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ABSTRACT
In this work, we investigated whether activity routines of
stroke rehabilitation patients can be discovered from body-
worn motion sensor data and without data annotation using
topic modeling. Information about the activity routines per-
formed by stroke patients during daily life could add valu-
able information to personal therapy goals. As topic model
input, we used a set of activity primitives derived from up-
per and lower extremity motion sensor data. We monitored
three stroke patients during their daily life in a day care cen-
ter for 8 days each within 3 weeks. We achieved up to 88%
accuracy for activity routine discovery for subject-dependent
evaluations. Our discovery approach seems suitable for ac-
tivity routine discovery in rehabilitation patients.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Design, Experimentation, Human Factors, Measurement

Keywords
Topic model, stroke patients, unsupervised, daily routines

1. INTRODUCTION
Stroke is considered to be the most leading cause of disability
in the world [8]. To assess the physical impairment of stroke
patients therapists use motor function tests, as the Fugl-
Meyer and the Chedoke-McMaster Stroke Assessment [4, 5].
However, these clinical assessments can only be applied dur-
ing therapy and do not provide information on patients’ ac-
tivities and routines in daily life. Several approaches exist
to implement objective activity measurements in daily life
[9, 6, 11]. Patel et al. estimated the total Functional Ability

Scale score of patients from acceleration data [9]. Uswatte
et al. used accelerometers at the wrists to infer the activity
of the impaired arm [11]. While these approaches provide
quantitative scores and activity measures, they do not yield
insight in the type of activities and daily routines that pa-
tients performed. Nevertheless, monitoring patients’ behav-
ior and activity routines outside therapy could add valuable
information on describing patient lifestyle and thus defining
individual therapy goals.

Activity discovery has been proposed to identify daily rou-
tines, without previously trained classifiers [1, 3]. However,
activity routine discovery needs to deal with variations in
routine performance from day to day and between persons.
A commonly considered approach to activity routine dis-
covery is to compose routines from activity primitives. Ac-
tivity primitives have a fine temporal granularity and can
be recognized from on-body sensor data. Huynh et al. ap-
plied topic models to discover activity routines, such as lunch
and office work from activity primitives [7]. They used ac-
tivity primitives including desk activity and having lunch,
which were classified using a previously trained Näıve Bayes
model. These activity primitives were subsequently consid-
ered as input for the topic model. Since the activity primi-
tives required a trained classifier, annotations of actual ac-
tivity performances would be needed during the classifier
training. In contrast, we investigate whether the activity
routines of rehabilitation patients could be discovered from
activity primitives without the need of trained classifiers.
Our approach is based on person-independent body posture
and activity features measured at the extremities.

In this work, we investigate a topic model-based activity
routine discovery in rehabilitation patients using wearable
motion sensors. Our approach does not require annotations
for activity primitives and routines. In particular, the con-
tributions of this paper are the following: (1) we show that
activity routines can be discovered from a set of rule-based,
person-independent activity primitives that do not require
trained classifiers and activity annotations. (2) We ana-
lyzed the influence of the key topic model parameters docu-
ment size, number of activity topics, and the hyperparame-
ter α, on the activity routine discovery performance. (3) We



evaluated our approach with three stroke patients who were
recorded in a day care center using wearable motion sensors
during 8 days within 3 weeks.

2. METHODOLOGY
For activity routine discovery, we used a layered approach
as illustrated in Figure 1a. Activity primitives were derived
from sensor data according to a set of rules. Subsequently,
the activity primitives were used as input for topic model
based activity routine discovery. Activity topic activations
(probabilities) were then mapped to distinct activity rou-
tines. The study recording process and the different layers
of the discovery approach are detailed in the following.

2.1 Study Recordings
In our monitoring study, we included three male stroke pa-
tients, aged 47-57 years. The patients regularly visited the
day care center of the Reha Rheinfelden rehabilitation cen-
ter in Switzerland. Patients suffered from hemispheric stroke
resulting in either left or right upper and lower extremity
activity impairment. Two of three patients primarily used
a wheelchair but were capable of short distance walking.
Patients arrived in the day care center in the morning, fol-
lowed their daily therapy schedule including lunch and rest-
ing phases and went home in the evening. In the morning, 6
Shimmer3 motion sensors were attached to each wrist, up-
per arm and upper leg as illustrated in Figure 1b and logged
acceleration, gyroscope and magnetometer data at 50 Hz.
Sensors were carried during the whole day (except for tem-
porary removal during water therapy) and detached before
patients left the day care center in the evening. The study
was approved by the local cantonal Ethics committee.

