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Abstract-Today small, battery-operated electrocardiograph 

devices, known as Ambulatory Event Monitors, are used to 

monitor the heart’s rhythm and activity. These on-body 

healthcare devices typically require a long battery life and 

moreover efficient detection algorithms. They need the ability 

to automatically assess atrial fibrillation (A-Fib) risk, and 

detect the onset of A-Fib from EKG recordings for further 

clinical diagnosis and treatment. The focus of this paper is the 

design of a real-time early detection algorithm cascaded with 

an A-Fib risk assessment algorithm. We compare accuracy of 

machine learning schemes such as J48, Naïve Bayes, and 

Logistic Regression and choose the best algorithm to classify 

A-Fib from EKG medical data. Though all three algorithms 

have similar accuracy, the Logistic Regression model is 

selected for its easy portability to mobile devices. A-Fib risk 

factor is used to determine a monitoring schedule where the 

detection algorithm is triggered by the age dependent A-Fib 

incidence rate inside a circadian prevalence window. The 

design may provide a great public health benefit by predicting 

A-Fib risk and detecting A-Fib in order to prevent strokes and 

heart attacks. It also shows promising results in helping meet 

the needs for energy efficient real-time A-Fib monitoring, 

detecting and reporting. 
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I. INTRODUCTION 

Atrial fibrillation (A-Fib) is the most common cardiac 

arrhythmia [1] [2] [3]. The American College of Cardiology 

and the American Heart Association define A-Fib as a 

supraventricular tachyarrhythmia characterized by 

uncoordinated atrial activation accompanied by the 

deterioration of atrial mechanical function. A-Fib is 

responsible for approximately 15 percent of the strokes 

occurring in people with A-Fib. The cost to treat A-Fib in 

the United States exceeds $6.4 billion per year [4]. 

Electrocardiograph portable devices are used to record the 
heart’s rhythms and monitor arrhythmia however they are 

plagued by technological challenges such as energy 

constraints, process optimization problems, data security 

risks and interference [5]. Future wearable computing 

devices [6] require the ability to not only continuously 

monitor but also efficiently detect, analyze and report 

cardiac arrhythmia.  

This paper presents the design of a Risk and Incidence 

Based Atrial Fibrillation Detection Scheme to be used in a 

wearable computing application. Section I briefly illustrates 

the need for future wearable computing devices to possess 

the ability to not only continuously monitor but also 

efficiently detect, analyze and report cardiac arrhythmia. 

Section II highlights the related work. Section III describes 

arrhythmia monitoring and detection devices issues. Section 

IV introduces the data mining of arrhythmia and the first 

episode of A-Fib. Section V describes telemetry used in 

current devices, describes the incidence rate of A-Fib and 
the accuracy of A-Fib clinical diagnosis. Subsection VI 

establishes the A-Fib risk and detection models. Section VII 

is the conclusion.  

II. RELATED WORK 

The focus of this paper is the implementation of a risk 

assessment algorithm and the design of an incidence based 

A-Fib detection scheme for wearable healthcare computing 

devices. Related work in biomedicine and information 

technology introduced various algorithms for diagnosing 

and detecting different types of arrhythmia, and developed 

cardiovascular disease prediction algorithms. The 
Framingham heart study [7] developed a risk score to 

calculate individual’s risk of developing atrial fibrillation 

and a development framework for researcher. The work by 

[8] developed a prediction model to detect tachycardia and 

send alerts to a designated care center for appropriate 

medical action. The research funded by the Health 

Technology Assessment Program addresses the accuracy of 

electrocardiogram (EKG) for the diagnosis of A-Fib and the 

potential risk of A-Fib misinterpretation errors [9]. A 

mobile medical device, dubbed HeartSaver [10] was 

developed to monitor the onset of atrial fibrillation and other 

cardiac pathologies. Other related work deals with the 
classification of arrhythmia and the performance of machine 

learning algorithms such as OneR, J48 and Naïve Bayes 

[11] but does not address logistic regression covered in this 

paper. The feasibility of EKG data collection by wireless 

sensors networks is derived in [12]. The duration and 

incidence rate of A-Fib are estimated in [13] with A-Fib 

predictors derived in [14].  

