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Abstract—We propose a new minimal wearable system and 

a classifier for physical activity recognition. The configuration 

is solely based on two force sensors placed anteriorly and 

posteriorly under the feet. To find the optimal sensor 

configuration, we estimated the total force under the feet 

during daily activities. The estimation was based on a linear 

regression model built upon the forces estimated over selected 

areas from the dense mesh of high-resolution sensors of a 

commercially-available force sensing system. The best estimate 

of the total force, which also indicated the best sensor 

configuration, was fed to the activity recognition algorithm to 

provide the final output. The analysis indicated that the 

optimal locations which allowed estimating the total force with 

a minimal RMS error (40N) were the central part of rear foot 

and forefoot. Using this configuration and the activity 

classification algorithm, the classification accuracy for the 

basic activities such as sitting, standing and walking were 

93.8%, 99.5% and 93.4%, respectively. These values 

demonstrate the high accuracy of the proposed system and are 

very encouraging for recognition of additional types of 

activities of daily-living in the next stage. 
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I. INTRODUCTION 

Long-term monitoring of physical activity has witnessed 

significant advances in recent years. This has been 

accelerated by the increasing availability of cheap and light 

wearable sensors. A decline in physical activity levels is 

considered as a precursor for diseases and functional 

impairments [1]. Plantar force information is valuable for 

accurate activity recognition using wearable systems [2]. 

Plantar force and pressure distribution measurements have 

been conducted in relation to rehabilitation, fall prevention, 

assessment of diseases such as arthritis, sports and 

robotics [3].  

Plantar force measurements have been performed in various 

ways, including force plates, floor mats, insoles and 

pressure/force load cells. Force plates or mats yield accurate 

results for the total force experienced during standing and 

walking [4]. However, only one or a few steps can be 

analyzed therefore these instruments are not suitable for 

long-term evaluation of forces under the feet. Wearable 

systems such as insoles and standalone sensors provide an 

alternative with acceptable validity for such measurements. 

Indeed, many insoles containing multiple force sensors rival 

floor-fixed or mat sensors in terms of accuracy. These 

insoles are expensive due to the high spatial resolution of 

individual sensors. Another issue is the size and location of 

the sensors that should be used. Many studies indicated that 

overlaying a certain number of cells under the foot is not 

necessarily ideal since many cells are not activated during 

physical activity (PA) episodes [5], [6]. Standalone force 

sensing resistors (FSR) have been used in previous shoe-

based designs for PA monitoring [2], [7], [8] but conclusive 

results on the number, size, shape and location of sensors to 

be used were not readily available. The conclusion is that 

there is a need for a cheap and easy to use foot worn 

solution for force sensing in daily setting. 

In this paper the main focus is on the use of plantar force 

measurement in the recognition of main postures from 

activities of daily life. We propose a preliminary study to 

find optimal sensor locations under the foot that estimate 

total force. The output of the best force estimator is then 

used to assess the accuracy of our activity recognition 

algorithm (based on linear classifiers [9]). The objective of 

the experiments is twofold: (i) to verify the hypothesis that 

the total force can be accurately estimated using only two 

sensors and (ii) to verify that the activity/posture recognition 

in this context could be accurately assessed from the 

estimated forces. 

II. MATERIALS AND METHODS 

Five subjects, aged=25.6±2.3 years, weight=66.4±12.9kg, 

were asked to perform a series of activities including sitting 

(on three different types of chairs), standing (including 

bending to pick up objects from floor), and walking (level, 

upstairs and downstairs). Each subject wore a commercial 

pair of force sensing insoles chosen as reference (Pedar, 

Novel, Germany). The insole’s dense mesh of individual 

sensors was used to recalculate the measurable force at any 

placement and for each size of our proposed combinations. 

Force data were collected via the data logger worn in a belt 

by each subject, sampled at 100Hz. The trials were video 

recorded for activity labeling. Each trial lasted 5 to 6 

minutes. 

 



A. Optimal sensor configuration 

1) Sensor configuration 

First, we divided the foot into forefoot and rear foot 

sections. The division of the foot into two or more segments 

has been previously addressed in the literature [10], [11]. 

