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Abstract— Complex networks are found in various fields.
Complex networks are characterized by having a scale-free
power-law degree distribution, a small average path length
(small world phenomenon), a high average clustering
coefficient, and showing the emergence of community
structure. Most proposed complex networks models did not
incorporate all of these four statistical properties of complex
networks.  Additionally, models have also neglected
incorporating the heterogeneous nature of network nodes.
Moreover, even proposed heterogeneous complex network
models were not general for different complex networks. Here,
we define a new aspect of node-heterogeneity that was never
previously considered which is the node connection standard
heterogeneity. In this paper, we propose a generation model for
heterogeneous complex networks. We introduce our novel
model “settling node adaptive model” SNAM. SNAM reflects
the heterogeneous nature of nodes’ connection-standard
requirements. Such novel nodes’ connection standard criterion
was not included in any previous network generation models.
SNAM was successful in preserving the power law degree
distribution, the small world phenomenon and the high
clustering coefficient of complex networks.
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1. INTRODUCTION

Complex networks are ubiquitous in many areas.
The Internet, the World Wide Web (WWW), social
networks, food web (or food chain) networks and many
other networks are complex networks [1]. Researchers
studied and analyzed data extracted from complex networks
which led to the discovery of their distinct features and
behavioral patterns. Solid awareness of these features can
lead to an improved understanding of the network’s
structure and dynamics. Devising a mathematical model for
complex networks can aid in making decisions about
complex networks management and help allocating their
resources. It can be used to answer research questions such
as discovering the mediator for disease transmission in
sexual networks, predicting future connections between
websites in the WWW, identifying critical nodes or links in
power grid networks; etc. Therefore, finding a faithful
mathematical model that is capable of mimicking the
structure, dynamics and evolution of complex networks is
paramount.  Researchers used advanced computer
capabilities to analyze real large databases to identify
essential properties for modeling complex networks in the
process of creating such mathematical model [2, 3].

Statistical properties of complex networks were

Mohamed R. M. Rizk
Alexandria University

IEEE Senior Member

Email: mrmrizk@ieee.org

coefficient, scale free power law degree distributions, and
the emergence of community structure [3, 4]. Small world
effect means that for a certain fixed value of the nodes’
mean degree, the value of the average path length scales
logarithmically, or slower, with network size. A node's
clustering coefficient C can be defined as “the average
fraction of pairs of neighbors of a node that are also
neighbors of each other”, where C lies between 0 and 1 [1].
The average clustering coefficients in real complex network
tend to have high values. Community structure emerges
when nodes in a community have denser connections within
themselves than to vertices of different communities [5].
Degree distribution which is the fraction of vertices in the
network with degree k follows a scale free power law
distribution in real complex networks. Scale free power law
distributions, P (k) ~ k ¥, have a power law (PL) exponent y
independent of the size of the network and its values are in
the range of 1<y < [3, 4].

Various models tried to find a faithful model for complex
networks. The most influential models in the complex-
network modeling field are: Erdés and Rényi (ER), Watts
and Strogatz (WS), and Barabasi and Albert (BA). Networks
generated according to the ER random graph model have
small average path length but they have Poisson degree
distributions and are characterized by having clustering
coefficients lower than that found in real complex networks
[3, 4]. Networks generated by WS small-world network
model have a short average path length and a high clustering
coefficient. However, it lacks modeling the scale free
property for the networks’ degree distribution [2, 3, and 4].
Thus, the scale-free power-law degree distribution of real
complex networks was not represented in the ER or the WS
models, rendering both models to be inaccurate in modeling
the four characteristics of real complex-networks. This
motivated Barbasi and Albert to induce the scale free
property for node-degree distribution in their highly
acclaimed model [2]. The BA model uses a Preferential
Attachment (PA) connection algorithm that reflects the
belief that nodes usually prefer to connect to higher-degree
structurally-popular nodes [2]. BA model succeeded in
preserving the PL degree distribution and small world
phenomenon of real complex-networks. Networks generated
by the BA model show a power-law heavy-tail degree
distribution, if and only if, the model has the following two
properties; growth (where new nodes are continuously
added to the network) and preferential attachment (PA). The
BA model starts with a small number of nodes (mg), which
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each time step. The new node preferentially attach to other
m nodes, (where m < my) using a connection function based
on the old nodes’ normalized degrees. Thus, new node i
connects preferentially to an old node j having degree Dj
using a connection function (CF) based on the normalized

