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Abstract— Ambient Health Monitoring is becoming 
increasingly important for supporting proactive self-monitoring 
as part of a healthy lifestyle and as an enabler of appropriate 
healthcare services in Ambient Assisted Living (AAL). However, 
the heterogeneity of available context sources and AAL 
infrastructure components hinders the design of holistic systems. 
In this paper, we describe a comprehensive modular system 
approach for integrating heterogeneous context sources, 
including: stationary sensor networks in AAL infrastructure; 
wireless medical device sensors; embedded mobile device sensors; 
as well as virtual sensors. We outline the potential use cases of the 
system by presenting a prototype lifelogging application for 
Android, which dynamically integrates several sensor types into a 
personal health record, with a special focus on activity 
recognition. The application also demonstrates the usage of 
gamification methods as a persuasive means of enhancing the 
intrinsic motivation of users towards a personalized healthy 
lifestyle.  
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I.  Introduction  

Worldwide, human life expectancy has been growing for 
many years. This fortunate development is made possible, in 
large part, by significant improvements in advanced health 
monitoring technologies and related treatments. Whereas in 
the past, assessment of vital parameters was restricted to a 
doctor’s office or a clinical environment, recent advances in 
sensor technologies, mobile devices and wireless networks 
have enabled the proliferation of continuous Ambient Health 
Monitoring (AHM) at home and on the move. 

Longer lifetimes creates challenging demands for the 
organization of daily life of elderly people with degrading 
mental and physical abilities, and will impose significant 
financial and organizational burdens on the healthcare systems 
of societies confronted with this demographic change. 
Ambient Assisted Living (AAL) research approaches these 
challenges by providing technical healthcare solutions, which 
are often based on monitoring health-related data. AHM can 
be used proactively as a means of encouraging healthy life 
strategies in younger people (e.g., Quantified Self Movement 
[1]) and for fulfilling the increasing demands by the elderly 

population for support mechanisms that enable an 
autonomous, active and fulfilling lifestyle. 

AAL projects are often focused on developing high-tech 
infrastructures that replace missing or fading human abilities 
(e.g., eating) with (semi-) automated technical services (e.g., 
feeding robots). Moreover, many AAL projects focus on 
specific aspects of service provisioning and develop dedicated 
solutions for those. Examples include sophisticated solutions 
for dedicated sensing tasks, like in the DiaTrace project [2], 
which combines activity detection, meal photographs, blood 
sugar monitoring, etc. into a dedicated nutrition support 
system. 

Unfortunately, most of these approaches are not 
interoperable, require significant technical infrastructure and 
maintenance, and usually only fulfill service aspects that have 
been planned within the scope of the respective projects. 
There are first attempts to deal with the interoperability 
challenges of AAL infrastructures by creating middleware and 
reference architectures with standardized protocols [3], but 
these usually don’t focus on monitoring aspects per se.  

Therefore, the development of comprehensive AHM 
technologies is faced with significant challenges. First, the 
associated logging infrastructure must support a plethora of 
sensor device types, including sensor networks in fixed 
infrastructures; mobile sensors on portable devices; wirelessly 
connected medical devices; and virtual sensors interpreting 
local and remote data. Second, the syntax, semantics and 
access methods of rich contextual information may not be 
known beforehand, due to the rapid development and 
deployment of diverse data sources. AHM technology should, 
therefore, be able to dynamically integrate newly available 
data sources at runtime and should also be able to flexibly 
adapt the system to the availability of these new sensor types.  

 In this paper, we present a holistic approach for AHM that 
supports the above requirements. Our approach includes a 
lifelogging mobile application that dynamically integrates 
diverse context data from wireless sensor networks; 
commodity health devices; and activity recognition sensors on 
common smartphone platforms. We evaluate the system 
through user surveys and a prototype application evaluation 
that uses gamification techniques to support self-intrinsic user 
motivation. 



