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Abstract—Within the project “eHome” a prototype of an assistive 
home system was developed, aiming to prolong the independent 
life of elderly people at home. Besides communication, e-access 
and safety relevant features, a core part of this system is an 
automatic fall detection, which utilizes floor-mounted 
accelerometers to gather body-sound signals that typically occur 
during a human fall. This approach targets to avoid acceptance, 
usability and reliability issues of available body-mounted fall 
detectors. The system was developed with focus on practical 
applicability, reliability and exploitability. The prototype was 
evaluated successfully in laboratory and during 507 days in real-
life at homes of persons from the target group. During the 
laboratory trials a sensitivity of 87% and a specificity of 97.7% 
could be achieved for a defined fall scenario and across four 
tested floors. Further research is suggested to investigate floor 
dependencies of the fall detection performance. 

Keywords: fall detection, AAL, accelerometers, independent 
living, older people, floor vibrations 

I.  INTRODUCTION 
Literature shows that approximately 30% of older people 

above 65 years fall once a year, whereas 70% of these falls 
occur at home. In the group of people over 80, the number of 
people falling at least once per year even rises up to 50% 
[14][15]. The consequences of a fall can be severe especially if 
first aid is supplied late; the life expectancy of people that 
suffered a fall and lay on the ground for one hour or more is 
less than six months in most cases [16]. 

Although fall detection research was undertaken by many 
institutions so far and a range of commercial products is widely 
available by now, literature research and interviews with 
experts from social care showed that existing body-worn 
devices are hardly used in Austria for social and reliability 
reasons and because of usability problems [10].  

Advantages of wearable products generally are to be small, 
light-weight, easy-to-use at relatively low costs and are easily 
being installed as add-on to existing senior alarm telephones 
[18]. A limitation of wearable fall detectors obviously is that 
they have to be worn 24 hours and, depending on their design, 

might stigmatize the user. 

Other research approaches use vision based surveillance to 
monitor user’s behavior and to recognize abnormal situations 
like a fall. This image based approach has the disadvantage to 
be considered as highly intrusive by users and other involved 
persons [18].  

To alleviate these issues the aim of the described fall 
detection research was to develop a prototype system which is 
using only minimal invasive environmental sensors mounted 
on the floor of the user’s home. The system should be able to 
recognize possible fall events and to discriminate it from other 
types of floor vibration with a reasonable performance and 
reliability. The prototype should be evaluated in laboratory 
trials and real-life tests together with individuals from the 
target group of older persons and caring relatives. 

After a short introduction of the eHome prototype, the 
methodology used to develop and test the fall detection 
solution and the results achieved during laboratory and real-life 
tests will be presented. 

A. The eHome system 
Within the project eHome an Ambient Assisted Living 

(AAL) system that aims at giving elderly people a feeling of 
security and contributes to an autonomous life at home was 
developed. eHome is based on the idea to equip the user’s 
home with a set of minimally intrusive wireless sensors that 
allow the system to gather information about the user’s 
behavior and react in defined potentially critical situation such 
as a fall. In such a case the system first asks the user visually 
and acoustically via a local touch screen terminal if he/she is 
alright. In case the user does not respond to this internal alert, 
the system forwards this information to relatives, care centers 
or other persons of trust by triggering an alarm chain, which 
uses VoIP telephony to contact one of the predefined persons. 

The eHome system consists of a network of several multi-
sensor-boxes. These boxes were developed specifically for the 
eHome project and include a high sensitivity 
microelectromechanical accelerometer (MEMS) to pick up 
structure-borne body sounds when attached to a floor. The 
sensitivity and signal-to-noise ratio of the accelerometer were 
important selection criteria since they limit the fall detection 
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range a single sensor can cover. The device LIS344ALH from 
STMicroelectronics with a sensitivity of 600mV/g and a rms 
noise of 0.05mg/√Hz fulfilled these and other requirements 
such as low energy consumption and low cost and was hence 
integrated into the multi-sensor-boxes. 

