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Abstract— Stress is a major problem in our world today 

motivating objective understanding of how average individuals 

respond to stress in a typical activities. The main aim for this 

paper is to determine whether stress can be recognized using 

individual-independent computational models from sensor based 

stress response signals induced by films with typical stressful 

content. Another aim is to determine whether a consumer 

electroencephalogram (EEG) sensor device, which is portable, 

less obtrusive and relatively inexpensive, can be used for stress 

recognition. A support vector machine and an artificial neural 

network based models were developed to recognize stress using 

various physiological and physical signals. The models produced 

stress classification with 95% accuracy. Using the data obtained 

from the consumer device, the models produced stress 

classification with 91% accuracy. Statistical analysis of the 

results showed that the classification results from the 

physiological and physical signals are not statistically different to 

the results from the consumer device implying that the consumer 

device can be used for recognizing stress in typical virtual 

environments. 
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I.  INTRODUCTION 

Stress is part of everyday life and it is widely accepted that 
stress which leads to less favorable states (such as anxiety, fear 
or anger) is a growing concern for people and society. The 
term, stress, was coined by Hans Selye. He defined it as “the 
non-specific response of the body to any demand for change” 
[1]. Stress is the body’s reaction or response to the imbalance 
caused between demands and resources available to a person. It 
is seen as a natural alarm, resistance and exhaustion [2] system 
for the body to prepare for a fight or flight response to protect 
the body from threats and changes. When experienced for 
longer  periods without being managed, stress has been widely 
recognized as a major growing concern because it has the 
potential to cause chronic illnesses (e.g. cardiovascular 
diseases, diabetes and some forms of cancer) and increase 
economic costs in societies, especially in developed countries 
[3, 4]. Benefits of stress research range from improving day-to-
day activities, through increasing work productivity to 
benefitting the wider society - motivating interest, making it a 
beneficial area of research and posing some difficult technical 
challenges for Computer Science. 

Various computational methods have been used to 
objectively define and classify stress to differentiate conditions 
causing stress from other conditions. The methods developed 
have used simplistic models formed from techniques like 
Bayesian networks [5, 6], decision trees [7] fuzzy models [8] 
and support vector machines [9]. These models have been built 
from a relatively smaller set of stress features than the sets used 
in the models in this paper. 

Stressful events or emergency situations cause dynamic 
changes in the human body, which can be observed by changes 
in the body’s response signals. These response signals are 
involuntarily caused by the Autonomic Nervous System 
(ANS). The ANS is made up of the Sympathetic Nervous 
System (SNS) and the Parasympathetic Nervous System 
(PNS). When the body is under stress, activity in the SNS 
increases and dominates the activities produced by the PNS, 
which changes the body’s response signals. The response 
signals obtained from non-invasive methods that reflect 
reactions of individuals and their bodies to stressful situations 
have been used to interpret degrees of stress. These measures 
have provided a basis for defining stress objectively. 

Stress response signals used in this paper fall into two 
categories – physiological and physical signals. Physiological 
signals that have been used for stress analysis include galvanic 
skin response (GSR) [10, 11], electrocardiogram (ECG) [12] 
and blood pressure (BP) [13]. As defined in [14], physical 
signals are changes made by the human body that can be 
generally seen by humans without the need for equipment and 
tools that need to be attached to individuals to detect general 
fluctuations. However, sophisticated equipment and sensors 
using vision technologies are still needed to obtain physical 
signals at sampling rates sufficient for data analysis and 
modeling like the ones used in this paper. Physical signals 
include eye gaze and pupil dilation signals. 

GSR is a measurement of the flow of electricity through the 
skin of a person. When the person is under stress, the activity in 
the SNS causes an increase in the moisture on the skin, which 
increases the flow of electricity. As a result, it increases skin 
conductance [5]. Conversely, the skin conductance is reduced 
when the individual becomes less stressed. The fluctuations in 
skin conductance are recorded as changes in GSR. 