degree of the node dj, where dj = ZD—]; .
i Dj

Networks generated using the BA model have a scale-
free power-law degree-distribution and their average path
lengths exhibit the small world phenomenon. However, BA
model generates networks with a constant PL exponent
value of y =3, unlike real networks where the exponent
values differ according to the network type and ranges
between 1< y <co. Additionally, BA modeled network
average clustering coefficient is lower than that observed in
real complex networks of the same size [3, 4, 5].

The BA model was still inaccurate in representing all
four properties observed in real complex-networks. This
motivated many researchers to introduce modifications to
the BA model in an attempt to remedy the model’s
shortcomings. Accordingly, devising a model that can
represent all four properties of complex-network is still an
ongoing research [5]. Additionally, most models have
assumed that nodes have the same properties and neglected
incorporating the heterogeneous nature of network nodes.
Moreover, even proposed heterogeneous complex network
models did not integrate it with other structural properties of
the network in the analysis and growth algorithms of such
networks. Also, models were not general for different types
of complex networks. Therefore, finding a faithful general
heterogeneous complex network model that preserves real
complex network statistical properties is still a challenge. In
this paper we aim to devise a mathematical model that
preserves the statistical properties of complex-networks.
Additionally, we include a factor that, we claim, was
undermined in most contemporary complex-network models
which is the node heterogeneity, [4, 5]. We identify two
types of node-heterogeneity; node characteristics
heterogeneity and node connection standard heterogeneity.
Node characteristics heterogeneity reflects the different
properties or attributes that network-nodes have. Node
connection standard heterogeneity reflects the difference in
each node’s requirements to make a connection. The
contribution in this paper can be summarized as:

1) Accounting for node heterogeneity in the graph-theory by
incorporating node-attributes as one of the elements defining
a network graph. Accordingly, our model defines the
network graph, G as a set of three elements; G= {V, E, A},
where V is the number of nodes in the network, E is the
number of edges and A is the set of attributes assigned to
each network node.

2) Based on (1) we propose the Settling Node Adaptive
Model “SNAM” for generating complex-networks. SNAM
acknowledges the heterogencous nature of nodes by
integrating the attribute-similarity with the structural
popularity measure within the CFs.

3) “SNAM” departs from the BA algorithm while
acknowledging the node heterogeneity. SNAM” introduces
the idea of heterogeneous node connection-requirements as
a criterion for connecting nodes

Our proposed models will be validated using Matlab

simulation [6]. The success of each proposed model to
mimic real complex networks will be verified by examining
the generated network statistical properties, namely the
average path length, clustering coefficient, and degree
distribution.
The rest of the paper is organized as follows: section two
presents the related work, section three presents our
proposed models and their simulation results, and section
four is the conclusion and future work.

II. RELATED WORK

Several researchers have proposed mathematical
models that address the heterogeneous nature of the nodes
composing a network. The success of these models in
generating networks that mimic real complex-networks was
examined by observing the statistical properties of these
networks. This section will review a subset of these
attempts.

Bianconi and Barabasi in [7] introduced the term node
fitness to represent nodes’ different abilities to attain
connections. Their work was motivated by the observation
that the nodes’ abilities to attract connections do not depend
only on their degrees ( based on the nodes’ ages). WWW
nodes that provide good content are likely to acquire more
connections irrespective of their ages. In citation networks, a
new paper with a breakthrough is likely to have more
connections than older papers. Thus each node should be
assigned a parameter that describes its competitive nature to
attain connections. In their model, node j upon birth is
assigned a fitness factor n;, following some distribution p(n),
which represents its intrinsic ability to attain connections.
Bianconi and Barabasi model followed the BA PA
connection algorithm with a modified PA function. The
model has the PA function value for connecting an old node
j to a new added node i depending on the old-node degree
Dj, and its fitness value n;. When p(n) follows a uniform
distribution, the degree distribution is a generalized power
law, with an inverse logarithmic correction. The average
clustering coefficient and average path length values of
networks generated by this model were not calculated in the
presented work.