The boxes are wirelessly connected to one central server 
where further sensor-data based reasoning and decision-making 
is performed. The central server is further connected to a local, 
touch screen based user interface, which is used to inform 
about detected critical situations and also provides the user 
with convenience functions such as video-telephony and easy-
to-use Internet access. These three main components of the 
eHome system are depicted in Figure 1 below.  The multi-
sensor-box was developed with a size constraint to ease the 
integration into existing living environments; the size of the 
final and depicted box is 7x5x3cm. 

 
Figure 1. eHome system: multi-sensor-box, central server and local user 

interface (illustration not to scale) 

The eHome system was evaluated in a field study within 
the framework of the “Living Lab Schwechat” [17] for a total 
duration of 20 months and together with 11 seniors in their 
private homes. [12] 

 

II. METHODS 

A. Working principle 
The idea behind the fall detection method is based on the 

assumption that the impact of a human fall on the ground 
generates measureable vibrations that are propagating through 
the floor and can be measured by acceleration sensors in a 
distance of several meters. Furthermore it was assumed that the 
characteristics of the so gathered signal differ significantly 
between the fall of a human being and other sources of 
structure-borne body sounds such as impacting objects, steps, 
or earthquakes. 

This underlying idea was already proposed earlier by  
Alwan et al. [7], the same authors as of this work [19][20]  and 
by Litvak, D., Gannot, I. & Zigel, Y. [8].  Alwan et al. used one 
large piezo based sensor at one spot of a floor and Litvak et al. 
used sound data gathered by a microphone in addition to floor 
mounted accelerometers for classification. In comparison the 
solution proposed in this approach uses several distributed 
accelerometers to pick up floor vibrations on several spots to 
enhance the fall detection performance but does omit sensors 
that could be perceived as intrusive by the user such as cameras 
and microphones. 

In this work focus was laid upon evaluation of the practical 
applicability of the approach as well as further validation and 
development of the proposed technique. 

B. Defining a fall scenario 
A study, which researched the fall situations in Vienna, 

found that 72% of falls from elderly over 60 occur on one 
floor-level (i.e. not from a higher point down), 17% from stairs 
and 16% from higher positions such as a ladder or a chair [13]. 
Furthermore, one of three accidents at home happens during 
walking, 13% during cleaning, 12% during cooking and 12 % 
from a lying position. [13] 

Older people are less likely to be able to protect themselves 
during the fall by using their hands [1]. Especially the “oldest 
old” are hardly able to get up by themselves after a fall and 
might remain lying on the floor for longer times as reported by 
Jane Fleming et al. [11] who found that in more than half of the 
accidents in the age group 90+ the person was found lying on 
the floor and in 30% of the cases had lain there for an hour or 
more. 

Based on these findings our further project work focused 
primarily on falls from an upright or sitting position where the 
user falls in a forward direction without dampening the fall 
with the hands.  

The following considerations led to this decision 

• As mentioned above these are the most common types 
of falls, including falls with severe medical 
consequences (such as a femoral neck fracture) that 
happen typically after stumbling or slipping 

• In contrary to falls from lower plains such as slowly 
slipping off a chair or the bed, these types of falls 
typically show a high impact, strong enough to cause 
serious injuries including femoral neck fracture, which 
is one of the leading causes of long-term rehabilitation 
for elderly people [13] 

• The evaluation of real life data gathered in flats of 
elderly people going along with assumptions about 
impacting objects in everyday life suggest to lay 
emphasis on the energy a falling object transfers to the 
floor. Since the impact energy is related to the weight 
of the impacting object, it is unlikely that during 
everyday life falling objects will produce impacts 
comparable to a fall of a human.  

• During simulations of falls with a dummy puppet it 
could be shown that even when only using one fall 
scenario, the gathered body sound characteristics vary 
in a high degree. One reason for this irreproducibility 
can be found in the complex mechanics of the human 
like dummy, which narrows the possibilities to control 
its fall. These simulation constraints are welcome and 
go along with expectations about the real model as falls 
of a human being also vary a lot in their characteristics. 
For a robust fall detection, parameters must be 
calculated being common denominators for different 
kinds of falls. This leads to the assumption that a 
system that is capable of recognizing one kind of fall 
has to be tolerant and might also be able to perform in 
similar fall scenarios 

• The variability of falls is nearly unlimited, to achieve 
sound performance statistics within the projects 



lifetime the limitation to certain fall scenarios is needed 
also from an economic perspective 

C. Selected fall scenario 
Based on fall statistics the following scenario was built and 

used for development and evaluation of the eHome fall 
detection system. 