ECG signals show electrical activity produced by an 
impulse of ions flowing through cardiac muscles, which 
dissipates into the region around the heart with diminished 



amounts spreading around the surface of the body. The main 
electrical signals are produced by cardiac cells depolarising and 
repolarising. Depolarising occurs due to the flow of ions 
accompanying atrial heart muscle constriction which results in 
a P wave. The impulse then travels through the ventricles of the 
heart causing septal depolarisation, early ventricular 
depolarisation followed by late ventricular depolarisation. This 
series forms a QRS wave, the dominant wave. After the 
completion of depolarisation, ventricular cells repolarise by 
restoring it to resting polarity, resulting in a T wave. An 
example of a stress feature in ECG signals is the decrease in R-
R intervals [12]. 

BP signals show the pressure exerted on the walls of blood 
vessels due to blood circulation and varies between a systolic 
(maximum) and a diastolic (minimum) pressure. An increase 
BP has been related with increase in stress [15]. 

GSR, ECG, BP, eye gaze and pupil dilation signals have 
been used in some smaller combinations to detect stress in 
literature [5, 16, 17] but this proposed combination for stress 
analysis in virtual environments has not been reported so far. 
We use this combination of sensor signals in this paper and 
refer to them as primary stress signals. 

Hundreds of stress features can be derived from primary 
stress signals to classify stress. However, this set of features 
can include redundant and irrelevant features which may 
outweigh the more effective features showing stress patterns. 
As a consequence, this could cause a classifier to learn weaker 
stress patterns and produce lower quality classifications. Since 
this paper is dealing with sensor data, some features may suffer 
from corruption as well. In order to achieve a good 
classification model that is robust to such potential features that 
may reduce the performance of classifications, appropriate 
feature selection methods must be developed and adopted by 
the classifiers. A genetic algorithm (GA) could be used to 
select subsets of features for optimizing stress classifications. A 
GA is a global search algorithm and has been commonly used 
to solve optimization problems [18]. The search algorithm is 
based on the concept of natural evolution. It evolves a 
population of candidate solutions using crossover, mutation 
and selection methods in search for a population of a better 
quality. GAs have been successfully used to select features 
derived from physiological signals [19, 20]. 

This paper also investigates the potential for 
electroencephalogram (EEG) signals sourced using the Emotiv 
EPOC consumer device [21] as a primary signal for stress. 
EEG captures neural activity in the brain. It records complex 
electrical waveforms at the scalp formed by action electrical 
potentials during synaptic excitations and inhibitions of 
dendrites. Research shows that relationships exist between 
brain activity and stress [22-26]. EEG signals are generally 
captured by equipment that is obtrusive and requires a 
relatively higher degree of intrusion (e.g. EEG sensors with 
conductivity gel needs to be attached to particular positions of a 
subject’s head), relatively long set up time and experimenters 
that are experienced with the use of the equipment. These 
factors contribute to lower number of participants in 
experiments recording EEG signals in Human Centered 

Computing experiments and motivated us to use the Emotiv 
EPOC consumer device. Emotiv is portable, nonintrusive, 
easier to use and cheaper – the Emotiv headset with EEG 
sensors (and costs approximately $300 USD). Unlike 
conventional EEG recording equipment, which has multiple 
wires that needs to be managed, Emotiv is wireless. However, 
Emotiv has fewer sensors (14 channels) and a lower sampling 
rate (128 Hz) than the conventional EEG recording equipment 
which can have from 32 to 256 sensors and a sampling rate of 
at least 240 Hz to 16,000 Hz [27, 28]. The channels for Emotiv 
are AF3, AF4, F3, F4, F7, F8, FC5, FC6, P3, P4, P7, P8, T7, 
T8, O1, and O2 based on the International 10-20 standard. 
Previous work has used signals from Emotiv for analysis of 
affective states [29]. Our work includes a comparison of the 
performances for stress classification for models developed 
from Emotiv signals with performances for models developed 
from primary stress signals sourced by sensitive sensors. This 
will help to determine whether future stress research could use 
signals sourced from the less obtrusive Emotiv sensors for 
computationally modeling stress. 

