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ABSTRACT
The continued explosion of Twitter data has opened doors
for many applications, such as location-based advertisement
and entertainment using smartphones. Unfortunately, only
about 0.58 percent of tweets are geo-tagged to date. To
tackle the location sparseness problem, this paper presents
a methodical approach to increasing the number of geo-
tagged tweets by predicting the fine-grained location of those
tweets in which their location can be inferred with high
confidence. In order to predict the fine-grained location
of tweets, we first build probabilistic models for locations
using unstructured short messages tightly coupled with se-
mantic locations. Based on the probabilistic models, we pro-
pose a 3-step technique (Filtering-Ranking-Validating) for
tweet location prediction. In the filtering step, we introduce
text analysis techniques to filter out those location-neutral
tweets, which may not be related to any location at all. In
the ranking step, we utilize ranking techniques to select the
best candidate location for a tweet. Finally, in the validat-
ing step, we develop a classification-based prediction valida-
tion method to verify the location of where the tweet was
actually written. We conduct extensive experiments using
tweets covering three months and the results show that our
approach can increase the number of geo-tagged tweets 4.8
times compared to the original Twitter data and place 34%
of predicted tweets within 250m from their actual location.

1. INTRODUCTION
With the continued advances of social network services,

such as Twitter, Facebook and Foursquare, a tremendous
amount of unstructured textual data has been generated.
One of the most popular forms of such unstructured texts
is a short text message, called tweet, from Twitter and each
tweet has up to 140 characters. Twitter users are posting
tweets about almost everything from daily routine, break-
ing news, score updates of various sport events to politi-
cal opinions and flashmobs [16, 27]. Over hundreds of mil-
lions of such tweets are generated daily. Furthermore, more
and more business organizations recognize the importance of

Twitter and provide their customer services through Twit-
ter, such as receiving feedback about products and respond-
ing to customers’ questions using tweets [5].
Tweets can be much more valuable when tagged with their

location information because such geo-tagged tweets can
open new opportunities for many applications. For exam-
ple, if a user posts a tweet tagged with her current location,
nearby local stores can immediately send her customized
coupons based on the context of the tweet or her profile as-
suming that she is a subscriber of such location-based adver-
tisement services. Similarly, local news and places of interest
can be recommended based on the location, the context of
the tweet and the past experiences of her friends in a social
network. Geo-tagged tweets can also be used to report or
detect unexpected events, such as earthquakes[24], robbery
or gun shots, and notify the event to the right people in-
stantly, including those who are close to the location of the
event.
On one hand, like most social network services, Twitter

recognizes the value of tagging tweets with location informa-
tion and provides the geo-tagging feature to all its users. On
the other hand, such opt-in geo-tagging feature is confronted
with several challenges. First, Twitter users have been luke-
warm in terms of adopting the geo-tagging feature. Accord-
ing to our recent statistical analysis over 1 billion tweets
spanning three months, only 0.58% tweets have their fine-
grained location. With such a tiny amount of geo-tagged
tweets, it would be very hard to realize the many social
and business opportunities such as those mentioned above.
Second, even for the limited tweets tagged with geometric
coordinates, a fair amount of them cannot be used effec-
tively because their geometric coordinates cannot be served
as quality indicators of useful semantic locations, such as
points of interest and places where events of interest may
happen or have happened. This location sparseness problem
makes it very challenging for identifying the types of tweets
in which we can infer their location information, i.e., the
location where a tweet was written. We argue that in order
to derive new values and insights from the huge amount of
tweets generated daily by Twitter users and to better serve
them with many location-based services, it is important to
have more geo-tagged tweets with semantically meaningful
locations.
In this paper we present a methodical approach to in-

creasing the number of geo-tagged tweets by predicting the
fine-grained location of each tweet using a multi-source and
multi-model based inference framework. Our focus is to pre-
dict the location of carefully selected tweets in which their



location can be inferred with high confidence based only on
their textual data, instead of trying to predict the location
of all (or most) tweets. First of all, we address the location
sparseness problem of Twitter by building the probabilistic
models for locations using unstructured short messages that
are tightly coupled with their semantic locations. In order
to achieve the tight coupling between text and location, we
propose to use Foursquare - a popular location-centric social
network, as a source for building these probabilistic models.
Based on the probabilistic models, we propose a 3-step tech-
nique (Filtering-Ranking-Validating) for predicting the fine-
grained location of tweets. In the filtering step, we develop
a set of filters that can remove those location-neutral tweets,
which may not be related to any location at all, prior to en-
tering the location prediction (ranking) phase. This effort
enables us to filter out as many location-neutral tweets as
possible to minimize the noise level and improve the accu-
racy of our location prediction model. In the ranking step,
candidate locations for each tweet are determined using one
of the three ranking techniques: standard machine learning
approaches, naive Bayes model and tfidf value. Once the
top ranked location is assigned to the tweet, in the validating
step, we utilize a classification-based prediction validation
method to accurately predict the location where the tweet
was actually written. We report our experimental evalua-
tion conducted using a set of tweets, collected over a three-
month period in New York City. The results show that our
approach can increase the number of geo-tagged tweets 4.8
times compared to the original Twitter data and place 34%
of predicted tweets within 250m from their actual location.

