ρ2, (3) is not satisfied for any t∧ ≤ t2. Given the
crossing at t2, assuming a solution of ρ = ρ2 for t∧ > t2, (4) is violated at t = t2 ∈ [t0, t∧]. Hence, ρ∧(t0) is strictly less than ρ2.

(b) User requests Λ(t)−Λ(t0) are compared against 2ρ3(Γ (t)− Γ (t0))− ρ2 and 2ρ3(Γ (t)− Γ (t0)) to determine ρ∧(t0). For ρ = ρ1, (5) is satisfied
for t∨ = t1, and (6) is true for t ∈ [t0, t∨]. Hence, ρ∨(t0) is at most equal to ρ1. However, for ρ = ρ2, (5) is not satisfied for any t∨ ≤ t2. Given the
crossing at t2, assuming a solution of ρ = ρ2 for t∧ > t2, (6) is violated at t = t2 ∈ [t0, t∨]. Hence, ρ∨(t0) is strictly less than ρ2.

ρu∗(t) has to lie in P(t). Assuming, moreover, a given density
value at time t0, the density should remain constant in t > t0
as long as ρu∗(t) ∈ P(t). As ρ∧(t) and ρ∨(t) vary with time,
the density should change so as not to violate ρ(t) ∈ P(t).
Hence, density increases come only from ρ∧(t), and similarly,
density decreases come only from ρ∨(t), as illustrated in Fig. 1.

To formally define the bounds, we introduce two quantities,
(i) the expected volume Λ(t) of user requests per node placed
in interval [0, t], and (ii) the cumulative cache cost Γ (t) for
using a unit of cache in the same interval:

Λ(t) ,
∫ t

0

λ(τ) dτ, Γ (t) ,
∫ t

0

γ(τ) dτ.

Now, consider an arbitrary non-negative value ρ as can-
didate for the optimal density at time t0. We eliminate the
possibility of too high or too low values ρ at t0 as follows:
• Consider all t∧ ∈ (t0, T ] and the following inequalities:

Λ(t∧)− Λ(t0)

Γ (t∧)− Γ (t0)
≥ 2ρ3 +

ρ2

Γ (t∧)− Γ (t0)
, and (3)

Λ(t)− Λ(t0)

Γ (t)− Γ (t0)
≥ 2ρ3 for all t ∈ (t0, t∧]. (4)

If, for the assumed ρ, a t∧ that satisfies the above pair of
conditions exists, as we show next, the optimal density
is bounded below by it: ρu∗(t0) ≥ ρ. We define then as
ρ∧(t0) the supremum of all such bounds, i.e., all ρ which
satisfy the above pair of conditions for some t∧ > t0.

• Consider all t∨ ∈ (t0, T ] and the following inequalities:

Λ(t∨)− Λ(t0)

Γ (t∨)− Γ (t0)
≤ 2ρ3 − ρ2

Γ (t∨)− Γ (t0)
, and (5)

Λ(t)− Λ(t0)

Γ (t)− Γ (t0)
≤ 2ρ3 for all t ∈ (t0, t∨]. (6)

If, for the assumed ρ, a t∨ that satisfies the above pair of
conditions exists, as we show next, the optimal density

is bounded above by it: ρu∗(t0) ≤ ρ. We define then as
ρ∨(t0) the infimum of all such bounds, i.e., all ρ which
satisfy the above pair of conditions for some t∨ > t0.

Making use of the convexity properties of the Problem, we
provide some intuition on conditions (3)–(6). Compare the
case that in the interval [t0, t∧] density ρ(t) is held constant
against increasing density by ∆ρ at t0 and letting it remain
constant till t∧. If we multiply both sides of (3) by some
∆ρ > 0, the LHS approximates the decrease in link traffic
that results from the increase in density by ∆ρ in this interval,
while the RHS is the sum of two terms, (i) the increase in
replication cost by the ∆ρ increase in density in this interval
and (ii) the link traffic overhead to realize this ∆ρ increase in
the replication density at t0, the beginning of the interval. If
the LHS is greater than the RHS, then the density increase is
advantageous, and clearly we should consider greater values of
ρ′ > ρ to minimize the total cost incurred as much as possible.

