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Abstract— Certain retinal disorders, if not detected in time,
can be serious enough to cause blindness in patients. This paper
proposes a low-cost and portable smartphone-based decision
support system for initial screening of diabetic retinopathy using
sophisticated image analysis and machine learning techniques.
It requires a smartphone to be attached to a direct hand-held
ophthalmoscope. The phone is used to capture fundus images
as seen through the direct ophthalmoscope. We deploy pattern
recognition on the captured images to develop a classifier that
distinguishes normal images from those with retinal abnormal-
ities. The algorithm performance is characterized by testing on
an existing database. We were able to diagnose conditions with
an average sensitivity of 86%.

Our system has been designed to be used by ophthalmolo-
gists, general practitioners, emergency room physicians, and other
health care personnel alike. The emphasis of this paper is not
only on devising a detection algorithm for diabetic retinopathy,
but more so on the development and utility of a novel system
for diagnosis. Through this mobile eye-examination system, we
envision making the early screening of diabetic retinopathy
accessible, especially to rural regions in developing countries,
where dedicated ophthalmology centers are expensive, and to
alleviate detection in early stages.
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I. INTRODUCTION

Diabetic Retinopathy (DR) is in World Health Organi-
zation’s (WHO) priority list of eye diseases, and one of the
leading causes of blindness worldwide [1] [2]. In this paper, we
discuss the system developed for the automated detection of
DR, which is a complication of diabetes mellitus in the retina,
the innermost light-sensitive membrane covering the inside of
the eye [2]. It is a result of damaged blood vessels due to
long-standing uncontrolled diabetes in the retina.

Fig. 1. Fundus images showing normal (left) and abnormal (right) fundus [3].

In DR, blood vessels leak fluid and the retina swells
up, and in advanced cases, abnormal new blood vessels (neo-
vascularization) grow on the retinal surface. Microaneurysms,
hard exudates, soft exudates, hemorrhages are early changes
whereas retinal neovascularization with vitreous hemorrhage
are late changes and need emergency treatment to save as much
vision as possible.

A. Motivation
According to WHO, diabetes mellitus currently affects

more than 347 million persons worldwide, with the most rapid
growth in low and middle-income countries [4]. More than
75% of patients who have had diabetes for more than 20 years
will have some form of DR. WHO has estimated that DR
is responsible for 4.8% of the 37 million cases of blindness
throughout the world [5]. In developed countries, the rate of
increase is projected at approximately 42%, and in developing
countries, particularly in India, it is projected at 150% [6].
It has been estimated that diabetic individuals are 25 times
more likely than their nondiabetic counterparts to suffer severe,
permanent vision loss [4]. Recognition of DR in its early
asymptomatic stages and early intervention with treatment is
the most effective way of preventing permanent vision loss,
and can save millions from blindness [7].

The existing solutions to the problem of early detection
of DR provide only a detection algorithm that is retrospective
in nature, and have not been implemented for practical use.
None of the prior works [8] [9] propose an entirely automated
and handy system implementation on a mobile device.

B. Background
Despite the alarming rise of DR all over the world, the

performance of evaluation systems, even in developed coun-
tries, leaves much to be desired. The existing infrastructure
for screening of DR includes ophthalmoscopy, or stereoscopic
color film fundus photography. Traditionally, ophthalmolo-
gists have performed retinal screening [10]. With advanced
technological systems, telemedicine is playing an important
role in capturing fundus images, and transmitting photos to
ophthalmologists based elsewhere for analysis and assessment.
This trend has led to the widespread acquisition and de-
ployment of expensive fundus imaging systems. Experts are
being hired to interpret and grade these images. Additionally,
there is no universally accepted standard for analysis and
classification of retinal images. The final result still depends
on the manual expertise of the examiner. With the exponential
growth of this problem, introduction of low-cost and time-
effective techniques are a global necessity. On the lines of
handy sphygmomanometers, we develop an automated system
for detection of DR cases.

Our system offers the following advantages over most
conventional equipment and practices:

• Cost-efficiency: Existing methods include costs in-
curred for expensive sophisticated fundus cameras and
operating technicians. Our system, on the other hand,



uses a low-cost direct ophthalmoscope and smart-
phone.

• Portability: Our compact system is easy-to-deploy on
field locations that are hundreds of miles away from
specialists. This is unlike present-day heavy equip-
ment.

• Ease of operation: Presently, ophthalmologists rely
extensively on specially trained personnel to capture
images using the fundus cameras. Our system simpli-
fies the task of image collection independent of the
operator.

• Decision-making capability: In contrast to other sys-
tems which require interpretation of images by an
ophthalmologist, our system provides a first-hand as-
sessment of conditions to general practitioners and
emergency room physicians.