The user falls down to the ground from a standing or sitting 
position in a forward direction and because of the impact and 
possible injuries is not able to stand up any more, thus 
generating less activity in the sensor equipped flat. This fall 
happens anywhere within the sensor-equipped room and 
transmits energy in form of vibrations directly onto the floor. 
The eHome system recognizes the event, reacts within minutes 
and offers the user help (optically and acoustically) via the user 
interface. In case the user does not respond within a certain 
timeframe, the system triggers an alarm chain automatically 
that calls predefined telephone numbers until a person answers 
and establishes a video/audio call. The called person, who also 
finally decides whether further help is needed and might call 
the emergency or look after the user by himself/herself, does 
the further alarm handling. 

D. Simulation of Falls 
To evaluate body sound parameters originating from human 

falls, it was necessary to develop a method to simulate the fall 
scenario described above. 

After the first test phase in a laboratory setting, where 
young human volunteers helped to create fall data, research on 
test dummies was done to be able to conduct larger scale 
studies on different kinds of floors. The following properties 
were considered significant for an adequate dummy to produce 
realistic falls reliably: 

• The dummy should have moveable limbs to generate 
human like impacts on the floor since early fall studies 
showed that limbs often fall on the floor shortly before 
or after the rest of the body creating fuzzy structure-
borne sound signals 

• The texture and density of the skin should follow a bio-
mechanical model being adequate for fall simulations. 
The head for example should be harder than the thigh 

• The weight of the dummy should be close to the 
typical weight of older women (i.e. about 60kg), since 
this is the group primarily suffering from falls. Based 
on the system design it is assumed that a system that is 
capable of detecting falls of women will also be able to 
detect falls of typically heavier men 

Based on the above points and on market availability, two 
commercially available dummies were selected and evaluated. 
The model “Rescue Randy” from “Simulaids” showed the 
closest features to human falls and was hence used for further 
research.  

During the fall studies the dummy was borrowed for the 
time of the trials from the “Austrian Red Cross” and was then 
dressed like a human as the dampening properties of the worn 
fabric were considered to influence the fall induced body 
sound. Figure 2 shows the selected fall dummy. 

 

Figure 2. Selected fall dummy (© simulaids.com) 

III. THE FALL DETECTION SYSTEM 

A. Number and placement of sensors 
Literature and early experiments showed that reliably 

detecting a fall based on one floor-mounted sensor only is 
difficult since small impacts very close to the sensor can hardly 
be discriminated from stronger impacts further away [2,3]. To 
avoid this issue eHome uses at least three sensors for each 
room and operates on a virtually aggregated data set from all 
sensors placed within the same room. 

According to interviews with experts on building acoustics, 
the ideal place for picking up the vibration signal is located in 
the middle of the room since ceiling constructions can be 
considered basically as a two dimensional “guitar string” model 
that exposes the highest amplitude in the middle between the 
mounting points after excitation. For practical reasons it would 
be best to mount the sensors in the corners of a room where 
they least interfere with user activities and do not pose a 
potential risk of falling over them. For the project it was 
decided to mount the sensors in the middle of the room’s edges 
such as shown in Fig. 1 below, which is a compromise between 
the two points above. 

 
Figure 3. Placement of sensors in example room 

B. Steps of the fall detection process 
Vibration event detection, data gathering and segmentation 

of data are done on the multi-sensor-boxes of the sensor 



network. Data are gathered via these boxes by sampling the 
amplified and filtered accelerometer signal with a sampling rate 
of 2kHz. Feature extraction algorithms including a Fast Fourier 
Transform calculate a defined set of 36 fall-relevant parameters 
that are further being sent to a central server. The energy 
transduced to a floor due to a fall is seen as a major indicator, 
thus besides its frequency spectrum amplitude parameters are 
calculated and further qualified. The following parameters are 
calculated by the sensor boxes. 