II. System Architecture 

We base our proposal on the SmartAssist system 
architecture, which was previously developed at our Institute 
within the framework of a German BMBF-sponsored AAL 
project [4]. SmartAssist provides an open platform for the 
creation of context-aware AAL services that are connected to 
the social network of elderly, both at home and on the move. 
The SmartAssist infrastructure consists of an in-home wireless 
sensor network; a central data server and processing platform; 
a web based service portal; and a mobile software platform 
(described below). Users can subscribe to and use AAL 
services, define peers in their social networks (patrons) that 
will be informed about significant variations of their vital data, 
and much more (see [5] for details).  

To support seamless context-aware services outside 
SmartAssist households, we also developed a mobile 
infrastructure called Ambient Dynamix [6], which is a 
community-based approach for context-aware computing in 
which advanced sensing and acting capabilities are deployed 
on-demand to mobile devices as plug-ins. Dynamix runs as 
lightweight background service on the user’s mobile device, 
leveraging the device itself as a sensing, processing and 
communications platform. Dynamix comes with a growing 
collection of ready-made plug-ins and provides open software 
developments kits (SDKs) and a scalable repository 
architecture, which enable 3rd party developers to quickly 
create and share new plug-in types with the community. Both 
native apps and Web apps can request context support from a 
local Dynamix instance using simple application programming 
interfaces (APIs). Dynamix automatically discovers, 
downloads and installs the plug-ins needed for a given sensing 
or acting task. When the user changes environments, new or 
updated plug-ins can be deployed to the device at runtime, 
without the need to restart the application or framework. For 
details on the Dynamix approach, please see [7]. 

In this work, we leverage Dynamix as the basis for 
developing lifelogging applications for mobile devices. In 
order to demonstrate the feasibility of this approach, we have 
developed a prototype lifelogging application supporting the 
following sensor types: 

I. Sensor Network Plug-ins 

We developed a dedicated plug-in that enables applications 
to easily access the data obtained within the wireless sensor 
network in SmartAssist households. The plug-in obtains user 
profile and sensor values through the REST-APIs of the 
SmartAssist server. This principle can be applied to any sensor 
networks that provide a Web-based proxy. 

II. Medical Device Plug-ins 

We also developed a number of example plug-ins for 
measuring vital parameters from common medical devices 
connected directly to the user’s device (e.g., via Bluetooth) or 
via an Internet connection to a data provider’s server interface. 
These plug-ins include: 

 Sleep State – This plug-in enables apps to discover a 
variety of sleep time, phase and quality information 

provided by a Zeo Mobile Sleep Management device 
[8] connected via Bluetooth. 

 Heart-Rate Biotelemetry – This plug-in delivers 
heart-rate, step-count and user speed information 
from a Zephyr Hx fitness-tracking device [9]. 

 Withings – This plug-in provides weight, fat 
percentage, pulse and height from a Withings WiFi 
Digital Body Scale and/or Withings blood pressure 
monitor [10]. 
 

See [7] for a list of health-related Dynamix plug-ins, including 
sound pressure level, air quality, ambient light, and more. 

III. Virtual Sensor Plug-ins 

Besides vital data obtained from medical devices, the 
observation of user activities and mobility patterns are equally 
important for the determination of the user’s health situation. 
Therefore, we created an activity recognition plug-in as a 
virtual sensor type for Dynamix. Commercial systems such as 
myVitali [11] or Nike+ Fuelband [12] already use 
accelerometer data for measuring the user’s physical activity. 
Current generation smartphones also provide the sensor 
features and processing power necessary to perform single 
activity recognition directly within the phone [13]. 

A. Relevant Types of Activity 

To determine relevant activities in terms of User-Centered-
Design [14], a user survey of 9 people between the ages of 22 
and 75 was carried out [15]. As a result, the following 
activities of daily living were considered to be most relevant 
for activity recognition: walking, running, sitting, standing, 
cycling, climbing up stairs and climbing down stairs. 

