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Abstract— Conservative methods of pain scales do not allow 

for objective and robust measurement, which are restricted to 

patients with “normal” communication abilities. If valid 

measurement of the pain is not possible, treating the pain may 

lead to cardiac stress in risk patients, under perfusion of the 

operating field, over- or under-usage of analgesics and other 

problems in acute or chronic pain conditions. Pervasive 

computing technologies via biopotential and behavioral 

parameters may represent a solution of robust pain recognition 

in clinical context and everyday life. In this work, multi-modal 

fusion of video and biopotential signals is used to recognize pain 

in a person-independent scenario. For this purpose, participants 

were recruited to subject to painful heat stimuli under controlled 

conditions. Subsequently, a multitude of features via 

biopotentials and behavior signals has been extracted and 

selected from the available modalities. Biopotential and video 

features were fused with an early and late fusion, we could show 

that the classification between baseline vs. tolerance threshold 

has an accuracy of 80 % via late fusion. The data support the 

concept of automated and objected pain recognition of 

experimental pain. There are plans for a clinical project in which 

detection will occur postoperatively in humans. 
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I.  INTRODUCTION  

Pain is a very personal sensation that is difficult to interpret 

without any communication from the patient. Consequently, a 

method for objective measurement of pain would be 

beneficial, particularly in cases where the patient is not able to 

describe the pain in clinical context and also in everyday life 

[2, 5, 20] (e.g. somnolent patients, patients suffering from 

dementia). The recognition of pain captures information about 

the suffering of a person over the time and is relevant to the 

dosage of analgesics.  

 

Research interest in automatic pain recognition has focused 

largely on recognition of facial expressions in painful 

situations for example using the UNBC-McMaster shoulder 

pain expression archive database [7, 10] and only recently the 

in-depth investigation of biopotentials has led to encouraging 

findings [14, 15] for automated pain recognition. Predictions 

based on both modalities combined as it is already very 

common in other sub-disciplines of machine learning is still an 

unexplored area and no works exist that leverage information 

fusion and multi expert systems. This work aims to investigate 

fusion of biopotentials and video data to improve recognition 

of pain intensity in person-independent scenarios. 

II. DATASET AND FEATURE EXTRACTION 

A. Participants 

In these experiments the BioVid Heat Pain database [16] is 

analysed. It comprises 90 participants ((1) 18-35 years (n = 30 

years; 15 men, 15 women), (2) 36-50 years (n = 30; 15 men, 

15 women), and (3) 51-65 years (n = 30; 15 men, 15 women). 

A total of 86 subjects were included in the final analysis 

because four subjects were excluded because of limited data 

quality with regard to the EMG. Only healthy subjects were 

recruited. Pre-existing neurological conditions, chronic pain, 

cardiovascular disease, regular use of pain medication, and use 

of pain medication immediately before the experiment were 

applied as exclusion criteria. 

 

B. Experimental Protocoll 

  The experimental setup consisted of a thermode that was 

used for pain elicitation. The intensity was calibrated for each 

participant such that it divided the range between two 

reference levels (pain starts and pain is barely bearable) into 3 

equally spaced intervals. Each of the 4 different stimulation 

(T1 vs. T2 vs. T3 vs. T4) strengths was applied 20 times to give 

rise to a total of 80 responses. During the experiments, high 

resolution videos (from 3 different cameras), sensor data of a 

Kinect, and a biopotential amplifier were recorded. The 

biopotential channels included electromyography (EMG) of 

zygomaticus, corrugator and trapezius muscles, skin 

conductance level (SCL) and an electrocardiogram (ECG).  
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Fig. 1. Computed window for pain quantification [10] 

Fig. 2. Experimental design; a. Data processing, b. Lab design, c. Heat stimulation signal, d. Medoc  thermode element on the right arm 

All of the features were extracted from a window of 5.5 

seconds (Fig. 1).  

The study was conducted in accordance with the ethical 

guidelines set out in the WMA Declaration of Helsinki (ethical 

committee approval was granted: 196/10-UBB/bal).  

 

C. Biopotential Feature Extraction 

 Feature extraction of the biopotentials was performed after 
channel dependent preprocessing. The EMG and ECG 
channels were filtered using a Butterworth bandpass filter with 
the frequency ranges of [20; 250] Hz and [0.1; 250] Hz, 
respectively. This step was necessary to reduce noise and 
minimize the effects of trends in the signals. For the EMG 
signal an additional noise reduction procedure based on 
Empirical Mode Decomposition was applied [1]. For the EMG 
and SCL channel, a number of features based on signal 
amplitude and frequency such as peak height, peak difference, 
mean absolute difference, Fourier coefficients, bandwidth were 
computed as well as additional features based on entropy 
(approximate and sample entropy [12]), stationarity [3] and 
statistical moments. In the ECG signal, first the QRS 
complexes were detected then based on the differences 
between consecutive heart beats (RR intervals), the mean 
difference, the root mean sum of squared differences (RMSSD) 
as well as the slope of the regression line computed on the RR 
intervals, were calculated.  