2. RELATED WORK
We categorize the related work into four categories: 1)

location prediction in Twitter-like social networks, 2) topic
and user group prediction in Twitter-like social networks, 3)
analysis of Foursquare check-ins, and 4) location prediction
using other online contents.

Location prediction in social networks. Existing
work can be divided into the problem of predicting the lo-
cation of each Twitter user [11, 13, 19] or predicting the
location of each tweet [14, 17]. Concretely, [11] proposes
a technique to predict the city-level location of each Twit-
ter user. It builds a probability model for each city using
tweets of those users located in the city. Then it estimates
the probability of a new user being located in a city using the
city’s probability model and assigns the city with the highest
probability as the city of this new user. To increase the ac-
curacy of the location prediction, it utilizes local words and
applies some smoothing techniques. [13] uses a Multinomial
Naive Bayes model to predict the country and state of each
Twitter user. It also utilizes selected region-specific terms to
increase the prediction accuracy. [19] presents an algorithm
for predicting the home location of Twitter users. It builds
a set of different classifiers, such as statistical classifiers us-
ing words, hashtags or place names of tweets and heuristics
classifiers using the frequency of place names or Foursquare
check-ins, and then creates an ensemble of the classifiers to
improve the prediction accuracy. These coarse-grained lo-
cation prediction methods rely heavily on the availability
of a large training set. For example, the number of tweets
from the users in the same city can be quite large and com-
prehensive. In contrast, the goal of our work is to predict
the fine-grained location of each tweet if the tweet can be

inferred with high confidence.
[14] and [17] are the most relevant existing work as they

centered on predicting the location of each tweet. [17] builds
a POI (Place of Interest) model, assuming that a set of POIs
are given, using a set of tweets and web pages returned by
a search engine. For a query tweet, it generates a language
model of the tweet and then compares it with the model of
each POI using the KL divergence to rank POIs. Since it
uses only 10 POIs and a small test set for its evaluation, it is
unclear how effective the approach is in a real-world environ-
ment in which there are many POIs and a huge number of
tweets and furthermore many tweets contain noisy text, ir-
relevant to any POI. [14] extracts a set of keywords for each
location using tweets from location-sharing services, such
as Foursquare check-in tweets, and other general expression
tweets posted during a similar time frame. To predict the
location of a new tweet, it generates a keyword list of the
tweet and compares it with the extracted keywords of loca-
tions using cosine similarity. An obvious problem with this
work is that it treats all tweets equally in the context of
location prediction. Thus, it suffers from high error rate in
the prediction results, especially for those location-neutral
tweets.
Topic and user group prediction in social net-

works. In addition to location prediction of Twitter data,
other research efforts have been engaged in inferring other
types of information from Twitter data. [18] proposes a
framework to predict topics of each tweet. It builds a
language model for each topic using hashtags of tweets and
evaluates various smoothing techniques. [23] proposes a
social network user classification approach, which consists
of a machine learning algorithm and a graph-based label
updating function. [8] proposes an approach to predict
sentiments of tweets and [9] presents a technique to classify
Twitter users as either spammers or nonspammers. Most
of the work in this category build their language-based
classification model using supervised learning and utilize
some external knowledge to initialize the classification rules,
such as spam or non-spam. In contrast to this line of work,
we focus on location detection of tweets rather than Twitter
user classification.
Analysis of Foursquare check-ins. [12, 22] analyze

Foursquare check-in history in various aspects. [12] shows
spatial and temporal (daily and weekly) distribution of
Foursquare check-ins. It also analyzes the spatial coverage
of each user and its relationship with city population,
average household income, etc. [22] also shows spatio-
temporal patterns of Foursquare check-ins and calculates
the transition probabilities among location categories.
Location prediction using other online contents.

Many studies have been conducted to infer the geographical
origin of online contents such as photos [26], webpages [7]
and web search query logs [15]. [26] builds a language model
for each location (a grid cell) using the terms people use to
describe images. [7] identifies geographical terms in web-
pages using a gazetteer to infer a geographical focus for the
entire page. [15] utilizes a geo-parsing software which re-
turns a list of locations for web search query logs to infer
the location of users (at zip code level).

3. OVERVIEW
In this section we first describe the reference data models

for Twitter and Foursquare data. Then we describe how



we build the language models for locations of tweets, using
short text messages of Foursquare. Finally we outline the
design principles and the system architecture of our location
prediction framework.