As a first attempt, we developed a simple Pedometer plug-
in that uses the device’s inbuilt accelerometer to accurately 
detect step events and associated step force, which can be used 
to disambiguate between running and walking [7]. For simple 
step detection, algorithms based on accelerometer data can 
achieve sufficient accuracy [13]; however, for the detection of 
daily living activities, additional sensors (e.g., gyroscope) and 
algorithmic techniques are necessary. 

B. Activity Detection using Trained Classifier 

To provide a foundation for advanced activity detection, a 
training classifier was constructed. In order to collect 
sufficient training data, 3 subjects were instructed to perform 
each aforementioned activity (e.g., walking, running, sitting) 
over a period of 120 seconds, while wearing the smartphone in 
their pocket. The following features were extracted (per axis) 
from the data collected from the gyroscope and accelerometer: 
mean, standard deviation, energy, correlation coefficient. The 
suitability of these features has already been demonstrated 
[16]. Since the movement of each activity has a different 
duration, the concept of sliding windows with different 
window sizes of 1, 2 and 3 seconds was applied to the feature 
extraction process. 

The obtained data were imported in the data mining tool 
WEKA [17] and used to train 12 different classifiers and to 
examine their suitability using a 10-folded cross-validation, 



including the k-Nearest-Neighbor, Naive Bayes and the C4.5 
classifier. These algorithms are also listed among the 10 best 
classifiers in data mining area [18]. Taking account of a 
sufficiently high accuracy of each activity, the C4.5 algorithm 
[19] with a window size of 2 seconds has been identified as 
best suited for recognizing the intended activities. These 
results were integrated into the Dynamix Activity Recognition 
plug-in. By default, the trained C4.5 classifier is used, but it 
can be replaced by other classifiers, even at runtime [15]. 

IV. Prototype Lifelogging Application 

To investigate the validity of our approach, we developed a 
prototype lifelogging Android app based on Dynamix. This 
section describes the target groups, usage contexts, design 
goals and the lifelogging app itself. 

A. Target Groups & Usage contexts 

The design of the lifelogging app was based on the results 
of the previously mentioned user study [15]. As such, the 
following usage contexts were considered most relevant to the 
users: 1) Visualization of vital parameters – This context of 
use was considered the most fundamental since users want to 
measure and view their vital signs to assess their current 
health state; 2) Sports – Athletes use the application before, 
during and shortly after sportive activities in order to evaluate 
their performance; 3) Slim – In this context, people observe 
their weight loss progress, paying special attention to physical 
activity and energy balance; and, 4) Healthcare Support – 
Within this context, the measured data of the application is not 
primarily relevant to the user, but can be basis for a 
notification of a healthcare professional in case of deviations 
from standard values. 

B. Design Goals 

In addition to the above design contexts, the system should 
be designed for both novice and expert users. In particular, 
elderly people should be supported with simplified user 
interfaces, self-describing capabilities [20] and integrated help 
functionality. Importantly, simple measurement of vital signs 
should be possible and derived data should be visualized 
coherently using simplified information hierarchies. In 
addition, gamification methods (e.g., goals, scores, alerts, 
achievements, etc.) [21] can be used for generating intrinsic 
user motivation [22]. These techniques should be introduced 
in relation to the usage context, to address users’ needs 
without overwhelming them. Users should be able to set goals 
themselves and monitor their progress. Automatically created 
and manually configured challenges should be supported. 
Currently measured vital signs should display the user’s health 
status through an aggregated value that is comprehensible at a 
glance. 

Detailed views should enable more information and trend 
indications. 

C. Android Application 

Using the above design goals, we developed a Dynamix-
based Android app that provides comprehensive lifelogging 
features. The app provides several interfaces, as shown in Fig. 
1. Dynamix plug-ins can be loaded and activated on demand 
and are used to measure respective health values using inbuilt 
and external sensors (a). If users do not have a particular 
sensor, they can enter values manually. A reminder can be 
assigned to each vital parameter for daily or weekly 
measuring. The user’s health status is represented by an 
aggregated value that is displayed in the main screen of the 
application (b). This value, known as the fitness factor, 
represents the mean deviation of currently measured vital 
signs from standard values.  

