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Abstract—To develop unified IoT platforms where objects can
be made accessible to applications across organizations and
domains, popular solutions are based on client-server overlays
on today’s Internet. These solutions, however, inherit the in-
efficiencies of the current Internet – especially in terms of
mobility, scalability, and communication reliability. To address
this problem, we propose to build the unified IoT platform
leveraging the salient feats of Information-Centric Network (ICN)
architectures, which we call ICN-IoT. Specifically, we explore two
ICN architectures – MobilityFirst and NDN – to support IoT, and
refer to them as MF-IoT and NDN-IoT, respectively. Through
detailed simulations, we find that though these two architectures
fare comparably, MF-IoT incurs lower control overheads.

I. INTRODUCTION

Over the years, many stand-alone IoT systems have been
deployed in various domains. These systems usually adopt
a vertical silo architecture and support a small set of pre-
designated applications. A recent trend, however, is to move
away from this approach, towards a unified IoT platform in
which the existing silo IoT systems, as well as new systems
are rapidly deployed that will make their data and services
accessible to general Internet applications. In such a unified
platform, physical resources can be accessed over Internet and
shared across many applications.

Building a unified IoT platform, however, poses a set of
unique challenges on the underlying network and systems.
Firstly, it needs to support a large number of networked
objects – Cisco predicts there will be around 50 Billion IoT
devices (sensors, RFID tags, actuators, etc) on the Internet
by 2020 [1] – and many of these objects are mobile, for
e.g transport systems. The underlying platform needs to scale
smoothly with respect to metrics like response time, through-
put, resolution and routing scalability. Secondly, IoT devices
will have heterogeneous means of connecting to the Internet,
and often have severe resource constraints, e.g., constrained
resources in power, computing, storage, bandwidth. Thirdly,
interactions between the applications and objects are often
private, contextual,real-time and dynamic, requiring strong
security and privacy protections. Finally, a unified IoT platform
should be able to provide seamless services in the presence of
device mobility.

Current approaches towards a unified IoT platform are
mostly based upon Internet overlays, whose inherent ineffi-
ciencies hinders the platform from satisfying the challenges
outlined earlier, particularly in terms of scalability and mobil-
ity [8]. In recent years, in order to address the inefficiencies

of today’s Internet, Information-Centric Network has been
proposed. ICN identifies a network object (including a mobile
device, content, or service) by application centric name instead
of its IP address, and adopts a hybrid name/address routing,
lending itself to supporting the unified IoT platform. In this
paper, we propose to build a unified IoT platform using ICN
(illustrated in Figure 1), in which overlay IoT services are
only needed for administrative purposes, while the publishing,
discovery, and delivery of the IoT data/services is directly
implemented within the ICN network. We call the resulting
network architecture as ICN-IoT. Specifically, we discuss and
evaluate two different ICN architectures – MobilityFirst [8]
and NDN [10] – and refer to them as MF-IoT and NDN-IoT
respectively.

In this paper, we discuss the detailed design of MF-IoT and
NDN-IoT, focusing on their service discovery and pub/sub
model. For evaluation purposes, we consider two realistic
IoT applications scenarios: a smart building scenario and
a smart campus bus scenario, with the former representing
stationary IoT devices while the latter focusing on mobile
IoT devices. We have also compared the performance of these
two approaches through detailed simulations. Our simulation
results show that these two architectures have comparable
delays and throughput, while MF-IoT incurs less overhead in
terms of both routing table size and the number of control
messages.

Fig. 1: ICN-IoT architecture

II. ICN BACKGROUND

In this section, we provide a brief overview of the two ICN
architectures.
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Fig. 2: MobilityFirst protocol stack

A. Named Data Networking (NDN) Architecture
NDN adopts a receiver-driven architecture, engaging two

types of packets : Interest and Data. A NDN transaction starts
with the user (or data consumer) issuing an Interest packet.
When the Interest arrives at the node that own this piece
of content (i.e., data producer), the data producer will reply
with a Data packet along the reverse path to the consumer.
A NDN router has three key data structures: (1) Forwarding
Information Base (FIB) that contains forwarding information
such as content prefix and outgoing face mapping, (2) Pending
Interest Table (PIT) that maintains the set of pending Interests
waiting for Data packets, and (3) Content Store(CS) that stores
Data packets. NDN adopts hierarchical content names which
are suitable for aggregation.