Shaohua et al. in [8] observed that nodes with common
traits or interests tend to interact. They introduced an
evolving model based on attribute-similarity between the
nodes. Each of the network nodes has an attribute set. Node-
attributes can be described by a true or false function as in
fuzzy logic. Shaohua et al. used fuzzy similarity rules to
define a similarity function between attribute sets of two
nodes. A connection is established between two nodes if
their attributes similarities fall within a certain sector.
Despite that this model satisfies the small world property; its
degree distribution does not follow a power law.

Yixiao Li et al. in [9] argued that every vertex is
identified with a social identity represented by a vector
whose elements represent distinctive social features. The
new node added at each time step connects with probability
p to the group closest to its social identity and to the other
groups with probability (1-p). The higher degree node is
attached to the new node within a group using PA. Random



linking to neighbors of the previously attached old node is
repeated until the new node establishes its m links. Their
generated network follows power-law degree distribution
and used triad formation to produce high average clustering
coefficients. The authors claimed that using triad formation
produced high average clustering but they did not present
values for it and they did not measure their generated
networks’ average path length. Additionally, the model did
not increase the length of the attribute vector to more than
one.

While [6, 7, 8] based their connection algorithm on the
PA attachment algorithm, some authors experimented with
models that were not based on the BA PA algorithm such as
those presented in [10] and [11]. Kleinberg et al. in [10]
used a copying mechanism which entails randomly choosing
a node then connecting its m links to neighbors of other
randomly chosen nodes. The model was found to preserve
power-law distributions using heuristics only. They argued
that analytical tools were unable to prove this conclusion,
because the copying mechanism generated dependencies
between random variables. Krapivsky et al. [11] argued that
an author, in a citation network, citing a paper is most likely
going to cite one of its references as well. In their model,
when a new node '1' is added to the network, its edge
attaches to a randomly chosen node 'j' with probability (1-r).
Then with probability r this edge from the new node '1' is
redirected to the ancestor node ‘o’ of the previous randomly
chosen node 'j'. The rate equations of the model show that it
has a power-law degree distribution with degree exponent
decreasing with the increase of the probability r value. Other
statistical properties were not studied. These models were
able to generate networks having a power-law degree
distribution without using the PA algorithm of BA.
However, they are not applicable to all complex-networks.
Whether the node is copying its connections from a random
node or connecting to the ancestor of a node previously
connected to it, is not applicable for some types of complex
networks. Additionally, the choice of the nodes from which
the links are copied or the choice of the ancestors of the
node is made randomly without regards to nodes-
heterogeneous characteristics or their heterogeneous
connection-standards.

Our previous paper [12] introduced the integrated attribute
similarity models “IASM”. IASM is a growing network
model. It uses a preferential attachment algorithm to connect
the nodes. The CF in IASM depends on the attribute
similarity between newly arriving nodes and old network
nodes as well as the structural popularity of old nodes. Two
different structural popularity measures are used in IASM
simulation. In TASM_A, a node’s structural popularity is
based on the number of connections that the node has, i.e.
the node-degree, while in IASM_B, the structural popularity
is based on the node’s Eigen vector centrality. . [ASM
preserved the power law degree distribution and the small
world phenomenon but it did not reflect the high average
clustering coefficient and the emergence of community
structure. We enhance the IASM by adding a triad formation
step which results in increasing the clustering coefficient
values.

II1. SETTLING NODE ADAPTIVE MODEL (SNAM)

1) Introduction:

Nodes, users or entities, in real complex-networks have
different profiles and characteristics. Connections between
nodes affect the network dynamics, and their future
evolution. We argue that nodes having different
characteristics influence the density and the pattern of
connections within a network. The notion of node-attributes
is used to highlight the node-distinct characteristics.
Attribute set is extracted from the characteristics or profiles
of the network node. In our models, nodes are assigned their
attributes upon their arrival to the network. Accordingly,
the network graph G is now defined by a three-element set
G = {V, E, A}, where V is the number of nodes in the
network, E is the number of edges and A is the set of
attributes defining the profiles/characteristics of all the
network nodes. SNAM is a growing generation model with
nodes constantly being added to the network during its
evolution.