II. SYSTEM DESIGN AND IMPLEMENTATION

To keep in line with the digital health revolution, and to
ensure that health care systems are truly pervasive, we aim at
a simple setup that meets the demand for rapidly increasing
health services. Fig. 2 provides a representation of our setup,
featuring a smartphone and the optical attachment. In the
following subsections, we present the system overview, and
then elaborate on the detection algorithm and implementation
details.

Fig. 2. Our proposed system for fundus imaging.

A. System architecture
Our system consists of two core hardware parts, (1)

a smartphone and (2) a direct hand-held ophthalmoscope.
We deploy a smartphone, equipped with the Android mo-
bile operating system. Android is a powerful open-sourced
development platform for mobile applications, provided by
Google. For carrying out the computer vision operations on the
mobile device, we use Intel’s OpenCV (Open Source Computer
Vision) library [11] which aids real-time image processing.
Android’s Native Development Kit (NDK) provides the sup-
port for compiling and packaging codes written in native-code
language, such as C++. The use of native code is ideal for
image processing implementation on an Android device, as it
provides a build system for efficient and fast processing of
CPU-intensive operations. The minimum requirement in terms
of smartphone hardware is a high-resolution camera, which
most latest generation mobile phones are equipped with.

In our system, we use Google Galaxy Nexus with An-
droid 4.2, JellyBean, the latest version of the Android mobile
OS. The smartphone is aligned and attached to a hand-held
PanOptic ophthalmoscope [12] which offers a 25 ◦ field of
view for a panoramic view of the fundus. We get a 26%
increase in magnification over other standard scopes. These
images can be stored on the device for later use. The user

interface is designed to be easy for use and intuitive, because
the system is intended for use by general medical staff.
B. Detection Algorithm

Detection of DR involves extraction of blood vessels, mi-
croaneurysms and exudates before constructing feature vectors
for classification.

1) Detection of blood vessels: The green component of
the fundus image is subject to histogram equalization (Fig.
3(b)) followed by morphological opening operation (Fig. 3(c)).
This erosion and dilation operation results in diminishing the
size of the blood vessels and increasing that of the regions
which are not of interest. The outputs of the preceding two
steps are subtracted to yield an image that has the optical
disk removed (Fig. 3(d)). It is then thresholded to obtain the
binary image (Fig. 3(e)). This image contains noise in the
form of pixels of small area, that are then filtered to obtain an
image with the blood vessels only. The green component of
the fundus image is subject to adaptive histogram equalization
where the contrast of the image is enhanced by breaking it
into sub-blocks (Fig. 3(f)).

Fig. 3. Various stages of blood vessel extraction.

The output is segmented and then noise is removed (Fig.
3(g)). This image is further combined with a circular mask at
the optic disk region. Creation of the mask involves scanning
of the grayscale image to detect the brightest point, which is
the center of the optic region. If there are brighter spots, the
median is taken. The final output is as shown in Fig. 3(h).

2) Detection of microaneurysms: Microaneurysms are
focal dilations of retinal capillaries. Presence of such lesions in
the fundus images is a clear sign of DR. The green component
(Fig. 5(b)) of the original image (Fig. 5(a)) is extracted and
adaptive histogram equalization is applied twice in succession
(Fig. 5(c) and Fig. 5(d)). A Canny edge operator is applied
on the brightened grayscale image. The eroded version of this
image is then subtracted from the dilated version to locate
the circular border. Edges of features are obtained by applying
canny edge detector on the first adaptive histogram equalized
image. This is then subtracted from the border image to
obtain an image without the border (Fig. 5(e)). We then fill
the holes in the binary edge image and subtract the edge
image from the filled image to get Fig. 5(f). Segments in
Fig. 5(f) where the total pixels lie below a threshold are
removed, and the resulting image is subtracted from Fig. 5(f)
to give us microaneurysms with noise (Fig. 5(g)). The second
adaptive histogram equalized image is segmented and logically
ANDed with Fig. 5(g) to give us an image where exudates
have been removed (Fig. 5(h)). The second adaptive histogram
equalized image is segmented with a different threshold and
its complement gives us an image with blood vessels and noise
(Fig. 5(i)). Fig. 5(i) logically ANDed with Fig. 5(g) gives us
micro aneurysms after removing blood vessels and noise. After
removing the optic disk region, we obtain the final image (Fig.
5(j)) which contains only the microaneurysms.



Fig. 4. Step-by-step procedure for detection of microaneurysms.

Fig. 5. Intermediate stages in the detection of microaneurysms.