The goal here was to find the best location in each section 

for total force estimate. The measurable force for each 

sensor placement was estimated (calculated) based on the 

individual cells in the reference insole system, see Figure 1. 

 
Figure 1-Pedar cells on each insole. Left: The red squares represent the best 

locations found with our force estimator. Right: color map of errors (N) 

when the best locations are moved by one cell around the center of the best 
location. 

 

We considered rectangular shapes and three sensor sizes 

which were tested based on the selection of number of cells 

(2x3, 3x3 and 3x4). For each size and insole the number of 

possible different locations was estimated in each foot 

section (𝑁𝑓𝑜𝑟𝑒, 𝑁𝑟𝑒𝑎𝑟). The total sensor force (�̂�𝑟𝑒𝑎𝑟 , �̂�𝑓𝑜𝑟𝑒) 

for each size (𝑖 = 1,  2,  3) and location (𝑛𝑟 =
 1, ⋯ , 𝑁𝑟𝑒𝑎𝑟 ,  𝑛𝑓 =  1, ⋯ , 𝑁𝑓𝑜𝑟𝑒) was estimated by the sum 

of the corresponding cells according to equation 1: 

 

�̂�𝑟𝑒𝑎𝑟 = ∑ 𝐹𝑖,𝑛𝑟𝑖,𝑛𝑟
 𝑎𝑛𝑑  �̂�𝑓𝑜𝑟𝑒 = ∑ 𝐹𝑖,𝑛𝑓𝑖,𝑛𝑓

  (1) 

 

2) Estimation of total force and validation 

The data from all the five subjects were split into training 

and testing: a subset from each subject containing data from 

sitting, standing and walking activities was included in the 

training set, with the rest of the data (still containing all the 

activities) used for testing. The training data were used to 

build the estimators of total force and the test data to 

evaluate the best estimators. We tested all the possible 

combinations of fore and rear foot locations for each size. A 

linear regression model [12] as shown in equation 2 was 

used to estimate the total force based on calculated forces 

from each combination of fore and rear sensor locations for 

each of the three sensor sizes: 

 

�̂�𝑡𝑜𝑡𝑎𝑙 = 𝑤𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑤𝑓𝑜𝑟𝑒 × �̂�𝑓𝑜𝑟𝑒 + 𝑤𝑟𝑒𝑎𝑟 × �̂�𝑟𝑒𝑎𝑟 (2) 

Where 𝑤𝑜𝑓𝑓𝑠𝑒𝑡 , 𝑤𝑓𝑜𝑟𝑒 and 𝑤𝑟𝑒𝑎𝑟  are the weights of the linear 

regression model obtained via the least square error solution 

on the training data, and �̂�𝑡𝑜𝑡𝑎𝑙 is the estimated total force. 

The best configuration was that with the lowest root mean 

square error (RMSe). The force estimate based on this 

configuration was fed into an activity recognition algorithm 

detailed in the next section. 

 

B. Activity recognition 

1) Classification algorithm 

This section describes the activity recognition algorithm that 

was employed to classify the different activities using the 

estimated forces (left and right feet) from the selected sensor 

configuration. The classification algorithm was designed to 

enable the distinction between three different activities: 

sitting, standing and walking; climbing up and down the 

stairs was categorized as walking whereas picking an object 

from the floor as standing. We studied the effect of the 

subject and environment based factors such as subjects’ 

weights and chair types on the classifier. The four 

parameters of the activity classifier were: subject’s weight 

(SW - continuous), the chair type (CT, discrete: from 1 to 3 

upon chair types), the estimated force from the right insole 

(RF - continuous), and the estimated force from the left 

insole (LF - continuous). Then the effect of each parameter 

and its interaction with other parameters were studied using 

one-way ANOVA [13] on the training data sets. Activities 

were labeled as: 0=sitting, 1=standing and 2=walking. A 

linear model (equation 3) was learned on the training sets.  