III. CURRENT ARRHYTHMIA MONITORING AND 

DETECTION DEVICES ISSUES 

Today, cardiac arrhythmia is diagnosed under the 

supervision of a physician, through the use of various 
diagnostic methods and tools. Patients visit health centers to 
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receive and get hooked up to devices, which are then carried 

by the patient and activated when arrhythmia symptoms are 

present. Current healthcare monitoring solutions are 

designed to work over a scheduled or pre-programmed 

period of time. Monitoring becomes ineffective for patients 

who experience infrequent symptoms outside the scheduled 
period and/or of very short duration. Additionally, the 

procedure becomes impractical when the patient is 

incapacitated during symptomatic periods. Certified 

technicians and doctors in remote medical centers review 

and analyze the data before a full report is generated and 

communicated to the patient. Furthermore ambulatory 

monitors such as Holter monitors, event monitors, and 

telemetry are not energy efficient and require long battery 

life.  

IV. DATA MINING ARRHYTHMIA  

Data mining or Knowledge Discovery in Databases is 

the nontrivial extraction of implicit, previously unknown, 
and potentially useful information from data [15]. It uses 

machine learning, statistical and visualization techniques to 

design and develop algorithms that are capable of inducing 

knowledge from the data. Data mining is not an exact 

science. Human interaction is sometimes required to 

decipher ambiguities during the four phases of data mining 

process: data collection, data pre-processing, data mining 

and information evaluation and interpretation. Few machine 

learning algorithms and statistical approaches have been 

applied to cardiac arrhythmia classification [16] [17] [18]. 

A. Data Cleaning and Data Preprocessing 

Biomedical data is highly distributed and often 

uncontrollably generated. Data may contain information that 

simply does not make sense and requires cleaning. Data 

cleaning is defined as a preprocessing step, and is essential 

in data mining to ensure accuracy, completeness, and 

consistency of data [21]. Before proceeding with data 
cleaning, understanding the data and how it was gathered 

helps eliminate outliers and data corruption. The dataset is 

partitioned using cross-validation. The training set is used to 

train the learning algorithm, and the induced decision rules 

are tested on the test set. The model is to be first built and 

evaluated using 10-fold cross validation on the fit data set, 

and then validated using the test data set. In 10-fold cross-

validation, the dataset is divided into 10 subsets of 

(approximately) equal size. The dataset is split 10 times, 

each time leaving out one of the subsets to use for testing. 

The basic idea is to use 90% of the dataset to build a model 
and 10% to test the performance of the model [22]. 

 

B. Classification and Analysis Environment  

The Waikato Environment for Knowledge Analysis 

software environment for Machine Learning (a.k.a. WEKA) 

[23] is used to analyze the dataset and classify the presence 
and absence of A-Fib. WEKA contains tools for data pre-

processing, classification, regression, clustering, association 

rules, and visualization. It is also well-suited for developing 

new machine learning schemes.  

C. Incidence Rate of A-Fib 

Among all arrhythmia, A-Fib is the most frequently 

diagnosed and affects 2.5 million people in the United 

States or close to 1% of the total population [4]. The 

Manitoba study [24] concluded that the incidence of A-Fib 

is 0.13 to 0.36 for people between 25 and 60 years old, 5.7 

per 1,000 person-years after age 60, and 9.7 per 1,000 

person-years after age 70. The Framingham Heart study [25] 

and other studies draw attention to the significance of the 

higher frequency of A-Fib with advancing age [26]. Patients 
with A-Fib have a 1.5-2 fold increase in mortality rate when 

compared with the general population as suggested by 

Framingham Heart study data [27]. Early recognition of A-

Fib is difficult because most people are not aware of this 

silent rhythm disturbance [28]. Today, frequent monitoring 

and screening of patients allow for early detection of 

arrhythmia.  