This paper presents computational models of stress for 
observers watching stressful films and investigates whether 
models formed from signals sourced using a consumer EEG 
device have the capacity to recognize stress. It describes the 
method that was used to collect stress data and develop 
computational models for recognizing stress patterns captured 
in response signals observed from individuals while they 
watched stressed and non-stressed film clips. It details an 
experiment conducted to collect stress response signals using 
multiple sensors and EEG signals from the consumer EEG 
device from experiment participants who watched films with 
stressful and non-stressful content and human-reported data. 
Several approaches for stress recognition of film watchers are 
developed, compared and discussed including a method for 
selecting features from hundreds of features derived from the 
response signals. Performances for models formed from the 
primary signals of stress for stress recognition are compared 
with the models formed from the EEG signals. The paper 
concludes with a summary of the findings and suggests 
directions for future work. 

II. DATA COLLECTION FROM THE FILM EXPERIMENT 

Twenty five undergraduate students were recruited as 
experiment participants. The participant cohort was made up of 
15 males and 10 females between the ages of 18 and 30 years.  

Before the start of each experiment, the lab room was set up 
with the temperature set at 22

o
C, Acquisition and Inquisition 

computers with required applications started, consent forms 
and assessment sheets placed at appropriate locations in the 
room, and all sensor equipment initialized and ready to be 
attached to a participant. The lab room is made up of two 
smaller rooms – Acquisition and Inquisition rooms. The 
experiment instructor controlled the data acquisition, films that 
participants watched and the room settings of the Inquisition 
room from the Acquisition room.  The participant watched the 
film clips and had their measurements recorded in the 
Inquisition room. 



 

Each participant had to understand the requirements of the 
experiment from a written set of experiment instructions and 
what was involved in the experiment with the guidance of the 
experiment instructor. After providing their consent to 
participate in the experiment, the experiment instructor 
attached ECG, GSR, BP and EEG sensors to the participant 
and calibrated the eye tracking sensors. The instructor started 
the films, which triggered a blank screen with a countdown of 
the numbers “3”, “2” and “1” transitioning in and out slowly 
with one after the other. The reason for the countdown display 
and the blank screen was for participants to move away from 
their thoughts at the time and get ready to pay attention to the 
films that were about to start. This approach was used in 
experiments for similar work done in literature [30]. 
Subsequent to the countdown display, a blank screen was 
shown for 15 seconds, which was followed by a sequence of 
film clips with 5 second blank screens in between. The film 
clips were made up of stressed and non-stressed films and each 
film was approximately one minute in length. After the films 

finished, the participant was asked to do an assessment on the 
films to validate the film labels. In total, the experiment took 
approximately thirty minutes. An outline of the process of the 
experiment for a participant is shown in Figure 1. After the 
experiment, the experiment instructor helped the participant to 
remove the sensors that were attached to the participant. 

Film clips were categorized by the type of environment 
they created. Stressed films had stressful content in the 
direction towards distress, fear and tension whereas the non-
stressed films had content that created an illusion of meditation 
or soothing environments. There were three stressed films and 
three non-stressed films. For consistency, the films were 
displayed on a 1050 x 1680 pixel LCD Dell monitor and 
positioned at the same location of the computer screen with a 
surround sound system for each participant. 

Results from the experiment survey validated the film 
classes. In addition, the film classes were also validated by 
another forty people giving a total of 65 people who did the 

 

Figure 1. The process that experiment participants followed during the film experiment 

 

 

 

 

 

Figure 2. The Inquisition room for the film experiment where experiment participants did the experiment 

 



survey. Analysis of survey responses is a common method used 
in literature to validate stress classes for tasks [31]. Participants 
found the films that were labeled stressed created stressful 
environments and films labeled non-stressed created 
environments that were not stressful with a statistical 
significance of p < 0.001 according to the T-test and the 
distribution of the survey question responses for stress. 
 

Each participant had physiological and physical signal 
measurements taken over the experiment time. The 
physiological and physical sensor signals (which we refer to as 
primary stress signals) captured during the experiment were 
GSR, ECG, BP, eye gaze and pupil diameter signals. Biopac 
ECG100C, Biopac GSR100C and Finapres Finger Cuff 
systems were used to take ECG, GSR and blood pressure 
recordings at a sampling rate of 1000 Hz. The Biopac 
GSR100C system sourced GSR data through disposable EL507 
GSR electrodes, which were placed on the first (or index) and 
fourth (ring) fingers of the participant’s left hand. The sensors 
had to be attached to the participant 5 minutes before data 
acquisition so that appropriate signals could be recorded. For 
acquiring ECG signals, the Biopac ECG100C system was 
connected with disposable EL503 ECG electrodes, which were 
placed on the participant’s left and right wrists. Further, the 
Finapres Finger Cuff system was attached to the participant’s 
third (or middle) finger of the left hand to acquire BP signals. 
Eye gaze and pupil dilation signals were obtained using Seeing 
Machines FaceLAB system with a pair of infrared cameras at 