SNAM’s connection algorithm uses attribute-similarity
between the newly added node and the old node attribute(s)
in the connection function (CF). Including the attribute
similarity in CF makes it dependent on the attributes of both
of the newly added node and the old node rather than having
the CF dependent only on the old node’s fitness/degree.).
SNAM integrates the attribute-similarity between new node
and old nodes with the structural popularity of old nodes in
the CF. The node structural popularity is a measure of the
node’s popularity based on its network position and
connections. SNAM uses the normalized node-degree as the
structural popularity measure. SNAM departs from the
classic PA connection algorithm presented in BA. SNAM
reflects the idea that nodes are not only differentiated by
their attributes but also according to their connection-
standard requirements. Connection-standard requirements
for the nodes represent the minimum CF values that a node
find satisfactory to connect with other nodes.

To evaluate our models, we generate networks based on
each model using MATLAB simulation. For each of the
generated networks, values for the power law exponent, the
average path length and the average clustering coefficients
were measured and assessed against values reported for a
variety of real complex-networks [3,4].

In SNAM, each new network-node upon birth possesses
its own distinct attribute-set (attribute vector) that represents
the interests or engagements of the node in the network’s L
interests or activities. The CF does not depend solely on a
specific characteristic of the old node but on the
characteristics of both the new and the old nodes. SNAM is
a growing network model. SNAM start with a seed network
of size m, shown in figure 1. Then at each time step a new
node is added with m edges to be connected to it, where m
<m,. Each node is assigned an attribute vector having L
elements. Each element takes binary values of lor 0
representing the presence or absence of an attribute in the
attribute-vector  respectively. Our proposed attribute
similarity is equal to the normalized summation of the inner
product of the new-node and old-node attribute vectors. The
algorithm of SNAM is shown in the flow chart in figure?2.



Figl. Seed network, m, =5

To the extent our knowledge, all previously proposed
models assumed that all newly arriving nodes have the same
requirements when connecting to old nodes. In reality,
nodes may have different views of the same value of a
connection-function (CF) calculated based on attribute
similarity and/or structural popularity. A network node may
have high connection standard and does not settle for the CF
value offered by the tested old node, thus rejecting the
connection. Another new node may have lower standards
and considers the same CF value acceptable. To reflect this,
we assign a characteristic that reflects the node’s standards.
This characteristic represents the minimum acceptable value
of the CF for each node. All old pre-existing nodes whose
CF values with the new node are below the newly arriving
node standard will not be attached to that new node.
Arriving node must then test other old pre-existing nodes to
find the ones that satisfy its connection standard.

Thus, in SNAM, each arriving node, upon birth will
be assigned a value representing its own connection
standard value which is derived from uniform
distribution. Arriving node will calculate its CF values
with old nodes. Hence, the CF obtained values will
not be used to deploy the preferential attachment
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algorithm but will be used to examine if the randomly
chosen old nodes will meet the arriving node’s
standards. A newly arriving node will calculate the CF
corresponding to random chosen nodes. The new node
will establish connections with the old nodes whose
CF values are equal to or higher than its connection-
standard. The used CF depends on the normalized
degree values and/or attribute similarity.

2) Simulation:

The network starts with a seed network m,. A new node
arrives at each time step and each new node ‘i’ is assigned a
random connection-standard value “S;”, where 0 < S; <I1. If
for a chosen pre-existing old node ’j’ the CF value exceeds
S; then 1 will establish a connection to j, otherwise i rejects
the connection to j and another old node is tested. This
testing of other test nodes continues up to a maximum
number of tests ‘NoT’ or until the new node achieves a
predefined number of connections referred to as m. The
arriving node has to lower its standard after reaching its
maximum number of tests ‘NoT’ if it has not made m
connections.
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Notably, we can observe that unlike BA, the arriving node
does not have to calculate the corresponding CF values for
all pre exiting nodes when making connections. In case of
SNAM the CF values corresponding to only the random
chosen test nodes are calculated, Thus, the simulation time
needed to generate an network by SNAM was less than that
needed to generate a network of the same size by both BA
and IASM[12]. In the present model, we experiment with
the maximum number of tests ‘NoT’ required for the
arriving node ’i’ to lower its standard if ‘i’ has not already
established its m connections during the “NoT” tests.