1. Peak to peak value of the amplitude as a parameter for 

the highest measured energy of the impact 

2. Average rectified value of the amplitude as a 

parameter for the average energy of the impact 

3. Weighted average rectified value, which is similar to 

parameter 2 but prioritizes the data of the first seconds 

of the vibration with 1/n which in most cases contains 

the characteristic oscillation 

4. Duration of the signal 

5. 32 discrete values of the frequency spectrum up to 

1kHz calculated by a fast Fourier transform 

Algorithms on the central server use aggregation methods 
to fuse the multi-sensor-data to one set of parameters by means 
of timestamps generated by the sensor network to identify 
signals of the same origin. A fall is expected to transduce 
enough energy to the floor that all boxes in its near ambience 
are able to measure the vibrations. At least three boxes are 
needed during sensor data fusion to estimate the impact energy 
transmitted to the floor by averaging the single picked-up 
energy signals. More sensor boxes are needed on larger floors 
because of the limited range a box can cover. This number 
obviously depends on the size of the room as well as the floor 
type, as a rule of thumb rooms larger than 25m2 were equipped 
with an additional sensor during the trials. As a consequence 3 
measured events with the origin of different sensor boxes must 
be recognized within a certain timeframe.  

Based on the combined sensor data, pattern recognition 
algorithms are used to identify a potential fall event. The 
implemented algorithm uses a weighted threshold based 
evaluation of the most significant parameters. These are the 
first four parameters listed above. The frequency spectrum was 
not evaluated in user trials so far but various lab tests suggest 
further research in this issue having the potential of a 
significant improvement of the algorithms’ specificity and 
sensitivity. 

After such a potential fall event is detected, an activity 
indicator is evaluated for a configurable period of time to 
identify whether or not the user was able to get up on his/her 
own. In case a certain activity threshold was not exceeded, an 
alarm is generated and handled by higher layers. This activity 
indicator is generated out of multimodal sensor and user events 
which comprise of vibration, infrared movement and door 
contact sensors as well as button presses on the local user 
interface of the system. Fig. 4 shows the single steps of the 

detection algorithm on the left side together with an example of 
how the data diminishes when propagating through the 
abstraction layers on the right side.  

 
Figure 4. Steps of the fall detection process 

IV. EVALUATION OF THE FALL DETECTION SYSTEM 

A. Laboratory evaluation 
A trial was conducted in eight rooms of different buildings 

with different floor types. Altogether 183 tests were carried out 
with the final prototype hardware that was also used in the field 
trials. Impact sound measurements of predefined objects and 
the test dummy were carried out to investigate the influence of 
different floor and fall characteristics. 

The following research questions were elaborated: 

1. How do human falls compare to common sources of 
solid-borne sounds such as objects falling to the floor 
or vibrations caused by activities of daily living? Is it 
possible to find a discrimination function between 
them in order to classify between falls and objects? 

2. How do the placement of the sensors in the room and 
the location of the falls (e.g. in the middle of the room 
or at the rooms edges) influence the measurement? 

3. What influence does the floor type have on the 
performance of the fall classification? 



1) Human falls and other sources of solid-borne sounds 
In order to simulate vibration noise on the floor three 

different types of objects were used in the trials. As shown in 
Fig. 5 the impact sounds of a ball, a wastepaper basket and a 
chair were used in comparison to the impact sounds produced 
by the dummy to evaluate research question 1. These objects 
were selected because they cover a wide spectrum of different 
impact properties (strong vs weak impact, low vs high 
frequency spectrum of the impact, rebouncing after the first 
impact vs not rebouncing) and their impact is reproducible. 

 
Figure 5. selected objects: ball, basket, chair and dummy 

Based on the measured data a discrimination function 
between dummy falls and the impacts of the used objects was 
developed. Using this function the fall detection algorithm 
showed the following performance, which is given in Table I. 