60 Hz. Additionally, EEG signals from the Emotiv EPOC 
device was obtained as well at a sampling rate of 128 Hz.  

A schematic diagram of the equipment setup for the film 
experiment is provided in Figure 3. The experiment instructor 
controlled the film clips that the experiment participant 
watched from the Acquisition computer. The computer was 
also used to control the participant’s response signal acquisition 
and synchronize the signals while the films were shown to the 
participant. Acquisition software applications for eye tracking 
and EEG signals required relatively greater amounts of 
computer memory and processing. In order to ensure that it did 
not affect the acquisition of the other signals, there was a 
computer designated for eye tracking signal acquisition and 
another computer for EEG signals. 
 

There were other signals that were derived from the 
primary stress signals to form other stress response signals. 
These signals included the heart rate variability (HRV) signal, 
which was calculated from consecutive ECG peaks and another 
popular signal used for stress detection [12, 32]. Data from 
various frequency bands were extracted from EEG and HRV 
signals, which have been used in literature for stress analysis. 
There are four main frequency band categories used to analyze 
EEG signals and they are presented in TABLE I. The band 
categories are Beta, Alpha, Theta and Delta. Each band 
category represents some state for a person. Beta and alpha 
waves represent conscious states of a person whereas theta and 

^

Biopac & Finapres data

<< FaceLAB data <<

>> Trigger signal to control films >> >> Trigger signal to control films >>

                       Acquisition

                     Computer

FaceLAB Laptop

Server

>> display screen >>

Parallel PC Adapter

 

Biopac MP150 

ECG100C GSR100C 

 

Finapres 

FaceLAB 

Cameras

<< FaceLAB data <<

Experiment

Instructor

<< Blood pressure data <<

<< ECG & GSR data <<

Emotiv Laptop

<< EEG data <<

<< EEG data <<

Subject

LCD

Monitor

 

Figure 3. A schematic diagram of the equipment setup for the film experiment 

 



delta waves signify unconscious states. Rapid beta wave 
frequencies (and due to the decrease in alpha wave frequencies) 
have been found to indicate stress [24-26]. 
 

Generally, low frequency (LF) and high frequency (HF) 
bands of HRV have been used to analyze stress in literature [8]. 
LF and HF are known to reflect SNS and PNS activities 
respectively. LF was defined in the frequency range between 
0.04 Hz and 0.15 Hz [31] and HF was defined in the range 
between 0.15 Hz and 0.5 Hz [13]. 

Features were derived from the primary stress signals and 
EEG signals. Statistics (e.g. mean, standard deviation, 
skewness, kurtosis and measures listed in [33]) were calculated 
for the signal measurements for each 5 second interval during 
the experiment time. Measures such as the number of peaks for 
periodic signals, the distance an eye covered, the number of 
forward and backward tracking fixations, and the proportion of 
the time the eye fixated on different regions of the computer 
screen over 5 second intervals were also obtained. The EEG 
feature set also included measurements for Hjorth parameters 
and fractal dimensions, which are generally used in analyzing 
EEG signals. 

Hjorth parameters are time-based characteristics of an EEG 
signal and the three Hjorth parameters are the Activity, 
Mobility and Complexity parameters. Suppose x is an EEG 
signal with values for N equally spaced timestamps. Then the 
Activity parameter is the variance for an EEG signal and is 
defined by 

       
(1) 

The Mobility parameter is a measure of the signal mean 
frequency. Given that x’ is the derivate for x, then the Mobility 
parameter is defined by 

       

(2) 

The Complexity parameter is a measure of the deviation of 
the EEG signal from the shape of the sine signal and is defined 
by 

       
(3) 

Fractal dimension measures of an EEG signal provides 
information of the space filling and self-similarity and can be 
approximated using the following 

   
(4) 

 

where 

   

(5) 

and 

   
(6) 

The statistic and measure values formed the stress feature 
set. There were 215 features derived from the primary stress 
signals and 1119 features were derived from the EEG signals 
sourced by the 14 Emotiv sensors. Features from the primary 
stress signals and EEG signals were used as inputs to the stress 
recognition models. 