 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦̂ = 𝛾 + ∑ 𝛼𝑖𝑖 × 𝑋𝑖 + ∑ 𝛽𝑖𝑗𝑖,𝑗 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 × 𝑋𝑖 ∗ 𝑋𝑗 (3) 

 

Where Xi and Xj are the previously described parameters. 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦̂  represents the predicted activity as a combination 

of γ (the intercept), α (the first order coefficient) and β (the 

interactions coefficient); rounded to the nearest integer 

(equivalent to two-level thresholding), i.e. the activity label. 

 

2) Validation 

The reference labels for activities were obtained via 

automatic labeling based on the reference total force from 

all 99 sensors in Pedar insoles, cross-checked with video 

recordings. To do so, two thresholds were used to separate 

the different activities based on video tagging. Parameters 

with a p-value smaller than 1% were considered as relevant. 

The predicted activities were compared with the reference 

activity labels to find the best recognition rate. The most 

relevant parameters were included in the final model and the 

recognition rate was also computed on the entire data sets 

(80% of which is test which that was not included for the 

ANOVA) for continuity purposes. It must be noted that, by 

using a 2-second window (corresponding to 200 samples), 

we split the data to the events to be labeled for activity 

recognition. The median values of the estimated total force 

in each event were chosen for classification.  



The correct classification rate (CCR) was defined as the 

number of events classified correctly to activities over the 

number of events (across all subjects). 

 

 𝐶𝐶𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
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Figure 2-Activity classification diagram showing the inputs and output of 

the classifier 

 

Figure 2 summarizes the method for the activity 

classification and the effects of the different inputs. 

 

III. RESULTS 

A. Selection of shape, size and location 

Table 1 details the number of possible locations for fore and 

rear sensor placements for each size, and the minimum 

RMS error achieved in all the simulations. Based on the 

minimum RMS error for test data, the best force estimate 

was obtained from the 3x3 rectangle (type 2) with the 

location combination illustrated by the red rectangles in 

Figure 1. The linear regression weights (offset and gains) in 

Eq. 3 were computed from the training data (concatenation 

of all subjects training data) and presented in equation 4. 

 

�̂� = 3.01 + 2.22 × �̂�𝑟𝑒𝑎𝑟,𝑠𝑖𝑧𝑒2 + 3.06 × �̂�𝑓𝑜𝑟𝑒,𝑠𝑖𝑧𝑒2 (4) 

 

Also shown in Figure 1 are the errors that would occur of 

the best placement is shifted by 1 cell around the center of 

the best location. 

 
Table 1-Total number of possible combinations for simulation 

Shape Rectangle Rectangle Rectangle 

Size (cells) 2x3 3x3 3x4 

# fore locations 34 30 24 

# rear location 30 25 20 

# combinations 1020 750 480 

Min RMSe (N) 47.1 39.9 41.3 

This was a result of fixing one position in one section (fore 

or rear) and averaging the error from all the combinations of 

this position with the available positions in the other section. 

 

B. Physical activity recognition 

1) Finding the most relevant factors 

A one-way ANOVA was used to find the most relevant 

factors affecting PA classification. Table 2 displays the 

results of the ANOVA. The degrees of freedom of 

continuous parameters were set to one whereas the discrete 

parameter CT (3 types of chair) was set to 2. Relevant 

parameters (p<0.01) are the left force (LF), the right force 

(RF) and the interaction between the two (LF×RF) forming 

equation 5. The type of chair and the subject’s weight do not 

have a significant effect on the activity classifier. 

 
Table 2 - ANOVA results. Parameters are : RF : estimated force from the 

right insole / LF: estimated force from the left insole / SW subject’s weight 

/ CT :chair type. M%denotes the percentage of the effect mean squares over 
the total squares. Mean Sq is SumSq divided by the degrees of freedom and 

F is the F test. 

 SumSq DF MeanSq F p 

LF 41.00 1 41.00 310.98 <0.01 

RF 43.55 1 43.55 330.31 <0.01 

CT 0.16 2 0.08 0.59 0.56 

SW 0.24 1 0.24 1.81 0.18 

LF x RF 13.79 1 13.79 104.61 <0.01 

LF x CT 0.08 2 0.04 0.30 0.74 

LF x SW 0.11 1  0.11 0.80 0.37 

RF x CT 0.23 2 0.11 0.85 0.43 

RF x SW 0.02 1  0.02 0.13 0.72 

CT x SW 0.28 2 0.14 1.06 0.35 

Error 30.06 228 0.13   

Total 129.5 242    

 

Upon finding the most relevant parameters, the linear model 

used as the final classifier is presented in equation 5. 