D. Clinical Diagnosis Accuracy of A-Fib 

At least one-third of the A-Fib episodes go undetected 

[9] because either people do not get screened often or A-Fib 

diagnosis is missed by a general practitioner or practice 

nurse. Few studies have addressed the misdiagnosis of A-

Fib from an electrocardiogram (EKG) and the potential risk 

of A-Fib misinterpretation errors. Knight et al. [29] 

concluded that A-Fib is more often misdiagnosed by 

internists than cardiology fellows and cardiologists. Mant et 

al. [30] discovered that general practitioners correctly 
detected A-Fib 80% (true positive) of the time when 

interpreting 12-lead EKG data and misinterpreted 8% (false 

positive) of sinus rhythm cases as A-Fib. One of the major 

misdiagnosis confuses A-Fib with atrial flutter [29] [31].  

E. Predictors of A-Fib 

A-Fib is the most prevalent arrhythmia in the United 
States and accounts for more than 750,000 strokes per year 

[32]. According to classification guidelines used by 

cardiologists and electro-physiologists, for the management 

of patients with A-Fib [14], after the first A-Fib is detected, 

there are mainly four types of A-Fib: Paroxysmal, 

persistent, longstanding persistent, and permanent. A-Fib is 

termed progressive. Once a patient is diagnosed with a 

paroxysmal A-Fib he or she will eventually migrate to 

persistent A-Fib. Similarly, a patient diagnosed with 

persistent A-Fib will drift to longstanding persistent A-Fib 

and in time to permanent A-Fib [33]. The EKG waves and 
intervals explained below are used to describe the heart 

electrical: 

The QRS interval (see Figure 1) is the duration of the 

ventricular muscle depolarization. The P wave is a record of 

the electrical activity or the sequential activation 

(depolarization) through the right and left atria. The PR 

interval is the time interval measured from the beginning of 



the P wave (atrial depolarization) to the onset of the QRS 

complex (ventricular depolarization). The RR interval is the 

 

 

 
Figure 1: Typical EKG wave and intervals. 

 

duration of the ventricular cardiac cycle; it is an indicator of 

the ventricular rate. The PP interval is the duration of the 

atrial cycle; it is an indicator of the atrial rate. 

 
 

Figure 2: A-Fib depicted by the absence of the P-Wave. 

 

 We acknowledge detecting A-Fib is difficult and 
requires a more intense research, however one of the strong 

indicator of A-Fib presence is the absence of P waves on the 

EKG plot (see Figure 2) and an erratic noise like activity in 

their place combined with irregular R-R intervals 

[34][33][32]. Sometimes when the heart rate is too fast, 

irregular RR intervals may be difficult to determine [24]. 

Wide QRS complexes may be present with rapid ventricular 

response.  

V. TELEMETRY DATA ANALYSIS 

Telemetry is widely accepted in healthcare for remotely 
collecting and sending vital data to a monitoring station for 
analysis and interpretation of all types of arrhythmia in 
outpatients. Today, when prescribed by a physician, 
telemetry may be applied continuously for few days in the 
hope of capturing episodes of A-Fib. Telemetry may also be 
user-triggered by the patient as soon as he or she feels 
symptoms of A-Fib (such as heart palpitations). Using 
triggered events to start an A-Fib telemetry monitoring 
device runs the risk of missing the first 30 seconds of A-Fib. 

Moreover, triggering events might not be possible if the user 
is incapacitated. 