NoT is initially taken as the integer value of half the seed
size m,. NoT value is dependent on the current size (CS) of
the network. NoT is increased by one whenever the CS of
network reaches certain predefined milestones. The value of
these milestones is dependent on the final size of the
network (N) and the number of milestones (NM) occurring
during network evolution, where NM ranges between 1 and
N. Thus, NoT is increased by one whenever the CS of the
network is increased by (N/NM) nodes. The higher the value
of NM, the more rapid is the increase in ‘NoT".

Our experimentation with ‘NoT’ parameter indicated that
rapid increase of ‘NoT’ with network growth resulted in the
presence of irregularities in the statistical characteristics of
the generated network. Here, the maximum value of NM is
10 which correspond to increasing NoT upon the arrival of
10% of the final size nodes (100 nodes). This choice was
made to avoid irregular statistical properties and has proved
to give satisfactory results as shown in figures 3, 4,5,and 6.

The connection function CF is dependent on the old node i
degree D; and attribute similarities (A;j) for both node i and

e i’ B Y Dj +W*i
Z;j D;Ay Z;Dj X Ay
,wherea+w+=1.0,0<0a<1,0<w<l,and 0< B <I..q,

new node j , namely: CF = o*

NM

w, and P are the coefficients used to give different weights
to the different terms of the CF to test their influence.
Simulation of SNAM starts with a seed network of size m, =
5. The network size grows as new nodes arrive to the
network, until reaching a predetermined final size N. In our
simulation N=1000. Each newly arriving node has to
establish m links with the preexisting network nodes, where
m=m,=5. Each new node in the network is randomly
assigned an attribute vector of length L =10, whose elements
are derived from a uniform distribution.

Matlab[6] simulations were performed for different
combinations of the CFs’ coefficients for both models. The
simulation results show the average of 10 experiments with
different random-seed generator values. CFs used can be
based on normalized degree only (B=1, o = w = 0), on
degree with added attribute similarity (o« = 0 and w=1-
where 0<  <1), and on degree multiplied by the attribute
similarity. Simulation results for the Average Clustering
Coefficient (Av_CC), the Average Path length (Av_Pl), and
the Exponent of PL (Exp_PL) for three combinations of the
coefficients a, B and w in figures 3, 4, 5. These results will
be compared to values found for a network of the same size
(number of edges and number of nodes) generated by Erdos
and Rényi (ER), and Barabasi and Albert (BA) models
shown in the next table

TABLE 1: Simulation Results for ER and BA models

Average Path PL exponent Average
length clustering
coefficient
Erdos and 3 - 0.00998
Rényi (ER),
Barabasi and 3 2.49 0.032
Albert (BA)




Figures (3a), (4a), (5a) for the average path length indicate
that small world effect is preserved for three combinations
of a, B and w. Average path length decreases with the
increase of NM. It is obvious that SNAM produces shorter
average path length values for all NM values for the three
combination of a, f and w.

Figures (3b, 4b, 5b) show that the magnitude of PL
exponents for the three variations remains in the range of
1.35<y <1.75 which is consistent with values found in real
networks [1, 3, 4]. Additionally, the magnitudes of PL
exponent saturates at values close to y= 1.35 with the
increase of NM. The PL exponent has no value in ER
generated network as the degree distribution follows a
Poisson distribution. Moreover, the magnitude of the PL
exponent generated by SNAM is less than that of the BA
model but within values reported in [2,3]. The decrease in
the PL exponent is related to the formation of hubs which
will have an effect on the obtained average clustering
coefficients.

The average clustering coefficient values increase with the
increase of “NM” for the three variations as seen in figures
(3¢), (4c), and (5c). Average clustering coefficient reach
high values compared to those of BA model. The clustering
coefficients in figure (3c¢) corresponding to degree only
achieves higher values than those of figure (4c) and (5c¢)
using additive attribute similarities and multiplicative
attribute similarity CF respectively. The smallest average
clustering values for SNAM corresponding to NM =1 was
0.36 which is much higher than that of BA ( 0.032).

