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Abstract— We present an investigation of a new, inexpensive 

depth camera device, the Microsoft Kinect, for passive fall risk 

assessment in home environments. In order to allow older 

adults to safely continue living in independent settings as they 

age, the ability to assess their risk of falling, along with 

detecting the early onset of illness and functional decline, is 

essential. Daily measurements of temporal and spatial gait 

parameters would greatly facilitate such an assessment. Ideally, 

these measurements would be obtained passively, in normal 

daily activity, without the need for wearable devices or 

expensive equipment. In this work, we evaluate the use of the 

inexpensive Microsoft Kinect for obtaining measurements of 

temporal and spatial gait parameters as compared to an 

existing web-camera based system, along with a Vicon motion 

capture system for ground truth. We describe our techniques 

for extracting gait parameters from the Kinect data, as well as 

the advantages of the Kinect over the web-camera based system 

for passive, in-home fall risk assessment. 

I. INTRODUCTION 

o allow older adults to continue living longer in 

independent settings, and thus reduce the need for 

expensive care facilities, low-cost systems are needed to  

detect not only adverse events such as falls, but to assess the 

risk of such events, in addition to the early onset of illness 

and functional decline. Continuous, ongoing assessments of 

physical function would help older adults live more safely in 

independent settings, while also facilitating targeted medical 

interventions when needed. Ideally, such measurements 

would be obtained passively, in the course of normal daily 

activity [1]. 

This work focuses on developing a robust, low-cost, 

vision based monitoring system for assessing fall risk, 

detecting falls, and detecting the early onset of illness and 

functional decline. Research has shown the importance of 

measuring a person’s gait, including identifying stride-to-

stride variability as a predictor of falls [2-4]. Vision based 

monitoring systems have the resolution needed to yield the 

detailed measurements of physical function necessary for 

fall risk assessment (and early illness detection) passively, in 

the home environment, on a continuous basis. Furthermore, 

research has shown that the privacy concerns of older adults 

to video based monitoring systems can be alleviated through 

appropriate handling and processing of the video data, e.g., 

in the form of silhouettes [5]. 

Recently, Microsoft has released a new, inexpensive 

device, called the Kinect, to allow controller free game play 

on their Xbox system. The device uses a pattern of actively 

emitted infrared light to produce a depth image (the value of 

each pixel depends on the distance of what is being viewed 

from the device) which is invariant to visible lighting; and, 

thus, allows for a 3D representation using a single Kinect. 

This technology offers a number of potential benefits for 

low-cost, vision based monitoring systems. 

This paper presents an investigation of the Kinect as a 

sensor for fall risk assessment. Specifically, techniques for 

acquiring spatial and temporal gait parameters from the 

depth data of the Kinect are presented; along with a 

comparison between the measurements obtained from the 

Kinect, to those obtained from an existing web-camera based 

system, and a Vicon marker based motion capture system. 

II.  BACKGROUND 

Recent research in activity monitoring of older adults has 

focused on the use of passive infrared (PIR) motion sensor 

suites in the home [6-7]. These sensor suites yield 

information about the daily activity levels of monitored 

subjects, and arrays of such sensors have been used to obtain 

velocity measurements on a continuous basis in home 

settings [8]. While such systems don’t raise privacy concerns 

among older adults, they typically do not produce 

measurements of the detail necessary for assessment of fall 

risk; specifically, spatial and temporal gait parameters (other 

than walking speed), timed up and go (TUG) time, sit to 

stand time, etc [9]. Existing systems for capturing such 

measurements are typically wearable, accelerometer based 

devices, expensive gait or motion capture systems, or direct 

assessment by a health care professional [2]. 

Wearable accelerometer based devices for obtaining 

detailed measurements of physical activity, specifically gait 

parameters, is an area that has been the focus of much 

research [10]. Efforts have even included utilizing 

accelerometers in existing smart devices, which individual’s 

may already own and potentially carry with them. However, 

many elderly adults are reluctant to use wearable devices 

because they consider them to be invasive or inconvenient 

[1]. Thus, wearable devices may not be reliable for capturing 

movement in the home for continuous monitoring and 
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assessment. 