 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦̂ = 𝛾 + 𝛼1 × 𝐿𝐹 + 𝛼2 × 𝑅𝐹 + 𝛽12𝐿𝐹 ∗ 𝑅𝐹 (5) 

 

Where  = 1.16. The contribution of the interaction between 

LF and RF was substantial (β12=-0.26) to counterbalance the 

LF (α1=0.27) and RF (α2=0.30). 

 

2)  CCR, Sensitivity and Specificity of the activity 

recognition algorithm 

 
Table 3- Confusion matrix and sensitivity and specificity values 

Actual  

Predicted 

Sit Stand Walking Specificity 

Sit 93.83 0.01 0 0.9884 

Stand 5.93 99.54 6.64 0.9973 

Walking 0.24 0.45 93.36 0.9336 

Sensitivity 0.9382 0.9954 0.9336 95.64 

 

In Table 3, the confusion matrix [9], representing how 

different activities are recognized, shows that the activities 

are accurately recognized with an average CCR of 95.64% 

and all the diagonal values of the confusion matrix are 



greater than 90%. However, sitting and walking was 

sometimes classified as standing. Furthermore, the 

sensitivity and specificity were calculated for all activities 

classifications and presented in Table 3 as percentage. 

Figure 3 depicts a sample output of our classifier algorithm. 

 

IV. DISCUSSION AND CONCLUSION 

In this study, we proposed a minimal force sensor 

configuration to appropriately estimate the total force and to 

recognize basic activities of daily life. The best locations for 

sensor placement in this study were found with a relatively 

small RMS error (40 N). The error of total force estimation 

is also low in many regions close to the best locations as 

seen in Figure 1. This would reduce the effect of slight 

misplacement or sensor slippage in the shoes on the 

estimation of total force. The success of our simple activity 

classification approach was confirmed with the high CCR 

and the negligible difference in CCR (only increased by 

0.5%) when reference force data was used (as opposed to 

estimated data from the first analysis). We hypothesized that 

weight and chair type will have an effect on the activity 

recognition, without having prior knowledge about these 

effects. We concluded that the effect of these factors was 

not significant. This provides an advantage since the 

algorithm needs no tuning with respect to individual weight 

or chair type. However, more environmental and subject 

related factors need to be studied such as gait patterns and 

floor types in order to have a clearer conclusion on the 

effect of individual and environmental factors. Additionally, 

the small number of subjects needs to be increased for more 

conclusive results. We are also aware that other studies have 

obtained activity recognition with similar accuracies while 

using more sensors. However, the novelty of our approach 

was in finding the best locations for force estimation first. 

Furthermore, using only force signals, we obtained high 

accuracies via a simple classifier. The classification was 

based on linear regression because this way we were able to 

assess the effects of different factors using ANOVA. We 

expect to increase this accuracy by adding inertial sensors to 

our shoe-based system, and employing more sophisticated 

classifiers. 

In our case, the algorithm was straightforward for the 

detection of simple activities. We grouped some activities 

under the same label even though they were different; 

however, our results are very encouraging for detection of 

additional activities such as climbing up and down the stairs 

and picking an object, and this will be done in a later stage 

by adding inertial sensing. On the other hand, the activities 

in our protocol were performed in controlled conditions; 

however the subjects chose how to perform the activities 

(self-selected speed, time of sit and stand). In subsequent 

work, the focus will be on real world conditions without any 

constraint in order to have a more realistic approach for 

activity classification. This work is part of an on-going 

larger activity recognition study in which we will fuse 

additional inputs from other sensors such as inertial 

measurement units to achieve highly accurate and robust 

recognition of at home, free daily life activities. 
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Figure 3- Output of the activity recognition algorithm 
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