III. STRESS CLASSIFICATION MODELS 

The stress classification models were based on a support 
vector machine (SVM) and an artificial neural network (ANN). 
A GA and SVM hybrid (GA+SVM) and a GA and ANN 
hybrid (GA+ANN) models were also developed with the aim 
to use features, which were more relevant for stress recognition 
and reduce feature redundancy to optimize stress classification. 

A. Support Vector Machine Based Classification Models 

SVMs have been widely used in literature for classification 
problems including classifications based on physiological data 
[34, 35]. Provided a set of training samples, a SVM transforms 
the data samples using a nonlinear mapping to a higher 
dimension with the aim to determine a hyperplane that 
partitions data by class or labels. A hyperplane is chosen based 
on support vectors, which are training data samples that define 
maximum margins from the support vectors to the hyperplane 
to form the best decision boundary. This contributes to the 
resistance to data overfitting and helps to generalize 
classifications well. 

Despite the useful characteristics, SVMs are still not robust 
to feature sets with redundant and irrelevant features in 
classification. As a consequence, hybrids of SVM with GA 
were used to reduce the redundant and irrelevant features and 
to determine whether the hybrid improved the quality of the 
classification. 

The SVM based stress classification models developed 
were: 

TABLE I.  EEG FREQUENCY BAND CATEGORIES 

Band Category 
Frequency 

Range 
Person’s State 

Beta 13 – 30 Alertness or anxiety 

Alpha 8 – 13 Relaxation 

Theta 4 – 8 
Dream sleep or phase between 

consciousness and drowsiness 

Delta 0.5 – 4 Coma or deep sleep 
 



 SVM: a SVM classification model that was provided 
all the features in the stress feature set as input to 
recognize stress patterns 

 GA+SVM: a SVM that was provided features selected 
by a GA as input to recognize stress patterns 

B. Artificial Neural Networks Based Classification Models 

ANNs, inspired by biological neural networks, have 
capabilities for learning patterns to recognize characteristics in 
input tuples by classes. An ANN is made up of interconnected 
processors, known as artificial neurons, which are connected 
by weighted links that pass signals between neurons to learn 
the relationship between input and output tuples. In this paper, 
feed-forward ANNs trained using backpropagation were used. 
The layers and neurons in each layer define the topology of a 
feed-forward ANN. Two topologies were used, which differed 
only on the number of inputs. The ANN based stress 
classification models were: 

 ANN: an ANN classification model that used all the 
features in the stress feature set as input to recognize 
stress patterns just like SVM 

 GA+ANN: an ANN that used inputs selected by a GA 
to recognize stress patterns 

The MATLAB adapt function was used for training the 
ANNs on an incremental basis. Each network was trained using 
the Levenberg-Marquardt algorithm for 1000 epochs or until 
the magnitude of the gradient for the mean square error was 
less than 10

-5
. The mean square error is the average squared 

error determined from the actual output of the network and the 
expected output. The ANNs had 7 hidden neurons and one 
neuron in the output layer. 

C. A Genetic Algorithm for Optimization of Stress 

Recognition 

A GA was used to optimize the stress features and 
determine whether the SVM and ANN classification model 
systems were able to better capture stress patterns. It was used 

to investigate whether feature selection improved the quality of 
stress classifications. The GA search evolved a population of 
subsets of features using crossover, mutation and selection 
methods in search for a population of subset of features that 
produced a better quality stress classification. A subset of 
features is referred to as an individual or chromosome. The 
quality for each chromosome in the population was defined by 
the quality of classifications produced when a classifier was 
provided with the features encoded by the chromosome. 

The initial population for the GAs was set up to have all the 
features. The number of features in the chromosomes varied 
but the chromosome length was fixed. The length of a 
chromosome was equal to the number of features in the feature 
space. A chromosome was a binary string where the index for a 
bit represented a feature and the bit value indicated whether the 
feature was used in the classification. 

The GAs in the hybrid classification systems were 
implemented with the settings provided in TABLE II.  
 