B. MobilityFirst (MF) Architecture
MF assigns a flat, globally unique identifier (GUID) [7]

to every network object – the separation of the network
object’s identifier and its network address (NA) allows MF
to support dynamic address binding, hence good mobility
support. Figure 2 shows the MF core network architecture. MF
has the following three key components. The first component is
Global Name Resolution Service(GNRS), a centralized service
that manages all the dynamic GUID → NA mappings. When
a device changes its network association due to mobility, its
GUID → NA mapping must be updated in the real time [9].
The second main component is hybrid GUID/NA routing,
in which a MF router can make routing decisions based on
either NA or GUID, in a hop by hop manner. The third main
component is delay-tolerant networking, in which the storage
in each MF router provides the capability of caching data
packets.

III. DEVICE DISCOVERY IN ICN-IOT

Device discovery, one of the key features of an IoT sys-
tem, can be easily achieved from the adoption of ICN. In
traditional IP-based IoT systems, in order to identify IoT
devices using application-readable names (such as those de-
rived from manufacturer-assigned IDs), system middleware

Fig. 3: Three steps for discovery

needs to implement the mapping from names to their IP/PORT
addresses, while the IP transport layer remains oblivious of
application delivery. The resulting middleware is thus complex
and requires a significant amount of development effort, which
in turn limits the level of mobility the system can support.
In contrast, while ICN’s network layer uses such names, the
middleware is not involved in name translation.

Device Discovery in NDN-IoT: The NDN-based lighting
system discussed in [3] demonstrates a practical use case for
NDN-IoT. In [3], it is assumed that each lighting device comes
with a manufacture assigned public key, a shared secret for
initialized authorization, and a well-known hierarchical NDN
name, such as “/ndn/lighting” for easy discovery. When a
new object (e.g., a lighting fixture) connects to the system,
it registers itself and publishes its public key. The configura-
tion manager (CM) authenticates the object using the share
secret key and assigns a name (e.g., “/ndn/lighting”) to the
application. The CM periodically expresses its interest using
a well-known service name, such as “/ndn/lighting”, to locate
any available device on a broadcast channel. The IoT device
attached to the object then replies the Interest with a Data
packet.

Device Discovery in MF-IoT: The design of MF-IoT is cen-
tered around the overloading of GUIDs. First, each device has
a device GUID, which can be derived from its manufacturer
serial number. Further, the IoT end device access point(EDAP),
e.g., a sink node (of a local sensor network), a fixture or even
a mobile phone, uses a specific service GUID to identify their
service type, such as environmental sensing, light control or
health sensing. Next, let us consider what happens when a new
device is attached to a sink – first it will announce its device
GUID, i.e., d, and the corresponding EDAP with service GUID
s will then insert a “device to service” mapping d → s to
GNRS. If a configuration service (CS) running on the remote
server queries GNRS with s, the new device’s GUID (d) will
be included in the query result.

Figure 3 illustrates the above-mentioned discovery process
in MF-IoT, in which the device GUID is 12345, and the service
GUID is 67890.



IV. DATA PUBLISH/SUBSCRIBE IN ICN-IOT
Data Publish/Subscribe (Pub/Sub) is an important function

for ICN-IoT, responsible for resource sharing and manage-
ment. In traditional IP network, most of the IoT platforms
provide a centralized server to aggregate all IoT devices, data
and services, publish them to the web portal, and manage the
subscription membership. While such a centralized architecture
ensures data/resource availability, it renders poor scalability
and high bandwidth consumption due to the high volume of
control and data exchange as a result by such an architecture.
In ICN-IoT, we thus consider a decentralized pub/sub model.