However, (4) must also hold for any t ∈ (t0, t∧] as well.
Indeed, multiplying by ∆ρ > 0 both its sides, the resulting
LHS gives the decrease in link traffic by the density increase
by ∆ρ in interval [t0, t], while the RHS expresses the asso-
ciated increase in storage cost. If for some t′ ∈ (t0, t∧], the
RHS outweighs the LHS, then such an increase in density
is unfavorable for this subinterval, as it raises the total cost
incurred in [t0, t

′]. In simple words, this means that while (3)
says that we gain by increasing the density at t0 in the interval
[t0, t∧], (4) says that in the first part [t0, t

′] ⊂ [t0, t∧], we lose
from such an increase; it is better to postpone the increase
and make it happen at t′. Hence, the benefit of (3) for interval
[t0, t∧] is not diminished by the loss of [t0, t

′]. Indeed, upon a
moment of reflection, we can see that (3) will still hold true
if we consider t′0 , t′ and the same t∧ as before.

These considerations are depicted in Fig. 2a for graphically
finding ρ∧(t0): if there exists a t∧ that satisfies (3)–(4) for an
assumed ρ, a differential increase at t0 in density above ρ is



advantageous, thus the lower bound ρ∧ is higher or equal to ρ.
To determine ρ∧, we have to try again to satisfy (3)–(4) with
ρ′ > ρ up to the point that this is not possible. If, reversely,
(3)–(4) are not satisfied for the assumed ρ, then ρ∧ < ρ′, and
we should try with ρ′ < ρ to satisfy (3)–(4).

Reversely, decreases in ρ are decided by (5)–(6). The second
term of the RHS of (5) corresponds to a cost of decreasing ρ.
Although such a decrease cost does not explicitly appear in the
JCDU, it is related to the cost that we will have to pay later if we
decide to reverse this decrease and restore density back to its
value. Hence, decreases in ρ should happen if with respect to
interval [t0, t∨], the increase in the total cost (LHS of (5)) plus
the cost to increase replication density in the future (second
negative term of RHS of (5)) is less than the reduction in the
cache cost (first term of the RHS of (5)). Again, (6) safeguards
against a premature density reduction (Fig. 2b).

The above are formally expressed as follows:

THEOREM 1 [DENSITY BOUNDS]: The optimal density func-
tion ρu∗(t) of Problem 2 is bounded by ρ∧(t) and ρ∨(t):

ρ∧(t) ≤ ρu∗(t) ≤ ρ∨(t), a.e. (7)

In (7), almost everywhere (a.e.) means that the integral of
the set of violation of the inequalities is zero.

Last, if neither (3)–(4) or (5)–(6) justify a change in the
density, the optimal strategy is to keep it constant:

THEOREM 2 [DENSITY FLUCTUATION]: The optimal density
function ρu∗(t) of Problem 2 stays constant as long as
Theorem 1 does not dictate any change through (7).

The above Theorem justifies the intervals of constant value
in Fig. 1. Using convexity properties of Problem 1, we can
use Problem 2 and restrict its solution ρu∗(t) to the allowed
range of [1/N, 1] to find the solution ρ∗(t).

IV. CONCLUSIONS AND FUTURE WORK

In this work, we studied the problem of optimizing the
replication of a single file of time-varying popularity in a
planar wireless network, assuming a given time-varying cache
cost. Section II delineated the operations of the actual wireless
network with caching, while Section III, the main contribution
of this work, provided a macroscopic formulation based on
the replication density of the file across the network and a
graphical way to find the solution of the replication.

In an extended version of this work, we will show (i) the
correspondence of the microscopic and the macroscopic prob-
lems of Sections II and III, and (ii) the proofs of the theorems
that describe the solution of the macroscopic problem. The
subjects of further research are (i) to consider the problem
given a set of files of diverse time-varying popularities, and
(ii) to investigate the sustainability of large wireless networks.
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