For recording days, activity routine annotations were ex-
tracted from the individual daily therapy schedule by as-
signing each therapy to one of the activity routines. Ac-
tivity routines included cognitive training (covering training
exercises on a computer or working sheet) socialising (active

Figure 1: a) Overview of activity routine discov-
ery approach: Activity primitives are detected from
sensor data S1−S6. Subsequently activity topics are
discovered from activity primitives followed by kNN
based mapping of activity topics to activity routines,
b) sensor setup with affected arm left.

Table 2: Number of activity routine repetitions
recorded for each patient in 8 days within 3 weeks.

Patient 1 Patient 2 Patient 3 Total

Cognitive training 3 1 5 9
Socialising 34 33 35 102
Motor training 13 20 14 47
Medical fitness 2 8 7 17
Rest/sleep 1 6 4 11

interaction with other people)motor training (therapies that
involve physical motor function training exercises) medical
fitness (intense physical training exercises) and rest/sleeping
phases. Rest/sleeping phases were not specified in the ther-
apy schedule but performed during breaks in the day care
center. Thus, time and duration of rest/sleeping were added
to the therapy schedule (hand written) by therapists and the
study examinators. In total, we collected 137 hours of data,
of which 100 hours were annotated. For each patient 8 days
within 3 weeks were recorded. Depending on patients’ per-
sonal therapy schedule, only a subset of activity routines
might be performed regularly. Table 2 shows the routines
and number of repetitions recorded for each patient.

2.2 Activity Primitive Detector
In total, we derived 36 activity primitives from upper arm
and lower arms and thigh-worn sensors. Activity primitives
were described by binary decisions on particular arm and
body postures as well as arm and leg movement as detailed
in Table 1. We considered arm and leg activity including
affected an non-affected extremities to be indicators for the
physical activity of patients and thus relevant for activity
routine discovery. We further distinguished between activity
in the low frequency band (0.2− 2.5Hz) and outside the low
frequency band. We also assumed body postures like sitting
and standing and arm postures such as the angle between
upper and lower arm, wrist orientation and orientation of the
lower arm towards the horizontal plane to be informative for
activity routine discovery in rehabilitation scenarios.

2.3 Activity Topic Discovery and Mapping
We applied the Latent Dirichlet Allocation topic model (LDA)
for activity topic discovery as suggested by [7]. In activity
routine discovery the topic model is used to discover K hid-
den activity topics in a corpus of segments. Each segment
covers histograms over activity primitive sequences of a time
segment DS of a day. LDA assumes that for each segment
s there is an activity topic distributions θs which is derived
from a Dirichlet distribution Dir(α) with the hyperparam-
eter α. While a high α value should favor all activity topics
in a segment equally, small α would privilege one particu-
lar activity topic for one segment. When applying LDA to a
corpus of segments aK-dimensional activity topic activation
vector γs is inferred from the activity primitive histogram
of each segment s based on the estimated distribution θs.
The normalized γs describes the estimated occurrence ratio
of each activity topic in a segment s. More detailed infor-
mation on LDA can be found in [2]. As suggested by [7]
the number of activity topics K in the data could be higher
than the number of activity routines M . In order to assess
and compare discovery accuracy across patients we applied
a kNN classifier for mapping activity topics to activity rou-
tines using the topic activation vector γs as feature vector.



Table 1: Activity primitives (1)-(36) detected at the low-level activity primitive detector: The table shows
feature window sizes/steps, thresholds of binary features FSi inferred from the 3-axis acceleration signal accxyz
and quaternions (qSi, qSj) for sensors Si, j | ∈ {S1, S2.., S6} as well as detection logic for each activity primitive.