3.1 Twitter Reference Model
Twitter is the most representative microblogging service

being used widely, from breaking news, live sports score up-
dates, chats with friends (called followers) to advertising and
customer service by many companies. Twitter data consists
of tweets. Formally, a tweet is defined by a user ID, a times-
tamp when the tweet was posted, and a short text message
up to 140 characters. To enrich its data with location infor-
mation, Twitter provides not only a location field for each
user but also a feature for geo-tagging each tweet [2]. There-
fore each tweet can be tagged with a fine-grained location,
such as a geometric coordinate defined by a latitude and
longitude, though the number of tweets with the geo-tag is
very small. Our prediction framework performs the location
prediction solely based on the short unstructured text mes-
sages without requiring user ID and timestamp of tweets. In
order to perform text analysis over all tweets, we formally
model each tweet as a vector of words in our word vocabu-
lary of n words, denoted by < w1, w2, . . . , wn >. For each
tweet tx, if w1 appears 2 times in tx, we have a value 2 in
the position of w1. Thus, a tweet vector is a vector of n
elements of integer type with each element txi (1 ≤ i ≤ n)
denoting the number of occurrences of the word wi in tx.
To get a list of words from tweets, we process each tweet by
breaking the tweet into tokens, stemming the tokens, and
removing stop words from them.

3.2 Foursquare Reference Model
Foursquare is a social network service, which is specialized

in location-sharing through check-ins. As of May 2014 [1],
there are over 50 million users and over 6 billion check-ins,
with millions more every day. Users can check into a place
by selecting one of the nearby places from their current loca-
tion (usually using their smartphones with GPS), and leave
tips for a specific place. Each tip has up to 200 characters
and is explicitly associated with one place. Foursquare pro-
vides the basic information of places, such as name, address,
website URL, latitude and longitude, and category. A fair
number of Foursquare users are linking their Foursquare ac-
count with their Twitter account such that their check-ins
are automatically posted to their Twitter account. We argue
that building probabilistic language models for locations us-
ing Foursquare tips will be the first step towards developing
a methodical approach to high quality location prediction
for each tweet. Concretely, in order to integrate Foursquare
as an external location-specific data source for predicting
the location of each tweet, we formally model each tip in
Foursquare based on our Twitter vocabulary of n words.
Thus, a tip tip is also represented as a vector of n elements
of integer type, with each element tipi denoting the number
of occurrences of the word wi in tip. Each tip is also associ-
ated with a location l. Similar to tweet tokenization process,
we get a list of words from tips by breaking each Foursquare
tip into tokens, stemming the tokens, and removing stop
words from them.

3.3 Location Modeling
In contrast to many existing approaches [11, 13, 19, 17,

14], which mainly use geo-tagged tweets to build a proba-
bilistic model for each location, we argue that a high quality
location model for tweets should identify those geometric
coordinates that are actually associated with some seman-
tically meaningful place(s) of interest (PoI) and build the
location models only for those semantic locations, instead
of building a location model for every geometric coordinate
captured by some tweets. For example, there are many
tweets which are not related to any location at all since
people can tweet anything regardless of their location. We
refer to those tweets that do not relate to any semantic lo-
cation at all as location-neutral tweets. Clearly, if too many
such location-neutral tweets are involved in location mod-
eling, the language models we build for locations can be
both noisy and misleading. Alternatively, if we counter the
sparseness problem of geo-tagged tweets by dividing the ge-
ographical region of interest into multiple partitions (such as
grids) and then building a language model using tweets gen-
erated in each partition, it will also be misleading since each
partition may include tweets from multiple locations and it
is hard to differentiate tweets written in one location from
those written in another location because each geo-tagged
tweet has only latitude and longitude. This problem can be
aggravated by the sampling errors existing in most of the
localization techniques.
Foursquare, as a location-sharing social network service,

has a collection of PoIs (places of interest), and each tip is
associated with a short text message and a PoI. This makes
Foursquare a valuable resource for building good probabilis-
tic language models for locations, because Foursquare data
includes one of the best human-encoded mappings of geo-
metric locations to semantic locations (PoIs) as well as a
set of short messages (tips) for them. This motivates us to
use Foursquare tips instead of noisy tweets to build more
accurate and dependable probabilistic models for locations.
In the situation where multiple locations have the same lat-
itude and longitude (such as multistory buildings), we can
build a separate language model for each location based on
the corresponding PoIs and the set of tips associated with
the PoIs.
Let the set of locations (PoIs) in Foursquare be l1, l2, . . . , lm.

To predict the location of tweets using the probabilistic
models of locations, we first build a language model (LM)
for each Foursquare location using a set of tips associated
to that location. The language model has a probability for
each word (unigram model) or each sequence of n words
(n-gram model). Let tf(w, t) denote the number of occur-
rence of word w in the tip t, c(w, l) denote the number of
occurrences of word w in all tips associated to location l
and n be the number of all words in our word vocabulary.
We calculate the probability of a word w in a location l
using the frequency-based maximum likelihood estimation
as follows:

p(w, l) =
c(w, l)

n∑
i=1

c(wi, l)
, c(w, l) =

∑

tip∈tips(l)

tf(w, tip)

where tips(l) is the set of tips associated to location l. Given
that there are some Foursquare locations with a very small
number of associated tips, in order to generate dependable
LMs using a sufficient number of tips, we build LMs only for
locations with more than a minimum number of tips, defined
by a system-supplied parameter θtip and also consider only
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Figure 1: Framework Architecture

commonly used words in modeling each location.
Bigram Language Model. Instead of the unigram

models, where the language model has a probability for
each word, we can define a probability for each sequence
of n words (n-gram model). For presentation brevity, we
below present a bigram model, which can be easily extended
to n-gram models. Let p(wi−1wi, l) be the probability of a
bigram wi−1wi in the tips of location l. The probability of a
location l for a tweet T using the bigram LMs is computed
as follows:

p(l | T ) =
∏

wi−1wi∈T

p(wi−1wi, l)