Human motion analysis using video is a widely 

researched area, with two basic approaches: maker and 

marker-less. Marker based systems detect markers attached 

to a subject’s body in multiple camera views. Given the 

location of the markers in different camera views, the 3D 

position of the marker can be obtained. The use of markers 

helps to yield highly accurate and robust measurements of a 

person’s motion; however, marker based motion capture 

systems are not practical for in-home, continuous 

monitoring. 

Marker-less video based motion capture systems generally 

work by extracting the silhouette of the subject in multiple 

camera views, and fitting a skeletal model to the intersection 

formed by the projection of the silhouettes in volume space 

[11-12]. Such systems have been shown to yield good 

results. However, they are typically expensive, require a 

controlled environment, or require high quality and/or a 

large number of cameras; attributes which limit their 

suitability for in-home activity monitoring. A number of 

researchers have looked at using systems composed of one, 

or small number of cameras for the purpose of detecting falls 

and monitoring activity in dynamic, home environments [13-

20]. 

III. SYSTEMS OVERVIEW 

A. Vicon 

 The Vicon system is a highly accurate marker based 

motion capture system used in a variety of animation, life 

sciences, and engineering applications [21]. The system 

outputs three-dimensional coordinates of detected markers at 

100 frames per second. For this work, it serves to provide 

ground truth data for comparison purposes. 

B. Web-Camera 

Our existing web-camera based system, outlined in Figure 

1, consists of two inexpensive web-cameras, positioned 

roughly orthogonal, monitoring the environment. Silhouettes 

are extracted from captured images using a background 

subtraction and updating technique described in [22]. 

Intrinsic and extrinsic calibration parameters for both 

cameras are obtained a priori, allowing for a three-

dimensional representation to be formed in the discretized 

volume space from the intersection of the projection of the 

silhouettes. Typically, the space is discretized into one inch 

(2.54 cm) cubic elements (voxels), and the system runs at 

approximately five frames per second, limited mainly by the 

silhouette extraction algorithm The system has been 

evaluated for fall detection, gait measurement, and body 

sway measurement [23-25] with good results. The goal is to 

develop a passive, in-home, low cost, activity monitoring 

system for elderly adults. 

C. Kinect 

The Kinect, Figure 2, released by Microsoft in North 

America on November 4, 2010, was designed to allow 

controller free game play on the Microsoft Xbox. The device 

makes use of technology developed by the Israeli company 

PrimeSense, and contains both an RGB camera, and an 

infrared (IR) sensitive camera, from which a depth image 

can be produced based on a pattern of projected infrared 

light. The depth data returned from the device (at 30 frames 

per second) is an 11-bit 640x480 image which is invariant to 

visible lighting. The precision of the returned depth values is 

dependent on the distance, with the precision decreasing 

from approximately two centimeters at two meters to 

approximately ten centimeters at six meters. The minimum 

range of the device is approximately one meter. For use with 

the Microsoft Xbox, it is recommended the user be 

approximately two meters from the device. 

When used with the Xbox, the Kinect allows 3D motion 

tracking using a skeletal model, gesture recognition, facial 

recognition, and voice recognition. Following its release, 

Linux and windows drivers were developed, and the Kinect 

has been used for a variety of purposes from entertainment 

to robotics [26].  

Fig. 2. Microsoft Kinect. 

Fig. 1. Existing web-camera based system. (a) Cameras positioned 
orthogonally.  (b) Views of the scene. (c) Extracted silhouettes. (d) 

Three-dimensional representation formed from silhouette projections. 

(b) 

(c) 

(d) 

(a) 



  

D. Layout 

For the experiments conducted in this work two web-

cameras (forming our existing web-camera based system) 

and two Kinects were positioned in a laboratory 

environment, alongside a Vicon motion capture system. 

Figure 3 shows the placement of the web-cameras, Kinects, 

and the location of the walking path in the test environment. 

The cameras and Kinects were positioned approximately 

eight feet (2.4m) off the ground. 