Activity Primitives Window Binary Feature Detection Logic

(1)activity both arms, (2)activity affected arm, 1s/1s F = 1 | σ2(||accxyz||) ≥ 0.05, (1): FS2FS5 (2): FS2FS5,

(3)activity non-affected arm, (4)no arm activity (3): FS2FS5, (4): FS2FS5

(5)activity both legs, (6)activity affected leg, 1s/1s F = 1 | σ2(||accxyz||) ≥ 0.05, (5): FS3FS6 (6): FS3FS6,

(7)activity non-affected leg, (8)no leg activity (7): FS3FS6, (8): FS3FS6

Peak in low frequency band: (9)both arms, 5s/1s F = 1 | max{FFT (accxyz)}∈ [0.2, 2.5]Hz (9): FS2FS5 (10): FS2FS5,

(10)affected arm , (11)non-affected arm, (12)none (11): FS2FS5, (12): FS2FS5

Peak in low frequency band: (13)both legs, 5s/1s F = 1 | max{FFT (accxyz)}∈ [0.2, 2.5]Hz (13): FS3FS6 (14): FS3FS6,

(14)affected leg, (15)non-affected leg, (16)none (15): FS3FS6, (16): FS3FS6

(17)body movement, 120s/1s F = 1 | σ2(||accxyz||) ≥ 0.05 (17): FS2 ∨ FS3 ∨ FS5 ∨ FS6,

(18)no body movement (18): FS2FS3FS5FS6

(19)stand, (20)sit 1s/1s F = 1 | μ(‖accy‖) > μ(‖accz‖), (19): FS3FS6 (20): FS3∨FS6

Wrist orientation affected arm (21)horizontal, 1s/1s F = 1 | μ(‖accz‖) > μ(‖accx‖) (21):FS5 (22):FS5

(22)vertical, (23)-(24)non-affected arm analogue (23):FS2 (24):FS2

Arm posture affected arm (25)adducted, 1s/1s F 1 = 1 | arccos(〈qSi, qSj〉) < 60◦ (25):F 1
S4,S5 (26):F 2

S4,S5

(26)90◦angle, (27)streched, F 2 = 1 | 60◦ ≤ arccos(〈qSi, qSj〉) < 120◦ (27):F 3
S4,S5 (28):F 1

S1,S2

(28)-(30)non-affected arm analogue F 3 = 1 | arccos(〈qSi, qSj〉) ≥ 120◦ (29):F 2
S1,S2 (30):F 3

S1,S2

Lower arm orientation affected arm 1s/1s F 1 = 1 | atan2(accy, ||accxz||) < 60◦ (31):F 1
S5 (32):F 2

S5 (33):F 3
S5

(31)down, (32)horizontal,(33)up, F 2 = 1 | 60◦ ≤ atan2(accy, ||accxz||) < 120◦ (34):F 1
S2 (35):F 2

S2 (36):F 3
S2

(34)-(36)non-affected arm analogue F 3 = 1 | atan2(accy, ||accxz||) ≥ 120◦

2.4 Implementation
To evaluate the topic model we used the LDA implementa-
tion of [2], which includes an iterative optimization for topic
model parameters α, θ regarding model likelihood. The ini-
tial hyperparameter α was set to α = 0.01 as suggested by
[7]. Activity primitive segments were formed of segment size
DS with a segment step DW = 0.1 · DS. We applied the
Borda Count ranking method to the topic activations γs of
all segments s covering the same DW time slot. We investi-
gated subject-dependent leave-one-day-out cross-validation
and subject-adapted leave-one-day-out cross-validation. The
evaluations involved topic model and kNN model estima-
tion on all patients’ data except for the left-out day. For
the evaluation analysis we only evaluated activity routines
counting at least 3 repetitions in the dataset resulting in 3,
4, 5 and 5 activity routines for patient 1, 2, 3 and subject-
adapted analysis (Table 2). For each topic model estimation
we performed 3 iterations and chose the one with the high-
est likelihood. As evaluation measure we used the averaged
class-specific accuracy of activity routine predictions on ac-
tivity routine annotations. Because of random topic model
internal parameter initialization we investigated mean and
standard deviation across 5 independent topic model runs.
We further investigated the influence of the hyperparame-
ter alpha on the discovery performance. Thus, we evalu-
ated fixed alpha values beyond the suggested default setting
50/K [10].