To estimate the probability of bigrams by handling unob-
served bigrams in the tips, in this paper, we explore three
different smoothing techniques: Laplace smoothing, Abso-
lute discounting and Jelinek-Mercer smoothing [10]. The
three smoothing techniques are defined as follows:
Laplace smoothing, which adds 1 to the frequency count
of each bigram. This is defined as follows, where c(wi−1wi, l)
is the frequency count of a bigram wi−1wi included in the
tips of location l:

p(wi−1wi, l) =
1 + c(wi−1wi, l)∑

wi
(1 + c(wi−1wi, l))

Absolute Discounting, which includes interpolation of
bigram and unigram LMs by subtracting a fixed discount D
from each observed bigram. This is defined as follows, where
Nwi−1 is the number of observed bigrams which starts with
wi−1 such that | {wi : c(wi−1wi, l) > 0} | :

p(wi−1wi, l) =
max{c(wi−1wi, l)−D, 0}∑

wi
c(wi−1wi, l)

+
D ·Nwi−1∑

wi
c(wi−1wi, l)

· c(wi, l)∑
wi

c(wi, l)

Jelinek-Mercer smoothing, which linearly interpolates
between bigram and unigram LMs using parameter λ:

p(wi−1wi, l) = λ · c(wi−1wi, l)∑
wi

c(wi−1wi, l)
+ (1− λ)

c(wi, l)∑
wi

c(wi, l)

Intuitively, the unigram LMs might be sufficient for short
text messages like tweets. But we will conduct experiments
to compare the unigram models with the bigram models in
terms of the prediction precision and errors.

3.4 System Architecture
Even though we build dependable language models for lo-

cations using Foursquare tips, there are still several unique
challenges for prediction of the fine-grained location of each

tweet. The first challenge is that there are lots of tweets that
may not be related to any location at all. Thus, it is im-
portant to distinguish those location-neutral tweets, which
are completely irrelevant to any location, from those tweets
whose locations can be learned and predicted. For example,
some daily mundane tweets, such as “Have a good day!”,
rarely have any hint that can be used to predict their loca-
tion. To address this we need to develop effective techniques
to filter out as many location-neutral tweets as possible to
minimize the noise level and improve the accuracy of our
location prediction model. The second challenge is that a
tweet can refer to another location which is not related to
the current location where the tweet was written. For exam-
ple, it is not unusual that Twitter users post tweets about
sports games of their favorite teams even though their cur-
rent location is not at all related to the locations where
the games are being played. Therefore, we also need to de-
velop an approach to detect whether the referred location of
a tweet, predicted by the location prediction model, is the
same as its current location. The referred location of a tweet
means the location which is explicitly mentioned or implic-
itly hinted in the tweet. Finally, to respect the privacy of
users, the location prediction model should not depend on
user ID and timestamp of the tweets. To address these chal-
lenges, we develop a multi-phase location prediction frame-
work that utilizes the probabilistic models of locations built
using Foursquare tips.
Figure 1 provides a sketch of our system architecture for

predicting the fine-grained location of a tweet. Our loca-
tion prediction engine consists of three steps: (i) Filtering:
Identification of “I don’t know” tweets, which are also re-
ferred to as location-neutral tweets, (ii) Ranking: Ranking
and predicting the referred location of a tweet, which is im-
plied explicitly or implicitly by the text message of the tweet,
and (iii) Validating: Using the classification model to de-
termine whether there is a match between the referred loca-
tion and the actual physical location of that tweet. The filter-
ing step is to identify if a tweet has any location-specific in-
formation. Our solution approach uses simple and yet effec-
tive pruning techniques to differentiate tweets with location-
specific information from tweets having no location-specific
hint at all, by utilizing the probabilistic language models for
locations built using Foursquare tips (Recall the previous
section). This allows us to filter out noisy tweets at early
phase of the location prediction process. For those tweets
that have passed the filtering step, the ranking step is to
select the best matched location among the set of possible
locations for each tweet using ranking techniques. Finally,
the validating step is to validate whether the predicted lo-
cation of a tweet is indeed the correct location with respect
to the actual location where the tweet was written. We will
explain each step in detail in the next section.

4. LOCATION PREDICTION
In this section, we describe the key steps we take to predict

the fine-grained location of each tweet and how we utilize
the probabilistic language models built based on Foursquare
tips and the geo-tagged tweets from Twitter in our location
prediction framework. We first discuss how to identify and
prune the “I don’t know” tweets in the filtering step, and
then we describe how we design the ranking algorithms to
select the best location candidate among a set of possibilities
for a tweet in the ranking step. Finally, we discuss how



to utilize SVM classifier and the geo-tagged tweets as the
training data to develop classification models that validate
the correctness of the predicted location of a tweet with
respect to the actual physical location from where the tweet
was generated, in the validating step.