The telemetry model continuously senses EKG signals, 

transmits EKG data, receives EKG records, and reports 

EKG information to a healthcare center for further 

diagnostics and analysis by a doctor or a healthcare 

specialist. The telemetry report includes all positive and 

negative results. We assume that telemetry EKG 

interpretations are conducted by a cardiologist or a cardio-
physiologist who are trained experts at EKG readings; thus 

all judgments of what constitutes A-Fib are going to be 

assumed to be as accurate as possible. Unfortunately not 

every physician is a cardiologist, so general practitioners are 

often the first to interpret EKG readings during a general 

screening evaluation. General practitioners introduce human 

errors when interpreting EKG readings [30]. 

VI. A-FIB RISK AND DETECTION MODELS 

Several clinical methods have been applied to treat 

arrhythmia in people, but these medical interventions and 

clinical treatments come after the fact and are expensive. 
Moreover, they do not come without risks to the patients 

[34]. There would be a greater positive public health impact 

from predicting arrhythmia risk and detecting arrhythmia to 

prevent strokes and heart attacks. Few machine learning 

algorithms and statistical approaches have been applied in 

medical applications; for example, classification of EKG 

arrhythmias using neural networks [35], EKG arrhythmia 

classification based on logistic model tree [16], and analysis 

of EKG signals using self-organizing maps (SOM). In this 

paper we concentrate on the design of a real-time early 

detection algorithm cascaded with an A-Fib risk assessment 
algorithm. We compare accuracy of machine learning 

schemes such as J48, Naïve Bayes, and Logistic Regression 

and choose the best algorithm to classify A-Fib from EKG 

medical data. 

A. Developing A-Fib Risk Factor  

The risk of developing A-Fib may depend on several 

factors—some associated with lifestyle and some from 

heredity. Many of these factors behave nonlinearly, 

complicating accurate A-Fib risk assessment in people. 

Standardizing the prediction of A-Fib from mere clinical 

diagnoses is difficult [36]. Few studies have addressed the 

misdiagnosis of A-Fib from an electrocardiogram (EKG) [9] 

[29] and the potential risk of A-Fib misinterpretation errors. 

Data mining techniques and statistical methods such as the 
Cox proportional hazards model [37] and the logistic 

regression model are used in many epidemiological studies.  

The Cox Proportional Hazards Model is a multivariate 

statistical method used to compare survival in two different 

groups and determines the contribution of different variables 

on survival. The Framingham Heart study in the United 

States and the Prospective Cardiovascular Münster 
(PROCAM) study in Europe used the Cox model to develop 



standardized risk factor assessments that may complement 

clinical practice. The Cox proportional-hazards regression 

[37] is used to analyze the effect of risk factors on survival. 

The probability of the onset of A-Fib is called the hazard. 

The following covariates and their corresponding 

coefficients responsible for predicting A-Fib risk in people 
aged between 45 and 95 years old are extracted from the 

Framingham Heart Study [27]: Age, Age2, Gender, Body 

Mass Index (BMI), Systolic Blood Pressure (SBP), 

Treatment for Hypertension (TH), Significant Heart 

Murmur (SHM), Prevalent Heart Failure (PHF), 

Gender*age2, and Age*PHF, PR Interval (PRinterval). We can 

express the hazard or risk of getting A-Fib at time t as: 
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We can linearize this model by dividing both sides of the 

equation by H0(t) and then taking the natural logarithm of 

both sides: 
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The quantity H0 (t) is the baseline or underlying hazard 

function. It is practically the probability of getting A-Fib 
when all the other covariates are set equal to zero. The 

baseline hazard function is analogous to the intercept in 

linear regression. The regression coefficients β1 to β12 

provide the model with the proportional change or 

contribution from each covariate. The derived Cox 

proportional hazards equation is described below:  
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Where H0 (10) = 0.96337 is the 10 year baseline survival or 

cumulative hazard function at time t = 10 years extracted 

from the Framingham Heart study [27]. The values of the 

means for each covariate are tabulated in Figure 3: 

 

Covariate Xbar  Covariate Xbar 

Gender 0.4464  SHM 0.0281 

Age 60.9022  PHF 0.0087 

BMI 26.2861  Age2 3806.90 

SBP 136.1674  Gender*Age2 1654.66 

TH 0.2413  Age*SHM 1.8961 

PRInterval 16.3901  Age*PHF 0.61 

 
Figure 3:  A-Fib risk covariates coefficients 

 

For example, we calculate the risk factor of a male person 

who is 70 years old, weighing 70 kg, with a body mass 

index of 22.96, a systolic blood pressure of 130, with no 

hypertension, a PR interval measuring 16 ms, with no 

significant heart murmur, and no previous heart failure. 