3. RESULTS
3.1 Activity Routine Discovery
Figure 2 shows the averaged class-specific accuracies for the
subject-dependent and subject-adapted evaluation for dif-
ferent segment sizes DS and number of activity topics K.
Using our layered discovery approach the activity routines
of rehabilitation patients were discovered with up to 88%
accuracy for patients 1 and 2 and about 75% for patient
3. The evaluation included activity routines as specified in
Section 2.4. With increasing number of topics, accuracies
even increased for all patients. For all patients, the highest
accuracies could be achieved at a segment size of DS = 20
min. At comparable parameters for subject-dependent mod-

els (segment size of DS = 20 min and K = 2M) we achieved
78 % accuracy for patient 1 (K = 6) and 3 (K = 10) and
88 % for patient 2 (K = 8). Patient 2 was not using a
wheelchair and the recordings showed larger variability in
activity primitives across the activity routines, which could
explain the overall higher accuracy obtained for this patient.
We even yielded 71 % accuracy for subject-adapted evalu-
ation including all activity routine data (also routines with
less than 3 repetitions per patient, Table 2).

Figure 3b shows discovery performances across different α
values exemplary for patient 3. The parameter rarely has an
influence on the accuracy as variations are small and within
the accuracy’s standard deviation (Figure 2). This trend is
similar for all 3 patients. Thus, routine topic activations γ
inferred from activity primitives seem to be discriminative,

10 20 30 40 50
30

40

50

60

70

80

90

100

Segment size DS [min]

A
cc

ur
ac

y 
[%

]

5 10 15
30

40

50

60

70

80

90

100

Number of activity topics K

Patient 1 Patient 2 Patient 3 All Patients

Figure 2: Averaged class specific accuracies and
standard deviation for varying segment size DS and
number of activity topics K for subject-dependent
(patients 1, 2 and 3) and subject-adapted (all pa-
tients) evaluation.
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Figure 3: a) Confusion matrices for subject-dependent (patients 1, 2, 3) and subject-adapted (all patients)
evaluation showing patient specific activity routine classes. Activity routines are clearly separable from
activity primitives based on body posture and extremity activity, b) averaged class specific accuracies for
different topic model hyperparameters α and number of topics K. The hyperparameter does not influence
the discovery accuracy of the approach as variations are small and within the standard deviation of 5%.

independent of α. Having discriminative routine topic acti-
vations the kNN (used for mapping and performance evalua-
tion) yields high accuracies. However, when targeting activ-
ity routine discovery favored and thus clear activated activ-
ity topics (small α values) per segment could make routine
topic and activity routine mapping more evident. The inves-
tigate this hypothesis an alternative to kNN for performance
evaluation should be analyzed in future work.

Fig. 3a depicts the confusion matrices for subject-dependent
and -adapted evaluations. Using the layered discovery ap-
proach all activity routine patterns were clearly separable for
each patient. Furthermore, few confusions for the subject-
adapted analysis suggest activity routine patterns to be sim-
ilar across patients. The 6% decrease in averaged accuracy
compared to subject-dependent analysis (Figure 2) results
from increasing confusions for cognitive training and social-
ising. Reasons might be highly patient dependent execution
of the activity routine cognitive training and few activity
routine repetitions (total= 9, Table 2). Overall high accu-
racies show that it is possible to discover activity routines
of stroke patients from sensor data using topic modeling.
The topic model discovered meaningful activity routine pat-
terns from activity primitive derived from upper and lower
extremity activity and body and arm postures.

4. CONCLUSION
In this paper, we investigated activity routine discovery of
rehabilitation patients from sensor data using topic mod-
eling. We achieved accuracies between 78% and 88% for
all subject-dependent evaluations when considering activity
routines including socialising, cognitive training, medical fit-
ness, motor training and rest/sleeping phases. These results
indicate that our approach can be suitable for the discovery
of activity routines that rehabilitation patients perform dur-
ing a day in the day care center. The topic model parameter
invstigation showed that with increasing number of activity
topics, accuracy increased for all subject. While the opti-
mal accuracy was found for a segment size of DS = 20min
the hyperparameter α did not influence accuracy. High dis-
covery accuracies suggests that the activity routines show
characteristic patterns regarding the derived set of activity
primitives which was based on arm and leg movement as
well as arm and body postures for both, affected and non-
affected body side. Thus, activity routine disocvery does not

require complex activity primitives detected from trained
classifiers. Furthermore, the subject-adapted investigation
showed, that activity routine patterns seem to be highly si-
miliar across all three stroke patients. In future work, we
plan to validate our approach by extending the study at
the day care center and expand the evaluations to a higher
number of patients.
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