TABLE I. RESULTS OF FIRST LABORATORY EVALUATION 

# of impacts dummy objects 

Fall detected 38 11 

No fall detected 6 128 

Total 44 139 
 

Out of 44 dummy falls 38 were classified correctly, 11 out 
of 139 impacts of objects were misclassified as falls, in 8 cases 
the chair and in 3 cases the basket. The sensitivity of the fall 
detection algorithm at this stage could be calculated as 86% at 
a specificity of 92%.  

This result was achieved with an algorithm that was 
optimized to detect falls on all eight tested floors, algorithms 
that were parameterized for one floor only had a higher 
performance. Four of the six false negatives origin on the same 
floor, which suggests a high relevance of floor characteristics 
for the fall detection performance. 

2) Activities of daily living compared to human falls 
To evaluate the question whether the chosen objects are 

representative for typical sources of heavy impacts during real 
life as well as to determine the occurrence probability of heavy 
impacts in real life, a further lab trial was conducted on four of 
the eight previously tested floors. During an evaluation period 
of approx. three weeks the eHome system was installed into the 
homes of three volunteers of the project team for a total 
duration of 69 days (all together) and gathered real-life 

vibration measurements. The volunteers were instructed to 
behave as usual during the test phase in their home. Table II 
gives a summary of test durations and data gathered during the 
trial. 

TABLE II. SUMMARY OF DATA GATHERED DURING SECOND LAB TRIAL 

Testfloors 
Total no. 

Vibrations 
Events 
found 

Evaluation time 
(days) 

TF1 11566 187 15 

TF2 12986 27 20 

TF3 8322 379 17 

TF4 5703 91 17 

Total 38577 684 69 
 

During this time the systems picked up a total of 38577 
vibrations caused by movement on the floor and occasionally 
falling objects. Of the gathered data the fall detection algorithm 
identified 684 events having an impact strong enough to trigger 
at least three sensors on the floor in the same room. These 684 
events were analyzed by the system and classified by the 
pattern recognition algorithms into 668 negatives and 16 
potential falls 

On the same floors 24 dummy falls were performed, of 
which 23 (n=23) were found to be valid; in one case data was 
missing because only two sensors detected the event. The fall 
detection algorithm was used to classify the 23 remaining falls 
and detected 20 falls correctly. 

 By combining the results of dummy tests and results 
gained during the long-term lab trials at the homes of project 
members, the performance characteristics of the fall detection 
system could be calculated and are shown in Table III. 

TABLE III. RESULT OF SECOND LAB TRIAL 

Tested floors 1-4 Fall No fall 

Test positive 20 16 

Test negative 3 668 

Total 23 684 
 

In comparison to common sources of body sounds in real 
life situations the fall detection showed a sensitivity of 87% 
and a specificity of 97.7% when combining the results of four 
floors.  

3) Position of sensors and falling objects 
Due to inhomogeneous floor structures the position of 

sensors can have a significant influence on the fall detection 
rate. Positions in the corner of a room or above a steel beam 
within the floor’s construction showed a higher attenuation, 
which in some cases prevented the sensor from picking up the 
vibration signal even during the dummy falls. During the field 
trials and laboratory tests it was hence taken care that all 
sensors are responding to a stomp with the feet from a distance 
of one meter. 

Furthermore the surface the object falls onto does have an 
influence to the measurement, as falls onto a carpet or firm 



place such as a doorsill will result in lower amplitude 
measurements than falls in the middle of the room.  

4) Evaluation of different floor types 
The floors were selected with respect to the actual living 

situation of the target group. Therefore tests were carried out in 
buildings of different construction/renovation years starting 
from the 1920s to 2000.  

Due to their attenuation characteristics, measurements on 
different floors showed different results, which makes an 
algorithm specialized to one floor inappropriate for others. 
Although most tested floors showed similar attenuation 
properties, two floors in the laboratory trials showed a much 
higher / lower attenuation than the average. In particular the 
floor with the lowest attenuation (a light wooden structure of an 
attic) showed peak-to-peak amplitude measurements that were 
higher by a factor of 1.75 than the floor with the lowest tested 
excitability (a concrete floor in the ground floor without a room 
below)   

A classification of floors based on their material and structural 
properties does not seem to be a feasible solution to increase 
the systems performance because of the high variety of floor 
materials and their compositions. Other solutions are suggested 
in chapter VI. 