3) Detection of exudates: Exudates are either occlusion
of retinal pre-capillary arterioles supplying the nerve fiber layer
with concomitant swelling of local nerve fibre axons (soft
exudates) or yellow deposits of lipid and protein within the
sensory retina (hard exudates). First the grayscale image is
brightened (Fig. 7(b)). Edges are then extracted using a canny
edge detector (Fig. 7(c)). The holes in Fig. 7(c) are filled, after
which its eroded version is subtracted from the dilated version
to find the circular border. Morphological closing of Fig. 7(b)
yields an image where the blood vessels have been removed
(Fig. 7(d)). A column filter is then applied. The resultant
image is segmented and the optical disk is removed (Fig. 7(e)).
Subtraction of the circular border from Fig. 7(e) yields Fig.
7(f). An adaptive histogram equalization is performed on Fig.
7(b), and the complement of its segmented output gives Fig.
7(g). Morphological closing is applied on Fig. 7(f) and it is
logically ANDed with Fig. 7(g) to give the exudates (Fig. 7(h)).

Fig. 6. Step-by-step procedure for detection of exudates.

C. Implementation
Before testing on real world data, we analyzed the

working of the algorithm on existing database of fundus
images. This helped us revisit and strengthen our algorithm.
We studied the fundus images, processed them and explored

Fig. 7. Intermediate stages in the detection of exudates.

the use of pattern classification techniques to segregate images
that have signs of DR from the ones that do not. This would
enable ophthalmologists to focus their attention only on images
that have disease signs and decide the course of action.

The next step would be finding suitable hardware. For
this, we choose a hand-held ophthalmoscope. The ophthalmo-
scope axis is aligned to the central axis of the phone camera, to
capture a precise image of the patient’s retina as seen through
it. The post processing operations on the fundus images are
performed in real-time on the mobile device, and a decision
is offered based on the retina’s condition. We are currently
integrating our algorithm to the mobile application. We are
collaborating with ophthalmologists on many fronts, to help
us evaluate the requirements of doctors and patients alike, and
guide us in making informed choices to make this process more
streamlined. This system can prove to be useful for physicians,
who can detect diabetes, but do not have the means to check
if symptoms for DR exist.

D. Design Goals and Challenges
The system has been designed such that each mobile unit

is self-contained, being capable of capturing and efficiently
processing images on the smartphone with the available re-
sources to provide reliable results. When the system is widely
deployed, as a result of which our database will expand, we
would be inclined to move our training set to a remote server
or a cloud. A large training set, based on the images captured
at all locations and various clinical trials, will help us reach
improved and more conclusive results. Each autonomous unit
will capture an image and process it internally for feature
extraction. The feature vector thus obtained can be sent to the
cloud, to make use of the updated classifier. All images are
stored on a database in the cloud. Such a distributed system
benefits from classifier updates in real-time, and provides a
reliable detection system. Processing on the cloud facilitates
faster implementation and parallel diagnosis of more than one
condition. Despite the implementation of a distributed system,
each unit would still be independent. In case of a network
outage, the detection results can be acquired from a local
classifier residing on the mobile device. The local classifier
gets updated/synced with the one residing on the cloud when
network is available.

The goals will, however, lead to several technical chal-
lenges:

• Image quality: Though the system is designed to work
on any smartphone, the outcomes of the algorithm rely
highly on the quality of the image captured.

• Computation on smartphone: The computation com-
plexity on a smart phone is bounded by available
hardware.

• Variation in fundus pigmentation: The system should
be tolerant towards changes in fundus pigmentation
when tested on individuals from diverse populations.



III. PERFORMANCE EVALUATION

Our initial experiments aimed at developing and testing
a detection algorithm on existing databases. Here we evaluate
the performance of the algorithm that was designed to detect
DR.
A. Dataset

Four sets of images from the MESSIDOR database [13]
were used. These 4 sets comprised 400 images in total with 230
images which exhibited DR condition. This database consisted
of images taken with both dilated and undilated pupils.

B. Evaluation
We construct a 5×1 feature vector consisting of the area

of the blood vessels, areas of lesions (exudates and microa-
neurysms), the entropy of the image and difference of Gaussian
(DoG) values (mean in a region). Our classifier is trained on
two-thirds of the data set and validated on the remaining one-
third. We used support vector machine (SVM), Adaboost.M1
and Logistic regression classifiers. Logistic regression was
found to be the best performing classifier with an area under
curve (AUC) of 0.844. The receiver operating characteristic
(ROC) curve is shown in Fig. 8. The average sensitivity of
the system was found to be 86% [14]. We intend to improve
the sensitivity by training our classifier on large and varied
databases. Also, we would explore the use of more robust
features [15] for improving upon the detection rate of blood
vessels.

Fig. 8. The receiver operating characteristic (ROC) curve for the decision
system.