In addition to the challenges provided by the application, 
users can set goals themselves by indicating the activity, a 
target date and the amount (c). Measured values are displayed 
in a real-time view (d). Tilting the device changes the view 
into a type-dependent course representation, in which the user 
can navigate using a swipe gesture that changes the hierarchy 
of representation (e-f).  

 

      

   
Fig. 1. Example Screenshots from the Lifelogging App (left to right): (a) 

Available Plug-ins (b) Main View (c) Earned and open Achievements (d) Pie 
Chart (Activity) (e) Continuous Graph (Weight) (f) Bar Chart (Activity)  

Users can import an existing SmartAssist user profile or 
create a new one. The profile is used to calculate standard 
values based on biometric data, to specify a patron to be 
notified per SMS in case of vital parameter deviation, and to 
load a set of personalized context-aware achievements. Using 
the key-value principle for persistence of the PHR enables the 
dynamic addition of further parameters and structured storage 
of values, depending on their name and measuring frequency. 

TABLE I.  EVALUATION OF CLASSIFICATION ACCURACY  

 Walking Running Cycling Standing Sitting Stairs up Stairs down 
Sensitivity 86.84% 94.74% 90.43% 100% 100% 74.14% 92.46% 
Specificity 97.61% 99.24% 98.43% 100% 100% 94.66% 98.94% 
Precision 93.75% 82.28% 96.04% 92.39% 96.04% 93.06% 78.48% 



V. Evaluation 

In our preliminary evaluation, we validated the activity 
recognition plug-in accuracy and determined the application’s 
usability. These results are described next. 

A. Activity Recognition 

The classifier’s accuracy was evaluated by asking the same 
3 subjects to perform the trained activities over a period of 60 
seconds under the same conditions as the training phase. 
Every second, the activity detected by the plug-in was 
recorded into a confusion matrix. From this, we calculated 
sensitivity (percentage of correctly true-positive 
classification), specificity (percentage of correctly false-
negative classification), and precision (percentage of correctly 
true-positive classified activities in the same class). An 
average precision of 90% was achieved for walking, cycling, 
standing and sitting. The stairs down activity was the most 
difficult to recognize (78% precision). A closer look at the 
confusion matrix shows that the stairs up activity had the 
lowest sensitivity, which impaired the detection of other 
activities. 

B. Application 

The lifelogging application’s usability was evaluated by 
interviewing the same 9 people participating in the survey. 
While the application’s interface was broadly viewed as 
helpful, tilting the device to change between the currently 
measured view and the course representation view was not 
obvious. In addition, the calculation of the fitness factor needs 
to be more transparent. A more detailed personalization of the 
application was considered desirable by several people. In this 
case, previous medical records or ongoing monitoring could 
be used to help calculate standard values for various health 
parameters. Furthermore, vital signs such as blood sugar could 
be added with appropriate measuring devices. Finally, in the 
opinion of several interviewees, goal setting or achievement 
attainment can be enhanced through the integration of social 
network features (e.g., achievement notifications and/or 
posting). 

VI. Conclusions 

In this work, we presented a personalized AAL healthcare 
system that dynamically integrates data from both inbuilt and 
remote sensors within a lifelogging application. The system 
combines existing Dynamix features with a custom-built 
Activity Recognition plug-in that is capable of accurately 
detecting common activity types. The system was evaluated 
using an example Android-based app that uses Dynamix 
features and gamification techniques to promote ongoing self 
monitoring of health related information.  

We are focused on several areas of future work. Currently, 
we are developing additional related Dynamix plug-ins, such 
as virtual sensors for social activities and camera-based 
detection of gait and seating positions. We also recently 
extended the Dynamix framework to support browser-based 
Web applications [23]. As such, we are investigating how 
lifelogging apps can be easily created using a combination of 

Web techniques and powerful JavaScript-based visualization 
tools.  

This project was funded by the German Federal Ministry of 
Education and Research. BMBF Grant Number: 16KT094. 
The system is available as open source and we invite the 
research community to join the process. 
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