B. Field trials 
The fall detection system was installed on 15 different 

floors during the eHome field trials [12]. The main goals were: 

• Measure frequency of occurrence and type of common 
noise from falling objects and noise generated during 
user movement 

• Measure real-life performance data of the fall detection 
algorithm 

During the 507 days evaluation period no real fall occurred, 
hence no real-life sensitivity of the algorithm can be given. The 
fall detection algorithm developed during the laboratory trials 
was used for evaluation of the false positive rate. Table IV 
shows the performance results achieved during the field trials.  

TABLE IV. SUMMARY OF DATA GATHERED IN FIELD TRIALS 

Real life test 
floors 

Total 
vibrations 
gathered 

Eventsa 
found  

Events after 
behavioral 
analysis 

falls 
detected 

TP1 3343 234 73 1 

TP2_WZb 70252 1476 217 7 

TP2_SZ 16099 88 15 0 

TP3 13914 748 401 3 

TP4_KU 15369 132 44 0 

TP4_SZ 7444 241 110 2 

TP5_WZ 505 19 8 0 

TP5_SZ 1251 11 6 0 

TP6_KU 8692 51 26 0 

TP6_SZ 16929 29 4 0 

TP7 26064 321 46 1 

TP8 15741 1384 108 1 

TP9 6405 119 39 1 

TP10 8251 317 73 2 

TP11 12781 459 155 2 

Total 223040 5629 1325 20 
a. At least three vibration signals that refer to the same origin are referred to as “vibration event” 

b. WZ=living room, SZ=bedroom, KU=kitchen 

 
Out of 5629 detected events the system considered 1325 as 

potential falls based on the last filter stage (the 30 seconds post 
evaluation period) and reported 20 falls after considering the 
previously described fall parameters. The reported falls were 
all false positives. It is notable that seven false positives were 
reported at a site (Test Person TP2) where a small child was 
often playing on the floor the system was installed on.  

The “total vibrations gathered” shown in Table IV vary 
strongly between the different test sites for the following 
reasons: 

 The system was installed on the floors for 
approximately four weeks at each test-site except 
TP2, TP3 and TP4 where the system was installed 
for approximately four months 

 The floors at the test-sites varied from concrete 
slab floors at the basement with high dampening 
properties to prestressed ceilings with lower 
attenuation. High dampening properties lead to 
less gathered vibration events since weak 
vibrations are less likely to be detected by the 
sensors 

 Users behave differently and also the usage of the 
sensor equipped rooms varied between the test-
sites 

At all test-sites events consisting of at least three coinciding 
measured vibrations could be found, which states that the 
system was capable of detecting and analyzing heavy impacts 
on all floors.  

V. DISCUSSION OF RESULTS 
For humane reasons it could not be fully evaluated whether 

the used fall dummy produces realistic human like falls. 
Although a set of human falls was produced for comparison in 
the beginning of the project by volunteers and project 
members, it can not be stated that even the recorded body 
sounds of this set contain realistic falls since conscious healthy 
people cannot avoid the reflex to protect themselves with their 
hands when falling, which according to literature is often not 
the case when older people fall.  

During the field trials no real fall happened, hence no 
sensitivity of the fall detection system in real life of older 
people can be given. This was expected since for a viable 
performance analysis a large set of real falls would be needed, 
that likely will not be gathered during a comparatively short 
evaluation period of 507 days [14][15]. The sensitivity of the 
fall detection algorithm was instead evaluated during the 
laboratory trials. From a scientific point of view specificity of 
the lab trials and sensitivity of the field trials must not be 
combined to provide full real-life performance statistics since 
they were generated using different floors.  