Comparing to the mean values of the 10 year study from the 

Framingham Heart study we get: 
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The predicted risk factor is: 

 

      
                          

 

The predicted Risk Factor is 0.0863 compared to a risk 

for a person of the same age and gender with BMI 20 to 

24.9, Normal SBP (120 to 129), No Treatment for 

Hypertension, PR Interval 16, No significant murmur or 

prevalent heart failure.  

B. A-Fib Detection Model  

 
 

 
 

Figure 4: Overview of a wearable computing diagram. 
 

Figure 4 shows an overview of a wearable computing 

diagram. Typically the general detection A-Fib model 

discovers the first episode of A-Fib by sensing EKG signals 

through a portable, low-power, wireless two-lead EKG 

system [12] [38],  transmitting EKG data to a GSM/EDGE 

cell phone, receiving EKG records into a cell phone, 

detecting, and reporting when the detection algorithm 

detects the first 30 seconds of A-Fib. Data mining 

techniques and tools allow us the freedom to experiment 



with various features to observe their effect on the A-Fib 

detection model. Figure 5 describes the features selected to 

predict A-Fib:  
 

 Variable Description Value 

1  age Age in years , linear real 

2 Age2 Age2 in years2 real 

3  Gender Gender (0 = male; 1 = female) , 
nominal 

{0, 1} 

4  BMI Kg/m2, Linear  real 

5 QRSduration Average of QRS duration in 
msec., linear 

real 

6  PRinterval Average duration between onset 
of P and Q waves in msec., linear 

real 

7  heartrate Number of heart beats per min, 
linear 

real 

 class {A-Fib present, A-Fib absent} binary 
 

Figure 5: A-Fib attributes. 
 

The dataset used in our analysis was extracted from the 

Machine Learning Repository at University of California, 

Irvine [19], MIT-BIH Atrial Fibrillation database [20] and 

from data donated and corroborated by a cardiologist. The 
dataset describes the attributes for diagnosing cardiac A-Fib 

where each instance or patient is classified into two 

categories: presence of cardiac A-Fib and absence of cardiac 

A-Fib. The resulting dataset contains 304 records including 

80 A-Fib cases, 224 non-A-Fib cases, 7 attributes and 2 

classes (A-Fib Present, A-Fib Absent).  The cardiologist’s 

classification is used as a reference. 

 

Three machine learning techniques, J48, Naïve Bayes 

algorithms, and regression analysis are explored to test for 

the detection of the presence or absence of A-Fib: a 7-

attribute case and a 10-fold cross validation are used. The 
differences in accuracies from all three machine learning 

algorithms are not significant   J48 at 96.71 %, Naïve Bayes 

at 96.38 %, and Logistic Regression at 97.37 %. In this 

paper, logistic regression is selected for its direct predictive 

simple computation and accuracy. Logistic regression [39] 

determines the relative effect of independent variables xi on 

the dependent variable Y or class and their statistical 

significance. This effect is usually explained in terms of 

odds ratios where the odds of an event x occurring with 

probability p is defined as: odds (p) = p / (1-p) where p is 

the probability of the presence of the disease [40]. The logit 
transformation described in Figure 6 is defined as the 

natural log of odds,  
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xi =(x1, x2 , . . . , xk ) is the covariate vector and    (  
         )  denotes the coefficients of the k predictors. 
Fitting a logistic regression model to a given data implies 

deriving estimates of the coefficients    that maximize the 

likelihood of the model. 