4.1 Filtering Step
We first define “I don’t know” tweets as those which have

little information about their location or are talking about
past or future event. Given a tweet, if there is not any hint
about its location, we filter the tweet out because we have
no chance of predicting its location using only textual infor-
mation of the tweet. Also, if a tweet is talking about past
or future activities or events, we exclude the tweet because
we cannot predict its current actual location even though we
may infer the past or future location referred in the tweet.
In this paper, the current location of a tweet refers to a lo-
cation where the tweet was written. To find such “I don’t
know” tweets, we utilize local keywords and PoS (Part of
Speech) tags.

Utilizing local keywords. Even though each Foursquare
tip is explicitly coupled with a location, it also includes
some words which are too general to represent the location
(e.g. “awesome”, “menu”, “special”). If a tweet consists of
only such general words, it would be impossible to predict
the tweet’s location because many locations have such words
and it is hard to differentiate (rank) among the locations.
For example, a tweet “This sun is BLAZING and there’s

no shade” has no hint about its fine-grained location be-
cause all words in the tweet are too general to represent any
location. To extract any hint about fine-grained locations
from tweets, we define local keywords as a set of words
which are representative of a location. To find the local
keywords, we calculate the tfidf (Term Frequency, Inverse
Document Frequency) [20] score for each word and each
location. Let L be the total number of locations and dfw be
the number of locations having w in their tips. Our tfidf
calculation for a word w and a location l is formally defined
as follows:

tfidfw,l = p(w, l)× log10
L

dfw

For a word w, if there is any location l in which its score
tfidfw,l is larger than a threshold, denoted by θtfidf , we
treat the word w as a local keyword with respect to the
location l. If a tweet has no local keyword at all, then we
classify the tweet as a “I don’t know” tweet. The threshold
θtfidf for choosing local keywords is a tuning parameter in
our framework. If we increase the threshold value, a smaller
number of local keywords will be selected, and then more
tweets could be filtered out as “I don’t know” tweets.

Utilizing PoS tags. Even though a tweet has a suffi-
cient number of local keywords, we may not guarantee that
the predicted location based on the language models will
match the current location with high confidence when the
tweet is talking about the future or past event. For example,
a tweet “I’m going to MoMA” has a local keyword “MoMA”
(abbreviation for the Museum of Modern Art in New York
City), but is talking about the future location. Therefore,
even though we can predict the referred location in the tweet
based on the local keywords such as “MoMA” in this exam-
ple, the predicted location is related to the location where
the author of the tweet will be, rather than the current lo-
cation where this tweet is written. To detect those tweets

talking about the past or future location, we utilize PoS
(Part-of-Speech) tags generated by a PoS tagger. Given a
tweet, if the generated PoS tags of the tweet include any tag
about the past tense form, we treat the tweet as a “I don’t
know” tweet. Since there is no tag about the future tense in
existing PoS taggers, we utilize some words related to future
or with future sense, such as “will”, “going to” and “tomor-
row”, and remove those tweets that contain such words.

4.2 Ranking Step
After filtering out those location-neutral tweets, we ex-

plore three different techniques to rank locations for each of
the tweets survived from the filtering step. Given a query
tweet, there is a set of candidate locations that are associ-
ated to the tweet based on the language models for locations.
To predict the location of the tweet, we need to rank all lo-
cations and select the location having the highest rank (or
top k locations) as the predicted location of the tweet.
Standard Machine Learning Approaches. A most

intuitive baseline approach is to build classification models
using standard machine learning techniques such as SVM
and decision tree. To choose a training set for learning
the models, we sample some tips for each location. In our
training set, each instance and each feature represent a
Foursquare tip and a word respectively. The number of
classes in the training set is equal to the number of all
locations. Thus, given a tweet, we use the predicted class
by the classification models as the predicted location of the
tweet.
Naive Bayes Model. Alternatively, given a set of can-

didate locations for a tweet, we use the simple naive Bayes
probabilistic model to rank locations based on the condi-
tional independence assumption among words. Concretely,
given a tweet T and the set of possible locations, we calculate
the naive Bayes probability for each location l as follows:

p(l | T ) =
p(l)

∏
w∈T

p(w, l)

∑
i

p(li)
∏

w∈T

p(w, li)

where p(l) is 1
L

for all locations since in our current imple-
mentation we assume the uniform distribution for locations.
We predict the location having the highest probability as the
tweet’s location. To remove any zero probability, we apply
Laplace smoothing.
tfidf Value. The naive Bayes model uses the probability

of a word in each location when calculating the ranking prob-
ability of locations. If we want to reflect how important a
word is in all locations, we can incorporate such global word
weights by using the tfidf values to rank the locations for a
given tweet. Concretely, for a given tweet T , let LT denote
the set of candidate locations of T . We calculate the tfidf
value for each location l in LT as follows:

tfidfT,l =

∑
w∈T

tfidfw,l

∑
l∈LT

∑
w∈T

tfidfw,l

We use the location having the largest normalized tfidf
ranking score as the predicted location of tweet T .