IV. METHODOLOGY 

In this section, we describe the techniques used to extract 

the gait parameters of walking speed, right/left stride time, 

and right/left stride length from the 3D point cloud data 

returned by a single Kinect. For our purpose of evaluation, 

we make the assumption that there is only one person in the 

scene at a time, and that the environment is stationary. Thus, 

the 3D point cloud returned from the Kinect is for a single 

person. For use in a real world, dynamic environment, a 

high-level tracking algorithm would be necessary to achieve 

this. Finally, the extrinsic parameters of the Kinect with 

respect to the room have been computed. For the web-

camera based system, existing algorithms were used to 

extract gait parameters [24]. 

A. Kinect – Calibration 

The first step of obtaining accurate spatial parameters 

from the Kinect is calibration. This consists of two steps. 

First, as with traditional cameras, intrinsic, distortion, and 

stereo parameters for the IR and RGB cameras on the Kinect 

are estimated using a standard checkerboard calibration 

pattern and supplemental IR backlighting. 

Second, calibration of the depth values returned from the 

Kinect is performed. The depth data returned from the 

Kinect must be transformed to obtain usable and accurate 

distances. For this work, the following equation, based on 

[27], was used to transform the raw Kinect depth values, D, 

for a given pixel, (x, y), to distances, d: 

 

  
 

    
 

 

              
      

     
  

 

where x’ and y’ are the normalized pixel coordinates 

(computed using the intrinsic and distortion parameters of 

the IR camera), and r is the radius calculated using x’ and y’. 

The parameters b, f, k1, k2, k3, and k4 are optimized over a 

large (~3,000) set of training points; and the equation 

attempts to adjust for distortion effects. The training points 

are obtained by placing a large checkerboard calibration 

pattern in the environment, while moving the Kinect over a 

large range of distances and viewing angles with respect to 

the pattern. Using the known intrinsic parameters of the IR 

camera, the position of the calibration pattern with respect to 

the camera in each frame can be estimated. Simultaneously, 

the values associated with the pattern in the depth image can 

be recorded. Following collection of the training data, 

optimization of the parameters in the above equation is 

performed using the CMA-ES algorithm [28]. 

B. Kinect – Foreground Extraction 

Foreground extraction is performed on the raw depth 

images from the Kinect using a simple background 

subtraction algorithm. Specifically, a set of training images 

is captured over which the minimum and maximum values 

for each pixel are stored to form a background model. 

For a new frame, each pixel is compared against the 

background model and those pixels which lie outside the 

range formed by the minimum and maximum by greater than 

one are considered foreground.  Next, a simple block based 

filtering algorithm is run to reduce noise, and smoothing is 

applied to the depth values identified as foreground. 

Example foreground extractions are shown in Figure 4. 

 KINECT #1 KINECT #2 

(a) 

  

(b) 

  
 

Fig. 4. Kinect foreground extraction. (a) Depth image from Kinect after 
distance conversion (black pixels mean no depth value was returned). (b) 

Extracted foreground. 

Fig. 3. Approximate position of web-cameras, Kinects, and walking path 

in test environment. Lines show field of view for each device. 



  

This simple foreground extraction technique has proved to 

be quite robust, and easily runs at the 30 frames per second 

rate with which depth data is received from the Kinect. In a 

dynamic, real world setting, background adaptation to 

handle non-stationary environments would need to be 

addressed. However, the invariance of the depth image to 

changes in ambient lighting addresses one of the significant 

issues affecting foreground extraction on color imagery. 

Furthermore, the computation required for foreground 

extraction on the depth data is minimal compared to that 

required for robust foreground extraction from color 

imagery, where a combination of texture and color features 

must be used [29]. 

C.  Kinect – Gait Parameters 

Much of the work with the Kinect has focused on human 

body tracking using high degree of freedom skeletal models. 

Though such techniques are quite powerful, and may be 

essential to extracting certain physical parameters, they often 

suffer from problems of instability, especially with noisy 

data. As with our web-camera based system, we have opted 

to use techniques not based on skeletal models for extracting 

gait parameters.  

 Walking speed is estimated by projecting the centroid 

(smoothed using a moving average filter) of the 3D point 

cloud onto the ground plane, and measuring the change in 

position from frame-to-frame. For a given walking sequence, 

walking speed is computed by summing the frame-to-frame 

change in position over all the frames in the sequence, and 

dividing by elapsed time.  