 

 
Figure 6: Logit function 

 

The outcomes of the Logistic Regression include all True 

Positive and False Positive results. They may be triggered at 

A-Fib incidence rates reported in the Manitoba studies [24] 

where the incidence of A-Fib is 0.13 to 0.36 for people 

between 25 and 60 years old, 5.7 per 1,000 person-years 

after age 60, and 9.7 per 1,000 person-years after age 70 .  
A-Fib is predicted present if probability p (A-Fib is Present | 

age, age2, gender, BMI, QRSduration, PRinterval, heartrate) 

> 0.5  

Otherwise, A-Fib is absent.  

 

Where: 

 

logit (p) = - 41.175 + 0.820 age – 0.006 age2 + 4.737 Gender 

– 0.047 BMI + 0.098 QRSduration - 0.178 PRinterval  +  

0.066 Heartrate 

 

and  p = 1 / (1 + e
-logit (p) 

)  

 

1) Evaluating Classifier Performance 

Given an EKG record, a binary classification has four 

possible outcomes or rates: True negative (TN), False 

Positive (FP), True Positive (TP), and False Negative (FN). 

Detection rates are measured in terms of sensitivity and 
specificity [40]. When considering the results of a particular 

test in two populations, one population with an A-Fib, the 

other population without A-Fib, the distribution of the test 

results will overlap, as shown in Figure 7. 

For every possible cut-off point in the test there are cases 

with A-Fib that are correctly classified as positive (TP 

= True Positive fraction); cases with A-Fib that are 

incorrectly classified as negative (FN = False Negative 



fraction), cases without A-Fib that are correctly classified as 

negative (TN = True Negative fraction), and cases without 

A-Fib that are incorrectly classified as positive (FP = False 

Positive fraction). 

 

Figure 7: Test results 

Both the overall classification accuracy and the overall 

classification error defined below may be used to evaluate 

the performance of the classifier: 

 

                    
     

               
 = 2.63% 

 

                  
     

               
= 97.37% 

 

but when the costs of misclassifications of the different 

classes are uneven, this measure may be unacceptable. In 

order to take into account the unevenness of 

misclassification costs when evaluating a classifier, area 
under the Receiver Operating Characteristic (or ROC) curve 

is explored.  

 

 
Figure 8: Specificity versus Sensitivity Curve 

 

ROC curves have been used in biomedical informatics [41] 

to express the sensitivity versus specificity of classifiers. 

The ROC curve plot displays the False Positive rate on the 

X-axis (1- Specificity) and the True Positive rate 

(Sensitivity) on the Y-axis as shown in Figure 8. Each point 

on the ROC curve represents a sensitivity/(1-specificity) 

pair corresponding to a particular decision threshold. The 
area under the ROC curve measures how well a particular 

parameter can distinguish between two diagnostic groups 

(such as presence of a disease/ absence of A-Fib). The 

bigger the area is and the closest to 1, the better the 

classifier performance.  The area under the ROC curve for 

the derived logistic regression model is 0.986.  

Figure 9 shows the interpretation of the confusion matrix 

with the A-Fib predicted class represented by the columns 

of the matrix, and the actual class represented by the rows of 

the matrix.  
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Figure 9: Confusion matrix of A-Fib Logistic Regression 

 
The A-Fib detection algorithm is triggered by the onset 

of A-Fib. The incidence rate of A-Fib is higher in older 

people [24]. Suggested studies [31] reveal that clinical 

measurement of sensitivity (True Positive rate) of 80% and 

specificity (True Negative rate) of 92% when A-Fib is 

diagnosed by internists and general practitioners instead of 

cardiologists. Our logistic regression classification of A-Fib 

has a measurement of sensitivity of 98.8% and specificity of 

96.9 %.  The false positive results, usually interpreted as 

false alarms, contribute to wasted or needless energy spent 

in transmitting inaccurate information. In this analysis the 

logistic regression algorithm has a False Positive rate of 
3.1% (see Fig. 9, Confusion matrix of A-Fib Logistic 

Regression). 