A. Pub/Sub in NDN-IoT
NDN is a Pull-based architecture, where the Pub/Sub model

is not naturally supported, but it has been discussed in
COPSS [4]. It integrates a push based multicast feature with
the pull based NDN architecture at the network layer by
introducing Rendezvous Nodes (RN). RN is a logical entity
resided on a NDN node. The data publisher first forwards a
Content Descriptor (CD) as a snapshot to the RN. RN then
maintains a subscription table, and receives Subscribe message
(similar to Interest Packets in NDN) from subscriber nodes.
The data publisher just sends the content using Publish packet
by looking up FIB instead of PIT. If the same content root is
required by multiple subscribers, RN will deliver one copy of
content downstream, hence reduced bandwidth consumption.

B. Pub/Sub in MF-IoT
Publishing in MF-IoT is rather straightforward: the Configu-

ration Service directly publishes new devices to the IoT server,
and in the rest of this section, we will focus on the subscription
part, in which the objective is to maintain the convenience of
a traditional centralized Pub/Sub model while minimizing the
bandwidth consumption. Towards this objective, we consider
two communication models – push mode and pull mode –
for sensor data retrieval in MF-IoT. The choice between these
two options is driven by application requirements. In general,
the push mode allows immediate synchronization of system
state, hence suitable for mission critical applications; the pull
mode suffices for applications that do not have such stringent
requirements, but can achieve fast enough synchronization by
dynamically adapting pull frequency.
Basic Push Mode: The push mode is suitable for event-driven
data delivery, where data is sent to applications whenever
specific events are detected. Here, we introduce a new type
of GUID – subscription-GUID – as well as the mapping
from subscription-GUID to application-GUID that maps the
subscription-GUID to the list of applications that subscribe to
the service. As such, the sink node does not need to know each
individual subscribing application’s GUID, but can simply
specify the subscription-GUID in the destination-GUID field
in a MF packet header.
On Demand Pull Mode : Many IoT applications do not
subscribe to specific sensors/sources, but to a certain type of
IoT service which may be offered by any sensor in a group.
In this case, the pull mode is more suitable.
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Fig. 4: Mapping relationship

In MF, to associate a group of sensors with a subscriber
application, we make use of the subscription-GUID - This
allows to send data requests to multiple sensors (connected
to different sinks) through a single subscription-GUID. The
challenge in this approach is however, when the sink receives
a request, it is unaware of which sensor is needed. To address
this challenge, the IoT server needs to provide additional
information to the sink node. As shown in Figure 4, we
establish a relationship between the sensors and the application
in the IoT server. Similar to the basic push model we have
discussed above, the IoT server assigns a message with the
subscription-GUID that is mapped to multiple device GUIDs
in the subscription, such that the sink node knows the sensors
to be accessed.

V. IOT APPLICATION SCENARIOS

There are a wide range of IoT applications, each with
varying system requirements. To evaluate the performance of
ICN-IoT, we choose two different application scenarios in the
scope of a smart campus: (i) a building management system
(BMS) that has a large number of sensors, sinks, and actuators
(referred to as ICN-BMS); and (ii) a school bus system that
requires mobility (referred to as ICN-BUS).

A. ICN-based Building Management System (ICN-BMS)
BMS is responsible for controlling complex in-building

ecosystems such as climate control, security monitoring,
smoke detection, etc. Most of these systems run on hetero-
geneous communication protocols, and our objective is to
inter-connect them with homogeneous network protocols and
enable the reachability through global, persistent names or
identifiers. Most of the traffic in BMS systems is generated
by the sensors and delivered to the BMS server, hence largely
a data collection system. For control purposes, the BMS
server communicates with actuators whenever one or more
environment parameters reach the pre-set threshold(s) or due
to operations by an administrator. Alternatively, the BMS
server can pull sensor data at a certain frequency, but this
operation mode might consume unnecessary bandwidth and
incur longer round-trip delays, especially when the number
of sensor become large. Therefore, we prefer the push-based
control mode.
System Architecture: In ICN-BMS, we assume four types of
network devices: sensors, routers, BMS server, and actuators.
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Fig. 6: BMS over MF/NDN

Sensors are attached to ICN-enabled sinks, and the associated
objects can either be updated to BMS server by the sink
directly, or be pulled by remote data consumers on demand.
The actuators are also ICN enabled – e.g. thermostat or
light fixture – which provide a network interface for control
purposes. The system architecture of ICN-BMS is illustrated
in Figure 6, in which we include three example building au-
tomation services: environment monitoring service, occupation
monitoring service and control service.