4.3 Validating Step
Even though we can filter out some “I don’t know”

tweets using the local keyword filter and the PoS tag filter,



sometimes the top-ranked candidate location for a tweet
will fail to predict the actual location where the tweet was
written. This is especially true for those tweets whose
actual locations where the tweets were written are quite
different from the referred location produced by our ranking
algorithms. For example, we may think that the referred
location in a real tweet “Let’s Go Yankees!!!” is “Yankees
Stadium” and some of our ranking techniques also find
“Yankees Stadium” as the predicted location of the tweet.
However, it is not unusual that many New York Yankees
fans in the world post such tweets anywhere during the
game or before the game. Another interesting real tweet is
“I hope you all have a GREAT weekend but also take

time to remember those we’ve lost; those who are

still fighting for our freedom!!”. Under an assump-
tion that we know this tweet is from New York City, some
of our ranking techniques find “World Trade Center” as the
predicted location of the tweet. We can easily see that the
tweet is closely related to “World Trade Center” semanti-
cally, however such tweets can be posted from anywhere.
The main challenge for predicting the location for this type
of tweets is to provide the prediction validation capability
for the system to determine if the referred location lref (T )
for a tweet T , obtained using the probabilistic language
models and one of the three ranking algorithms, will match
the actual location lcur(T ) where the tweet T was written.
If we detect that lref (T ) does not match lcur(T ), then we
classify the tweet as an “unpredictable” tweet and exclude
the tweet from our location prediction.

Our approach to finding such “unpredictable” tweets is to
build a classification model using standard machine learning
techniques. To learn the classification model, we need to
prepare a training set carefully. One approach to preparing
the training set is to use those tweets having a geo-tag (i.e.,
latitude and longitude), because such tweets already have
their explicit current location, thus we can use the language
models and one of the ranking algorithms to extract their
referred location to build the training set. Given a tweet T
having its geo-tag, after choosing the location (denoted as
ltop(T )) having the highest probability based on the naive
Bayes probability, we additionally compare the probability
of ltop(T ) with that of the other locations using a probability
ratio test. We use this test to build a good training set
consisting of only tweets in which there is high confidence
in their referred location. We choose only those tweets that
pass the probability ratio test, formally defined as follows:

p(lref (T ) | T )
1− p(lref (T ) | T ) > δ

where δ is the criterion of our test. If we increase δ, a smaller
number of tweets will be selected for the training set.

Based on the generated training set, we learn classifi-
cation models by running the decision tree classifier and
SVM (Support Vector Machine) with the polynomial ker-
nel functions and Gaussian radial basis functions using 10-
fold cross-validation. Then we choose a classification model
having the highest cross-validation precision for the train-
ing set and use this classification model for detecting the
“unpredictable” tweets. To find parameters having the high-
est cross-validation precision, we use the grid search. We
introduce some notable results returned by our classifica-
tion model. For a real tweet “The line at this Chipotle

in Brooklyn Heights is really long”, our model detects

that its referred location, produced by the language models
and the ranking algorithm, indeed matches the actual lo-
cation where this tweet was written, as indicated by the
geo-tag of the tweet. Therefore, our model correctly clas-
sifies this tweet and thus validates the correctness of our
predicted location of the tweet. Note that the accuracy of
the prediction depends on our language models whereas the
accuracy of the prediction validation depends on the training
set.

5. EXPERIMENTS
In this section, we evaluate the proposed location pre-

diction framework for tweets through an extensive set of
experiments conducted using tweets collected over a three-
month period. We report the experimental results on how
we build the language models using the datasets, how we im-
plement the prediction validation classifier to distinguish the
predictable tweets from those non-predictable ones, and the
effectiveness of the two filters to find “I don’t know” tweets.
In addition, we evaluate the effectiveness of our location
prediction approach by studying the effects of different pa-
rameters on the precision of location prediction, such as the
effects of different ranking methods, the effects of unigram
v.s. bigram language models, the effects of different δ values
for building prediction validation classifier, and the effects
of different tfidf threshold values.

5.1 Datasets
We gathered a set of tweets spanning from April 2012

to June 2012 using Twitter Decahose [6] which is a feed
of 10% of all tweets. Each day (24 hours) has about 37
million tweets and only 0.58% tweets are geo-tagged (i.e.
include fine-grained location information). To focus on pre-
dicting the fine-grained location, we assume that we know
the city-level (or similar) location of tweets because previous
work [11, 19] has addressed this. Since some tweets explic-
itly include their city-level location even though they don’t
have their geo-tag, we can also utilize such information. In
this paper, we select tweets from Manhattan, New York,
USA because Manhattan (officially a borough of New York
City), which covers 59 square kilometers (23 square miles),
is one of the biggest and most densely populated cities in
the world. Based on their geo-tag (latitude and longitude),
127,057 tweets (spanning three months) from Manhattan
are selected. Among them, we exclude 39,157 tweets from
Foursquare and 15,299 tweets from Instagram to remove any
possible bias from them because they already include the lo-
cation name in their textual data and so it would be straight-
forward to predict their location. Therefore, we use 72,601
tweets to evaluate our prediction framework.
We extracted Foursquare locations, called venues, and