IV. RESULTS AND DISCUSSION 

The computational classification models were tested on the 
stress data obtained from the film experiment. Features derived 
from the primary stress signals were provided to the SVM, 
ANN, GA+SVM and GA+ANN classification systems. The 
feature values were normalized by participant to reduce the 
effect of individual bias. Performances of the classifications 
produced the classification systems were calculated using 10-
fold cross validation. The classification results are provided in 
TABLE IV.  

Stress patterns in the film data set were best recognized 
with the GA hybrids according to the stress recognition 
measures. When the classification model systems were 
provided all the features derived from the primary stress 
signals, the accuracy and the F-score were at least 0.24 lower 
than systems with the GA feature selection. Classification 
results show that the performances of SVM and ANN were 
similar. Similarly, the performances of GA+SVM and 
GA+ANN in stress classification were similar. 

The GA in the GA hybrid classification systems selected 
ECG features for measurements of the LF and HF frequency 
bands, gradients, rate of change, mean and variance for GSR, 
ECG and BP, rate of change of the distance covered by eye 
gazes calculated by eye fixations, and the rate of change of the 
diameter size of the eye pupil. This feature subset had stress 
data on how the experiment participants reacted to the different 
films and provided improved capability for the classification 
systems to capture better stress patterns in the film experiment 
data set and recognize stress better. 

Further, EEG features were provided as input to the SVM, 
ANN, GA+SVM and GA+ANN classification systems as well. 
The classification results based on 10-fold cross validation are 
shown in TABLE III.  

TABLE II.  IMPLEMENTATION SETTINGS FOR THE GENETIC ALGORITHM 

GA Parameter Value/Setting 

population size 100 

number of generations 2000 

crossover rate 0.80 

mutation rate 1/(length of the chromosome) 

crossover type MATLAB’s Scattered Crossover 

mutation type  MATLAB’s Uniform Mutation 

selection type MATLAB’s Stochastic Uniform Selection 

 

 



 

Like the performance of the classification systems on the 
primary stress signals, GA hybrids produced better stress 
recognition rates and F-score values than the systems that used 
all features to develop a model. This shows that the GA hybrids 
captured stronger stress patterns in their models. The stress 
recognition measures for the systems without the GA was at 
least 0.16 lower than the GA hybrid systems. In addition, SVM 
and ANN produced similar stress recognition rates and the GA 
hybrids produced classifications with similar stress recognition 
rates. 
 

The GAs selected measures for EEG fractal dimensions, 
and variance, mean and skewness features of the EEG signals 
and signals in the Beta and Alpha frequency bands for stress 
classification. The features selected by the GAs had stronger 
relationship with stress and enabled the classifiers in the 
classification system to better capture stress patterns in the film 
experiment EEG data set. 

Statistical analyses were conducted on the results and in 
accordance with the Student’s T-test the GA hybrid systems 
produced significantly better stress recognition rates than the 
systems without the GA with p < 0.01. Analysis of the stress 
recognition rates produced by systems on the feature sets 
derived from primary stress signals and the EEG signals 
showed no statistical difference for the two feature sets (p > 
0.1). This suggests that the Emotiv system has the capability to 
capture stress signals and has the potential to be used for stress 
recognition in environments where intrusion needs to be 
minimized for easier stress data acquisition. 

V. CONCLUSION AND FUTURE WORK 

Computational models of stress for observers of films were 
developed based on SVMs and ANNs using a real-world stress 
data set formed from a film experiment. The data set was made 
up of physiological and physical signals as well as EEG signals 

sourced by a consumer device – the Emotiv system. Stress 
patterns in the data were successfully captured by the SVM and 
ANN models. The hybrids of GA with SVM and GA with 
ANN performed significantly better than the stress recognition 
systems without a GA with higher stress recognition results. 
Analysis of the results produced by the stress recognition 
systems on the data sourced by the consumer EEG device 
shows potential for the device as a tool for stress analysis for 
the type of work presented in this paper. Some extension to this 
work will include optimal sensor selection for the consumer 
EEG device and modeling of online stress analysis. Future 
work will also include stress analysis for observers of other 
types of environments such as more natural environments with 
real-life settings with more suitable sensors that are non-
obtrusive to suit day-to-day data capture and stress analysis. 
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