 

C. Applying a Risk and Incidence Based A-Fib 

Detection Model 
 

A-Fib monitoring devices may become impractical when 

they run out of battery energy, an undesirable condition 

when the patient is incapacitated during symptomatic 

periods. Typical monitoring and detection healthcare 

wearable body network devices have limited energy and 

therefore limited monitoring duration [42]. The 

implementation of a Risk and Incidence Based A-Fib 
Detection Scheme in such devices alleviates the 

aforementioned challenges. For instance, A-Fib risk factors 

may be classified in three categories made up of risk ranges 

such as k < 0.05, 0.05 < k < 0.15, k > 0.15. Knowing the A-

Fib risk factor of a patient allows one to prescribe an A-Fib 

monitoring and detection schedule inside an appropriate 

circadian prevalence timing window [42] (see Figures 10 



and 11). A high A-Fib risk factor may suggest more 

frequent monitoring and wider circadian window compared 

to a low A-Fib risk factor. 

 
 

Figure 10: Overview of an efficient wearable computing device 

 
Because A-Fib is not a common occurrence [30], a result is 

reported only when there is an actual occurrence of A-Fib.  

 

 
 

Figure 11: A-Fib Episodes inside a circadian prevalence window 

 

In Figure 11, the A-Fib logistic regression model detects the 

first episode of A-Fib by continually monitoring EKG 

signals, detecting, and reporting when the first 30 seconds of 

continuous A-Fib occurs. The width of the circadian 

monitoring window depends on the A-Fib risk value and 
varies within a 24 hour period. Monitoring may continue 

beyond the 24 hour period. After the first 30 seconds of A-

Fib is detected, monitoring may proceed to detect 

paroxysmal, persistent, long standing persistent and 

permanent A-Fib, which may require monitoring for days or 

weeks. The realization of a Risk and Incidence Based A-Fib 

Detection Model may be a good fit to an energy constraint 

monitoring and detection model.  

 

 

Using the two-lead EKG Alive Technologies Heart 

Monitoring Device A102D7 [38], we compare the energy 
consumed by a Risk and Incidence Based A-Fib Detection 

Scheme to the energy consumed by a telemetry model. We 

assume the telemetry model continuously monitors and 

transmits EKG signals during a 24-hour period. The device 

monitors and transmits EKG signals via Bluetooth to a 

MacBook. We realize a preliminary energy savings of 

89.7% when we use an A-Fib incidence rate of 0.02 and 

continuously monitoring the onset of A-Fib during a 

cumulative 4-hour circadian prevalence window [42]. 

Similarly, we realize a preliminary energy savings of 38.2% 

when using an A-Fib incidence rate of 0.02 and 

continuously monitoring the onset of A-Fib during a 24-
hour window (see Figure 12). 

 

 

Figure 12: Comparing the energy consumed in different scenarios  

 

The authors plan to implement a risk and incidence based 

atrial fibrillation detection scheme in a wearable device and 

further validate the results in a clinical setting. 

VII. CONCLUSION  

In this paper, we design a risk and incidence based atrial 

fibrillation detection scheme to alleviate the 

abovementioned problems in energy constrained wearable 

computing devices. We recommend an A-Fib Risk factor 

assessment to determine a risk category and implement a 

monitoring and a detection schedule by using a circadian 

prevalence window. The detection is triggered based on age 

dependent incidence rates. Studies [24] [25] suggest if the 

detection algorithm is as accurate as the cardiologist’s 

accuracy of interpreting EKG readings then the design 

shows promising results in meeting the energy needs of 

monitoring, detecting and reporting A-Fib required in 
wearable computing healthcare applications. 
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