As a reference BMS system architecture, we refer to Build-
ing Automation and Control Network (BACnet) protocol [5],
which has been standardized by American Society of Heating,
Refrigerating and Air Conditioning Engineers (ASHRAE), and
adopted in many commercial BMS deployments. Based on
BACnet, we define ICN objects following the format shown
in Figure 5. Although BACnet is an application layer protocol
that requires middleware to provide a mapping from names to
network addresses (NA), we substitute this identifier with an
ICN name so that BACnet objects can be made accessible via
the ICN network layer.

B. ICN-Based School Bus System (ICN-BUS)
The second scenario we consider is an intelligent campus

bus system that provides both vehicle-to-infrastructure (V2I)

Fig. 7: Route A & school bus system architecture

and infrastructure-to-user interfaces for real time status up-
dates. Today the most common network device on buses is
Mobile Data Terminal (MDT), a GSM-based communication
module supporting data exchange between the control center
and the bus using the SMS service. Most implementation
today is based on the Controller Area Network bus (CANbus)
protocol [6] which allows on-vehicle sensors to communicate
with each other without a host computer. Also, sensor data such
as velocity, seat occupation, and GPS obtained by CANbus
can be directly transmitted to the infrastructure via MDT.
However, the SMS-centric communication model has obvious
shortcomings, namely limited media support and large delays.
In ICN-BUS, we assume that a smart campus is mostly covered
by WiFi, including all bus routes. Thus, we can migrate the
system to ICN for better performance.

System Architecture: In ICN-BUS, shown in Figure 7, we
use ICN-based MDT on each bus. We assume three types
of sensors: velocity sensor, seat sensor, and GPS. Similar to
our ICN-BMS design, we adopt a centralized ICN-BUS server
that handles updates from MDT, as well as sends notification
to one or more buses. In order to support applications, we
also establish peer-to-peer communications in a vehicle-to-
infrastructure (V2I) manner.

The MF-based ICN-BUS combines the mobility and pub/sub
features of MF. Let us assume that drivers in Route A(shown in
Figure 7) are interested in the position and occupancy of other
buses on the same route. They subscribe to the“Route A Data
Sharing from Bus#1” service, and obtain a subscription GUID
(subGUID) from the ICN-BUS server. The access routers
will then add this subGUID to the routing table and insert
subGUID → routerGUID mapping to the GNRS server. At
the sender, Bus#1 sends position and occupancy information
to the subGUID. If the packet arrives at the edge router, but
the bus has moved to the next access point, the packet will
be stored locally based on GSTAR protocol. The router then
performs a GNRS lookup for the latest NA (GUID of the
access router) of the subGUID, and forward the packet to this
NA.

Handling Mobility: ICN-BUS involves mobility as sensors are
installed on buses, which is handled differently in MobilityFirst



Fig. 8: BMS Topology based on flood plan

and NDN. NDN differentiates mobility of a data consumer
from that of a producer. When a consumer moves to a new
location after sending out an Interest, the Data may get lost,
which requires the consumer to simply resend the Interest.
Depending on the network topology and data availability, the
new Interest might be forwarded to the same or a different data
producer. If the data producer itself has moved, the solution
is to flood it across the network which might incur very
high control overhead [2]. On the other hand, MobilityFirst
does not differentiate between producer mobility and consumer
mobility.

VI. SIMULATION RESULTS

We have conducted detailed evaluations of our ICN-BMS
and ICN-BUS systems using NS-3 simulator. We realize the
functional components of these systems on MF-IoT and NDN-
IoT architectures as discussed in Section V. The architecture
efficiency is compared in terms of delay, throughput, and
control overhead metrics.