We now examine the effect that changing the values of the
coefficients o and B of the CF has on the statistical
properties of the generated network. Figures (6.a), (6.b), and
(6.c) show the effect of varying the coefficient of the
multiplicative attribute similarity term ‘a’ and that of the
normalized degree ‘B’ in the CF on resulting SNAM
statistical properties. Figure (6.a) shows that the higher the
value of ‘a’ (Alpha) the higher the average path length is.
However, the small world phenomenon is preserved for all
‘a, B’ values. The PL exponent values remain between
1.35<y <1.75 for all ‘o, B’ values as seen in figure (6.b).
Figure (6.c) also shows that the average clustering
coefficient increases slightly with the decrease of a.

Thus, the SNAM generation model has preserved the PL
degree distribution, has a small average path length, and has
high clustering coefficient values. Parameter "NoT” value
can be used to generate a variety of complex networks with
specific values of the clustering coefficient, the average path
length and the PL exponent.

SNAM model will be useful in studying online
social networks and mimicking their structure and
dynamics. SNAM excels by including connection standard
which can be used to represent individual differences
between users. SNAM can be used for link prediction
between users in online social networks.

IV. CONCLUSION

This paper took into consideration that complex networks
mathematical models should incorporate their statistical
properties and should also reflect the heterogeneous nature
of network nodes. In this paper, we propose several
mathematical models that pave our path to find a final
mathematical model that can successfully mimic real
complex networks. The proposed models have
heterogeneous network nodes with assigned distinct
attributes. Our work is the first to assign more than one
attribute to each node. SNAM integrates the attribute
similarity measure within the CF. SNAM uses the CF values
to connect the nodes. The CF depends on the old node
degree simultaneously with the attribute similarity between
new node and old node. SNAM is the first model that has
new arriving nodes having different connection-standard
requirements. SNAM proved to be very promising as it
generated a network that had a PL degree distribution, small
average path length and high clustering coefficient values.
The effect of using Eigen vector centrality instead of degree
centrality on the emergence of community structure in
SNAM is still to be examined in the future work. We are
also working on implementing an algorithm to SNAM that
would result in the emergence of community structure.
Implementing an analytical model for SNAM is also part of
our future work.

REFERENCES

[1] Xiao Fan Wang; Guanrong Chen; , "Complex networks: small-world,
scale-free and beyond," Circuits and Systems Magazine, IEEE ,
vol.3, no.1, pp. 6- 20, 2003, doi: 10.1109/MCAS.2003.1228503

[2]A.-L.Barabasi,R. Albert, “Emergence of scaling in random networks
Science 286, 509-512 (1999).

[3]M. E. J. Newman," The structure and function of complex networks".
SIAM Review 45, 167-256 (2003)

[4]R. Albert and A. Barabasi, "Statistical mechanics of complex networks",
Rev. Modern Phys., 74 (2002), pp. 47-97.

[5]Emilio Ferrara, "Mining and Analysis of Online Social Networks" Ph.D.
dissertation 2012.

[6] http://www.mathworks.com/products/matlab/

[7] Bianconi, G.and Barab’asi, A.-L., "Competition and multiscaling in

evolving networks", Europhys. Lett. 54, 436-442 (2001).

[8]Shaohua Tao; XiaopengYue; , "The attributes similar-degree of complex

networks" ,Future Computer and Communication (ICFCC), 2010 2nd

International Conference on, vol.3, no., pp.V3-531-V3-535, 21-24 May

2010, doi: 10.1109/ICFCC.2010.5497519

[9] Yixiao Li; Xiaogang Jin; Fansheng Kong; Jiming Li, "Linking via social

similarity: The emergence of community structure in scale-free

network", Web Society, 2009. SWS '09. 1st IEEE Symposium on , vol., no.,
pp.124-128, 23-24 Aug. 2009 , doi: 10.1109/SWS.2009.5271769

[10] Kleinberg, J. M., Kumar, S. R., Raghavan, P., Rajagopalan, S., and

Tomkins, A., "The Web as a graph: Measurements, models and methods",

in Proceedings of the International Conference on Combinatorics and

Computing, no. 1627 in Lecture Notes in Computer Science, pp. 1-18,

Springer, Berlin (1999).

[11] Krapivsky, P. L., and S. Redner," Organization of Growing Random

Networks", 2001, Phys. Rev. E 63, 0661

[12] Youssef, B, and Hassan, H, “IASM: An Integrated Attribute

Similarity for Complex Networks Generation” in Proceedings of the

International Conference on Information Networking (ICOIN), 2014.