C. Social Implication
Our cost-effective solution seeks to provide appropriate

and feasible eye-care, especially targeted to rural regions in
developing countries, where dedicated ophthalmology centers
are expensive. Such a system could easily be incorporated in
mobile health-care stations and health camps set up at different
locations. Patients who find it difficult to sit upright can have
their eyes examined, even when lying down.

In the long run, the utility of our system would be
manifold. This system would save the human labor and time
spent in analyzing normal images with no evidence of diabetic
changes and only images with some disease process can be
separated and sent to the appropriate personnel to grade. In
medical schools, instructors would be able to use this system
as a standard for their teaching, and students would get their
first good look at the retinal changes. The residents-in-training,
or emergency room physicians will be able to capture the
abnormal images and send them to ophthalmologists not on-
site. It can also be used by veterinarians.

Thus, our intelligent system aims at improving oppor-
tunities in health-care across the developing world, and also
in the developed countries where health insurance costs are
rising. It is part of a bigger revolution, contributing to the future

of medicine by providing medical professionals with low-cost
hardware and efficient software, the ability to capture fundus
images and get an initial assessment of many vision threatening
diseases that affect the central 25 ◦ of the retina; this may
be DR, macular lesions, retinal detachments, or age-related
macular degeneration. This would lead to early detection of
such diseases and hopefully early intervention to preserve as
much vision as possible, and reduce blindness

IV. CONCLUSION AND FUTURE WORK

We have presented the design and implementation of a
system that utilizes a smartphone as a platform for computer
aided diagnosis and screening of DR. This is achieved by
attaching a hand-held direct ophthalmoscope to the phone.
Our mobile application captures the ophthalmoscope images
of the retina, and applies pattern recognition and statistical
inference algorithms to facilitate decision making for the initial
screening of DR. We discussed our detection algorithm and
the performance numbers attained on an existing standard
database. The automated system is a stand-alone arrangement
that uses a classifier and a large training set for conclusive
results. We also proposed the system design for rendering
the scalability of the system, thereby decreasing the problems
associated with clinician inter-observer variability.

Further, once the system has been trained to recognize
basic irregularities in the retina, it can be extrapolated to
work for screening other retinal conditions too. This low-
cost examination system is ideal for underdeveloped regions
to promote quality health care and make it available to one
and all. This is potentially a powerful tool for next generation
implementation of pervasive healthcare systems.

REFERENCES
[1] “Blindness,” http://www.who.int/blindness/causes/priority/en/index6.html.
[2] “NEI,” http://www.nei.nih.gov/health/diabetic/retinopathy.asp.
[3] “DIARETDB0: Standard Diabetic Retinopathy Database,”

http://www2.it.lut.fi/project/imageret/diaretdb0/index.html.
[4] “WHO,” http://www.who.int/diabetes/en/index.html.
[5] “WHO-Blindness-Prevention,” http://www.who.int/blindness/Prevention

of Blindness from Diabetes Mellitus-with-cover-small.pdf.
[6] “IDOS,” http://theidos.com/telescreening-for-diabetic.aspx.
[7] “Early Treatment Diabetic Retinopathy Study (ETDRS),”

http://www.nei.nih.gov/neitrials/static/study53.asp.
[8] D. Usher, M. Dumskyj, M. Himaga, T. H. Williamson, S. Nussey, and

J. Boyce, “Automated detection of diabetic retinopathy in digital retinal
images: a tool for diabetic retinopathy screening,” Diabetic Medicine,
2004.

[9] T. Walter, J.-C. Klein, P. Massin, and A. Erginay, “A contribution of
image processing to the diagnosis of diabetic retinopathy-detection of
exudates in color fundus images of the human retina,” Medical Imaging,
IEEE Transactions on, vol. 21, no. 10, pp. 1236 –1243, oct. 2002.

[10] “Diabetes-journal,” http://clinical.diabetesjournals.org/content/27/4/140.full.
[11] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.
[12] “PanOptic,” www.welchallyn.com/promotions/PanOptic/default.htm.
[13] “MESSIDOR database,” http://messidor.crihan.fr/.
[14] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter

Reutemann, and Ian H. Witten, “The weka data mining software: An
update,” SIGKDD, 2009.

[15] Prateek Prasanna, Kristin Dana, Nenad Gucunski, and Basily Basily,
“Computer-vision based crack detection and analysis,” in SPIE Smart
Structures and Materials+ Nondestructive Evaluation and Health Mon-
itoring. International Society for Optics and Photonics, 2012, pp.
834542–834542.


	Introduction
	Motivation
	Background

	System Design and Implementation
	System architecture
	Detection Algorithm
	Detection of blood vessels
	Detection of microaneurysms
	Detection of exudates

	Implementation
	Design Goals and Challenges

	Performance Evaluation
	Dataset
	Evaluation
	Social Implication

	Conclusion and Future Work
	References