their tips using Foursquare API. First, to gather a set of
Foursquare locations, we called the Foursquare venues API
for each cell after splitting the area of Manhattan into very
small cells (each covers 50 m × 50 m). Unfortunately, there
were some missing locations using only this grid search.
Therefore, to find additional locations, we analyzed the
URLs included in check-in tweets from Foursquare and then
extracted location IDs from them. Each Foursquare location
has basic information such as name, address, latitude, longi-
tude, city, country and category. Finally, for each gathered
location, we extracted all its tips using Foursquare API. Us-
ing this approach, we gathered 25,171 venues in Manhattan
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Figure 2: Foursquare locations and tips

and their 268,470 tips which span from May 2008 to June
2012. Also, there are some locations in which their area is
too wide to represent their location using only one point,
such as Central Park, Times Square and Yankee Stadium.
Since Foursquare doesn’t provide boundary information of
its locations, we extracted boundary information of 22 wide
locations in Manhattan using Google Maps. Figure 2(a)
shows the geographical distribution of Foursquare locations
in Manhattan and Figure 2(b) shows the distribution of
total tips over the past 4 years, which shows a tremendous
increase in the number of Foursquare tips in the last year.

5.2 Building language models
To build our language models for the extracted locations,

we first choose locations which have more than 50 tips and
so 1,066 locations are selected. We also experimented using
language models of locations having more than 30 tips and
100 tips. However, the location prediction accuracy using
them was not better than using locations having more than
50 tips. We believe that 30 or 40 tips are not enough to
build a distinct language model for each location. On the
other hand, for locations having more than 100 tips (e.g.,
500 tips), we believe that the prediction accuracy will im-
prove with more tips. However, there are only about 300
Foursquare locations in Manhattan having more than 100
tips and we think this number is too small to cover the area
of Manhattan. Therefore, in this paper, we report results us-
ing language models of locations having more than 50 tips.
For each location, to get a list of words from its tips, we
first break each tip into tokens. Then we stem the tokens
using Snowball stemmer [4] and remove any stop words in
the tokens using stop words of Rainbow [21]. In addition to
removing stop words, to consider only commonly used words
for the location, we exclude words which appear in less than
5% tips among all tips of the location. Through this filter-
ing, we can remove those words that are less common or
contain typos, thus reduce the size of our word vocabulary
(i.e., a set of all words used in our language models). Finally,
3,073 words are included in our word vocabulary.

5.3 Finding “I don’t know” tweets
To find local keywords, we empirically choose three differ-

ent tfidf threshold values: 0.1, 0.2 and 0.3. For example, let
us assume that a word appear in 10% of all locations (i.e.
inverse document frequency, idf = 1). We can intuitively
think that the word is too general to be included in the lo-
cal keywords. By using 0.1 as the threshold, there should be
any location in which the term frequency (tf) of the word is
larger than 0.1 to be selected as a local keyword. Since it is
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Figure 3: Effects of the validating step

rare for a word to occupy 10% of all tips, the word will be
filtered out by the threshold. Table 1 shows the number of
selected local keywords, among 3,073 words in our word vo-
cabulary, for different tfidf threshold values. To find tweets
which are talking about the future or past, we utilize PoS
tags generated by GPoSTTL [3].

tfidf threshold # local keywords
0.1 1,782
0.2 556
0.3 200

Table 1: Local keywords

5.4 Prediction without the validating step
First we evaluate the prediction accuracy of our frame-

work without applying the validating step for the predicted
locations. To measure the prediction accuracy, given a
tweet, we compare the geo-tag, which was removed during
the prediction steps, of the tweet with the latitude and
longitude (or boundary) of the predicted location. If the
predicted location has its boundary information and the
geo-tag of the tweet is within the boundary, the prediction
error is 0. Otherwise, we calculate the Euclidean distance
between the geo-tag of the tweet and the latitude and
longitude of the location and then use the distance as the
prediction error. We also note that acceptable prediction
errors depend on the application in question. For example,
automated geospatial review applications may require the
location of the individual to be identified accurately (within
100m). On the other hand, applications such as event
localization can tolerate a few hundreds of meters of error.

tfidf threshold # geo-tagged tweets percentage
No local keywords 31,264 43.06%

0.1 28,057 38.65%
0.2 15,096 20.79%
0.3 7,168 9.87%

Table 2: Geo-tagged tweets w/o the validating step

Table 2 shows that our framework without the validating
step can geo-tag a much more number of tweets, compared
to 0.58% in the original Twitter data. However, as shown
in Figure 3(a) where we use the naive Bayes model as the
ranking technique (we will compare different ranking tech-
niques in the next section), the prediction precision is not
satisfactory because only 10% of predicted tweets are lo-
cated within 250m from their actual location even though
we apply very selective local keywords (i.e., threshold =
0.3). Here, the precision means the percentage of predicted
tweets whose prediction error is less than a specified distance
(250m, 1,000m, 2,500m and 5,000m in Figure 3(a)). Al-
though this result is meaningful compared to existing coarse-
grained prediction frameworks, one of our goals is to improve
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Figure 4: Effects of different ranking techniques

the accuracy of our predicted locations. The results in sub-
sequent sections show that we can considerably improve the
prediction accuracy using our validating step.