The number of steps and temporal gait parameters are 

estimated using only those 3D points with a height below 20 

inches (50 cm). In previous algorithms developed for the 

web-camera based system, only those voxel elements with a 

height of 4 inches (10 cm) or less were used for computing 

such parameters. However, due to the fact that the 

foreground extraction algorithm operates on the depth 

image, points from the person that are too close to the 

ground (and thus too similar to the background model) are 

not extracted as foreground. Furthermore, the distance at 

which a point is too close to the ground depends on the 

distance from the Kinect, as the measurement precision 

decreases as the distance from the Kinect increases. 

Therefore, points higher off the ground must be used. 

First, such points are projected onto the ground plane.  

Second, the projection is normalized by subtracting the 

mean, and rotating based on the walking direction. Given the 

normalized projection, containing N points, the following 

correlation coefficient is computed: 

 

  
     

 
   

 
 

 

where xn and yn correspond to the X and Y coordinates of the 

n
th

 point in the projection. The number of right and left steps 

for a walking sequence is obtained from the time series of 

the correlation coefficient for the sequence.  

Specifically, the signal is first filtered using a moving 

average filter with a window size given by: 

 

  
   

 
 

 

where v is walking speed, f is frame rate (for Kinect, 30 fps), 

and k is a constant parameter, although it could be adapted 

based on the estimated height of the person. The signal is 

then filtered a second time using a moving average filter 

with a small window size to remove any minor local 

extrema. From the filtered signal, right steps are detected as 

local minima, while left steps are detected as local maxima. 

Figure 5 shows example projections, along with a plot of the 

raw and filtered correlation coefficient time series for one 

walking sequence. The correlation coefficient of the 

normalized ground plane projection of 3D points below 20 

inches has proven to be quite robust, even at large distance 

(over 20 ft.) from the Kinect.  

Given the locations of the minima and maxima (right and 

left steps) in the correlation coefficient time series, the 

temporal gait parameters of right and left stride time can be 

computed. In addition, the spatial gait parameters of 

right/left stride length can be approximated as the distance 

moved by the centroid (as used in the computation of 

walking speed above) over the period corresponding to the 

right/left stride time. Although this approximation of the 

stride length may yield inaccurate measurements given 

large, abrupt changes in stride, it should still capture the 

(a) 

 

 

(b) 

  

(c) 

 

Fig. 5. (a) 3D point cloud from Kinect plotted in test environment. (b) 
Normalized ground plane projection of points below 20 inches. (c) Raw 

(red) and filtered (blue) correlation coefficient time series for walk 
sequence. Local maxima correspond to left footsteps, and local minima 

correspond to right footsteps. 



  

stride-to-stride variation which studies have shown to be 

predictive of falls [3-4]. 

V. RESULTS 

We have collected gait measurement results from the 

different systems on a set of 18 walking sequences with 

varying subjects and speeds. The walking path is 

approximately 17 feet long, and the number of steps per 

walking sequence varies from five to nine. In half of the 

walks the subject was moving towards Kinect #2, and in the 

other half the subject was moving away. (Refer to Figure 3 

for a placement diagram of the different sensor systems.) 

 

A. Walking Speed 

Figure 6 shows a plot of walking speed computed by each 

of the systems for each of the walking sequences, while 

Table I provides a comparison of the calculated percentage 

absolute difference (mean and standard deviation) between 

each system and the Vicon. 

 

 
 
Fig. 6. Comparison of walking speed as measured for each of the 18 
walking sequences. Vicon is black circle. Web-camera system is green x. 

Kinect #1 is red +. Kinect #2 is blue square. 

 

 

TABLE I 

 % DIFFERENCE IN WALKING SPEED COMPARED TO VICON 

 Kinect #1 Kinect #2 Web-Camera 

Avg. % Diff 4.1 1.9 4.9 

Std. Deviation. 1.9 1.1 4.3 

 

 

As the results in Table I show, the individual Kinects 

yield good performance compared to the Vicon and web-

camera system. Kinect #2 also seems to outperform Kinect 

#1 in terms of accuracy in walking speed measurement.  