D. Video Feature  

From the video modality we extracted facial expression and 

head pose features. The head pose is estimated from depth 

maps by fitting a generic head model to the measured point 

cloud [17]. This yields 3 rotation angles and 3 position 

parameters per frame. For facial expression features, we 

automatically detect facial landmarks on the mouth, right eye 

and right eyebrow with IntraFace [19]. Several distances 

between these landmarks measure facial deformation.  

 

These distances were measured in 3D [17] and include eye to 

brow distance, eye closure and mouth height, among others. 

Deepening of the nasolabial fold were measured through the 

mean gradient magnitude in the corresponding image region.  

Over time, each of these facial expression and head pose 

parameters yields a signal. For each signal we applied a low-

pass filter and calculated the first and second temporal 

derivative of the resulting signal.  

Next, we extracted statistical parameters of the low-pass 

filtered signal and its derivatives, namely the mean, median, 

standard deviation, range, inter-quartile range, inter-decile 

range and median absolute deviation. The extracted statistical 

parameters were used as facial expression and head pose 

features for the following analysis. The overall feature 

extraction method is described in detail in [17,18].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig.2. Experimental design; a. early fusion, b. late fusion [8] 

III. CLASSIFICATION AND FUSION APPROACHES 

For the classification of the pain intensity levels, classification 

and fusion (see figure 2) techniques have been applied to the 

extracted features [4, 6, 8, 13]. The focus of this work is set on 

the applicability of early and decision fusion approaches for 

person-independent recognition of pain stimuli. Additionally 

the combination of early and decision fusion has been 

investigated by combining specific channels on feature level 

with level with subsequent fusion with other channels on 

decision level. Early fusion has been carried out by 

concatenation of the input feature vectors and subsequent 

training. Fusion on the decision level relies on decision scores 

of separate classifiers for each of the channels. In the literature 

(e.g. [9]) a variety of possible fusion mappings exist (grouped 

into fixed and trainable). As a fixed mapping we chose the 

sum rule and as a trainable mapping we decided on a pseudo-

inverse trained on each of the classifiers’ probability outputs 

per class. The classifier was a Random Forest. Since the 

dimensionality of the input data (especially when 

concatenated) reached several hundred, a feature selection 

algorithm has also been applied – e.g. sequential floating 

forward selection (SFFS) [11] - to reduce the set to the most 

discriminative ones. 

 

 

 

IV. RESULTS 

In figure 3 the two class problems of the pain threshold are 
presented. We made significance test for the comparison of the 
highest separate parameter with the highest fusion parameter. 
For the two class problems 0 vs. 4 and 1 vs. 4, the test of the 
biopotential (highest separate parameter) vs. late fusion 
(highest fusion parameter) was significant, for the class two 
problems 3 vs. 4 the video parameter (highest separate 
parameter) vs. early fusion, video parameter vs. late fusion was 
significant.    

 

 

 

A. Feature Selection/ Feature Importance 

The biopotential features of facial electromyography and 
video signals inter_decile_range_of_brow_to_mouth_distance 
and standard_deviation_of_nasal_wrinkling were chosen as 
the most selective.  

V. CONCLUSSION 

The simultaneously measurement of both parameters 
(biopotentials and video) improve the accuracy of pain 
intensity recognition.   

The comparison between the accuracy of biopotential vs. 
video is not significant. It can be concluded, with the use of 
only one parameter, both methods have the same effect in 
relation to the accuracy. Both methods have their pros and 
cons. In this case, the modality to be omitted could thus be 
determined by the clinical staff, the patient, or the patient's 
relatives. The biopotentials are cheaper and well established in 
clinical institutions. On the negative side, the electrodes which 
may feel uncomfortable and cosmetically displeasing to the 
user, must be reattached hourly or daily. Especially for young 
children could electrodes on the skin elicit anger and anxiety. 
In contrast, the video method is more comfortable, while the 
technology is currently expensive and requires ideal lighting 
conditions.   

 

Outlook 

Further, the classification algorithm requires testing and 
optimization within a clinical environment. Finally, the goal of 
the project is the advancement of pain diagnosis and 
monitoring of pain states. With the use of multimodal sensor 
technology and highly effective data classification systems, 
reliable and valid automated pain recognition will be possible. 
The surrogate measurement of pain with machine learning 
algorithms will provide valuable information with high 
temporal resolution for a clinical team, which may help to 
objectively assess the evolution of treatments (e.g., effect of 
drugs for pain reduction, information of surgical indication, the 
quality of care provided to patients).  
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Fig. 3. Fusion results via two class problems 
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