The developed fall detection system uses a post evaluation 
period of 30 seconds. During this time the system analyses 
whether or not the user was able to get up by him/herself or not 
by measuring the number of activity events after the potential 
fall. This method greatly reduces the false positive rate as most 
vibrations occur in groups in real-life and is based on the 
assumption that the fallen user is not able to get up by him- / 
herself shortly after the fall. The used method for evaluating 
the post evaluation period did not differentiate between usual 
activity after an event and activity produced e.g. when crawling 
after having sustained a hip fracture. For the targeted scenario 
it was assumed that the person is not able to move from 5 
seconds after the fall to at least 30 seconds after the fall. 

The fall detection method used is likely to show a lower 
specificity in cases where more than one person lives in the 
same premises since it requires that vibrations occurring at the 
same time (+- 100ms) refer to the same origin, which might 
often not be the case if two persons move inside the same 
room. This case was not included in the scenarios since eHome 
was designed as a single user system.  

VI. SUMMARY AND OUTLOOK 
Based on research and previous experience in the field of 

fall recognition a fall scenario and the methodology to simulate 
this scenario by using a fall dummy were elaborated. Because 
of the complexity of sound propagation through 
inhomogeneous floor constructions and the high variety of 
different floor materials and composition, a practical approach 
was followed during development of the fall detection 
algorithm. Relevant time and frequency domain parameters of 
body sound signals were identified in laboratory tests and a 
detection algorithm was implemented on the target hardware. 

During two main laboratory trials all together about 450 fall 
tests were performed on eight different floors in five different 
buildings. The impact sound characteristics of a dummy 
puppet, three different kinds of objects as well as randomly 
caused impact sounds during daily living of three volunteers of 
the project group for a total duration of 69 days were compared 
against each other. Using the so gained experience the fall 
detection system could be parameterized to distinguish about 
80% of the impact sounds of the dummy puppet from impact 
sounds of other sources when combining the data from all 
tested floors. It has to be noted that the performance varies with 
the attenuation characteristics of the present floor.  

Similar fall detection techniques suggested by Alwan et al. 
[7] and by Litvak, Gannot & Zigel [8] have shown better 
laboratory performances of 100% sensitivity and specificity in 
case of Alwan et al, and 97.5% sensitivity and 98.5% 
specificity in case of Litvak, Gannot & Zigel when comparing 
dummy impacts to impacts of other objects. The performance 
differences to this work are to most parts due to the fact that the 
reference systems were tested with a very limited number of 
floors (two floors and one floor respectively), which directly 
influences the performance of the classification algorithm. 
Complementary to this work our research focused on the 
practical applicability of the system under real-life conditions, 
not on optimizing the performance in one specific laboratory 
setting. 

Using the fall detection system developed in laboratory 15 
floors in flats of people being part of the target group were 
equipped for a total duration of 20 months during the eHome 
field trials. During this time no test participant fell down hence 
no real life performance data can be provided regarding the 
sensitivity of the fall detection system. Instead the false 
positive rate was evaluated retrospectively on the gathered 
data. The algorithm that showed a detection rate of about 80% 
during the laboratory trials, reported 20 false alarms based on 
507 days of real-life data. 

Research showed that there is a tendency that vibrations 
with high energy, long duration and comparatively low 
frequencies qualify for a human fall. However, the optimal 
classification thresholds for these parameters depend on the 
used floor. It could be shown that when customized to a room, 
it is possible to implement fall detection with high reliability. 
Due to complex frequency characteristics of floors and high 
differences between the measurements of different floors, one 
algorithm that fits all tested floors has a poorer performance.   

Further work on this area should focus on methods to 
alleviate floor dependencies of the detection process. One 
approach could be to measure floor relevant characteristics of 
the floors in the user’s premises prior to the installation of the 
system to be able to estimate the achievable fall detection 
performance and customize the system to the users home. 
Another possible solution that could achieve better 
performance especially across different floors would be a 
system that learns typical vibration events triggered by the user 
for each room and reacts on unusual “fall-like” vibrations.  

The extension of the system to support multi user 
environments would be a promising next step that could reduce 
the burden of caring relatives that live together with the user. 
Further real-life tests are suggested to be able to validate the 
results and to pick up data of real falls. 
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