A. Performance of ICN-BMS
Figure 8 shows the topology of the simulated ICN-BMS

system that includes three types of network entities: wireless
sink nodes (a sink node represents a local wireless sensor
network that includes both the sink and sensors), ICN-BMS
server, and the actuators (such as a thermostat or a light
fixture). Each actuator is associated with the sink in the same
room.
Delay: We first look at the average data reporting delay,
which is the average delay between a sink and the server, in
Figure 9. In the simulations, each sink aggregates 10 sensors,
with each sensor reporting data every 0.5 seconds. We observe
that the average reporting delay is mostly influenced by the
number of hops between the sink and the ICN-BMS server.
Since MF router implements link state control messages and
acknowledgement for reliable delivery due to which extra
delay is introduced. Hence we observe, the average delay of
MF is slightly higher than that of NDN.

Next we compare the performance when actuators are in-
volved. Actuators are co-located in the same room as the sink,

but controlled by the BMS server which issues notifications
after processing the sensed data. This introduces additional
round-trip delay as observed in Figure 10. The performance of
MF is about 10% higher than NDN due to processing overhead
at every hop.
Goodput: We next report the throughput of ICN-BMS in
Figure 11. As the number of sensors per sink (while having
each sensor maintain the same reporting frequency) increases,
the throughput of the system increases. Between MF and
NDN, the former shows better goodput due to less per-packet
overhead afforded by MF protocol, even considering per-hop
reliable data transport.
Routing state: Next, we compare the two architectures in
terms of the routing state. In the NDN-BMS implementation,
the Interest packet (either form a sink to the server, or from
the server to an actuator) carries sensor data, and hence, the
Pending Interest Table (PIT) on the sink node should be large
enough to accommodate the maximum rate of Interest load.
Also the Interest packets to actuators need to be stored until the
corresponding ACK is returned from the actuator. Due to these
factors, the PIT size grows with increasing sensing activity in
the network. On the other hand, MF routing state only record
each device in the network, which is much smaller than the
number of data items produced by these devices. Figure 12
shows this affect as the aggregate rate of content generation
increases in our setup.

B. Performance of ICN-BUS
We next evaluate ICN-BUS to examine the mobility support

of NDN and MF. The setup simulates the MDT (i.e. bus), Bus
schedule server as discussed in Section V. In the simulations,
we deployed 8 access points following the uniform random
distribution within a rectangle area of 400×800, and connected
them to the ICN network via a binary tree topology (typical
in a access setup), maintaining equality of hop counts from all
access points to the server. Interests (in NDN)/data requests (in
MF) are issued every second, expecting 100 bytes of data in
response. In order to clearly demonstrate each ICN’s mobility
support mechanism, we eliminated application-layer mobility
handling – i.e., data requests retransmission in MF and Interest
retransmission in NDN.
Delivery success rate: We first look at consumer mobility
and report the data delivery success measured at the mobile
data terminal (MDT) in Figure 13. The results of the two ICN
architectures are rather comparable with increasing speed of
the MDT. The reason that NDN results appear better is mainly
due to how the simulators are implemented: NDNSim operates
at the chunk level while MFSim operates at the byte level by
segmenting a chunk into bytes for better hop-by-hop reliable
transmission.
Control overhead: We next evaluate the performance in
the case of producer mobility. In NDN, a mobile producer
has to be dealt with some form of flooding to ensure the
Interest delivery; while in MF employees late-binding, hence
the network only needs to issue a GNRS query at the last
hop(this query may be issued multiple times until the new
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location is obtained). Though NDN ensures Interest delivery
through flooding, MF incurs a much less control overhead, as
shown in Figure 14. Finally, we point out that NDN’s strategy
layer can adopt a smart flooding strategy to avoid network
scale flooding.

VII. CONCLUSION

In this paper, we argue the potential of using ICN networks
to support IoT applications, and provide a detailed performance
comparison of NDN and MF in their capability of supporting
IoT scalability and mobility. Through detailed simulations,
we find that NDN and MF achieves comparable performance
results – in terms of delay, goodput and packet success rate.
However, the results also show that MF shows better perfor-
mance in terms of control overhead when mobility is involved
and less routing state in general. Towards realizing a full-
fledged ICN-based IoT platform, our next steps will involve
prototype evaluation on actual testbeds, especially validating
the performance of MF Pub/Sub model.
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