 

B. Stride Time 

Figure 7 shows plots of the average right and left stride 

times, respectively, as computed by each of the systems for 

the 18 walking sequences. Table II provides a comparison of 

the calculated percentage absolute difference as compared to 

the Vicon. 

 
 

 
 
Fig. 7. Comparison of right and left stride time as measured for each of the 

18 walking sequences. Vicon is black circle. Web-camera system is green x. 
Kinect #1 is red +. Kinect #2 is blue square. 

 

 

TABLE II 

% DIFFERENCE IN RIGHT STRIDE TIME COMPARED TO VICON 

 Kinect #1 Kinect #2 Web-Camera 

Avg. % Diff 2.8 1.6 3.0 

Std. Deviation. 2.1 0.9 2.1 

 % DIFFERENCE IN LEFT STRIDE TIME COMPARED TO VICON 
 Kinect #1 Kinect #2 Web-Camera 

Avg. % Diff 2.3 1.4 3.8 

Std. Deviation. 2.7 1.3 2.6 

 

 

Interestingly, when it comes to measuring temporal gait 

parameters, the web-camera system should be at a 

significant disadvantage compared to the Kinects; due to its 

frame rate being six times slower. However, Table II seems 

to indicate the decreased frame rate does not cause a huge 

performance loss. 

 

C. Stride Length 

 Figure 8 shows plots of the average right and left stride 

lengths, respectively, as computed by each of the systems for 

the 18 walking sequences. Table III provides a comparison 

of the calculated percentage absolute difference as compared 

to the Vicon. 

 

 

 



  

 
 

 
 
Fig. 8. Comparison of right and left stride length as measured for each of 
the 18 walking sequences. Vicon is black circle. Web-camera system is 

green x. Kinect #1 is red +. Kinect #2 is blue square. 

 

 

TABLE III 

% DIFFERENCE IN RIGHT STRIDE LENGTH COMPARED TO VICON 

 Kinect #1 Kinect #2 Web-Camera 

Avg. % Diff 3.2 2.0 0.7 

Std. Deviation. 2.6 1.6 0.5 

% DIFFERENCE IN LEFT STRIDE LENGTH COMPARED TO VICON 

 Kinect #1 Kinect #2 Web-Camera 

Avg. % Diff 5.0 3.7 1.9 

Std. Deviation. 2.8 2.8 2.6 

 

 

D. Discussion 

 Although this initial investigation of the Kinect for fall 

risk assessment showed both the accuracy of gait 

measurements made using the device and many potential 

benefits for fall risk assessment and in-home monitoring 

systems, there are issues that need further consideration. 

 First, certain types of clothing fail to reflect enough IR 

light back to the device to allow an estimate of depth at 

those pixels to be made.  Furthermore, the issue of subjects 

blending into the background when they are close to walls, 

or, in the case of fall detection, on the ground is a concern in 

using the depth image alone for foreground segmentation 

and tracking. Potentially, a smart fusion of depth and color 

foreground segmentation could address some of these issues. 

Finally, another potential drawback of the Kinect is the 

limited field of view, approximately 60 degrees. This 

restriction may require the use of multiple devices in many 

environments. 

VI. CONCLUSION 

As the Kinect has only been available for a short period of 

time, this work focused on evaluating the accuracy and 

feasibility of using the depth data obtained from the Kinect 

for passive fall risk assessment. Results showed good 

agreement between gait measurements computed using the 

Kinect, as compared to those computed using an existing 

web-camera based system, and those from a Vicon motion 

capture system. Furthermore, the depth image from the 

Kinect not only addresses a major issue in foreground 

extraction from color imagery (changing lighting 

conditions), but significantly reduces the computational 

requirements necessary for robust foreground extraction; 

potentially further reducing the cost of a fall risk assessment 

system. 

Future work will look at obtaining and evaluating 

additional fall risk assessment parameters from the depth 

data of the Kinect, and will also explore a fusion of the depth 

and color imagery to achieve a fast, computationally 

inexpensive, and more robust foreground extraction than is 

possible with just the depth data or color imagery alone. 
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