5.5 Building models for the validating step
To validate the correctness of the predicted locations in

terms of their likelihood to match the actual location where
the tweets were written, we need to learn our classification
models using the training datasets. In this set of experi-
ments, we empirically use three different δ values: 0.5, 1.0
and 2.0 to generate three training sets. In other words, given
a tweet, if there is a location whose naive Bayes probabil-
ity is larger than 33%, 50% and 66%, the tweet will be in-
cluded in the training set with the δ value of 0.5, 1.0 and
2.0 respectively. For each tweet, to label whether its re-
ferred location is equal to its current location, we compare
the latitude and longitude of the referred location, extracted
from Foursquare, with the geo-tag (i.e. current location) of
the tweet. If the distance between the two locations is less
than 100 meters or the geo-tag of the tweet is within the
boundary of its referred location, we label that the tweet’s
two locations are the same. Table 3 shows the number of
selected tweets, the number tweets whose two locations are
different and the number of tweets whose two locations are
the same, for different δ values among 72,601 tweets.

δ value # tweets # lref �= lcur # lref = lcur
0.5 2,642 1,936 706
1.0 1,598 1,008 590
2.0 1,028 579 449

Table 3: Training sets

5.6 Prediction with the validating step
In this section, we first show the effectiveness of our

classification-based prediction validation step for improving
the prediction accuracy. Then we compare the location
prediction accuracy by different ranking techniques and
different parameter values. In this section, we use the tfidf
threshold of 0.2 and the δ value of 0.5, unless specifically
noted, because we think this setting strikes a balance be-
tween the number of geo-tagged tweets and the prediction
accuracy. We will show the effects of different parameter
values in this section.

Effects of the validating step. Figure 3(b) shows that
we can significantly improve the prediction precision using
our validating step, compared to that without the validating
step. Based on the generated classification model, by filter-
ing out those tweets in which their predicted location does
not match their actual location, we can locate about 34% of
predicted tweets within 250m from their actual location.

Effects of different ranking techniques. Figure 4
shows the prediction precision of three different ranking

techniques on 2003 tweets predicted by our framework.
We will show how 2003 tweets are predicted in the next
experiment. Figure 4(a) shows that using the naive Bayes
model as the ranking technique has better prediction preci-
sion than using standard machine learning techniques (our
baseline approach) or tfidf values. Specifically, using the
naive Bayes model, about 34.35% and 44.38% of predicted
tweets are located within 250m and 1,000m respectively
from their location. This result shows that the naive Bayes
model is working well in our language models to rank
locations for given tweets even though the model does not
consider global word weights. We think this is because
our language models include only location-specific words
(i.e. most of general words are filtered out by our local
keywords and stop words). This may also be a reason that
incorporating global word weights of such location-specific
words, like tfidf ranking, does not help much in terms of
improving the prediction precision. In comparison, ranking
with the standard machine learning (ML) techniques has
relatively worse prediction precision because the prediction
model is built using a very limited number of Foursquare
tips. Since it is almost infeasible to use all (or most of) tips
to run standard ML techniques due to the time complexity
and the resource (CPU and memory) constraints, it would
be hard to get good prediction results using this technique.
Figure 4(b) shows the prediction precision using the best

prediction (i.e., the closest location from the geo-tag of
tweets) in the top-5 predictions. This result represents the
capacity of our prediction framework to find a set of good
candidate locations even though the first predicted location
is mistaken. The result shows that the naive Bayes model
also has the best prediction precision by locating 41.99%
of predicted tweets within 250m from their location. The
prediction model generated using standard ML techniques
has no top-5 result because it returns only one location
having the highest confidence. Since the naive Bayes model
has the best prediction precision in all other experiments
using different parameter values, we report results using
only the naive Bayes model in subsequent sections.

δ value # geo-tagged tweets percentage
0.5 2,003 2.76%
1.0 2,764 3.81%
2.0 3,982 5.48%

Table 4: Effects of different δ values

Effects of different δ values. We compare the num-
ber of tweets, among 15,096 tweets (See Table 2), classified
as lref = lcur by different classification models built using
different δ values in Table 4. The percentage in the table
shows the ratio among 72,601 target tweets. Since the clas-
sification model using 0.5 as the δ value is built using the
training set which includes more lref �= lcur tweets com-
pared to the other training sets as shown in Table 3, it has
more capability to find such tweets and so choose fewer pre-
dictable tweets. The prediction precision result below shows
that the classification model built using the δ value of 0.5
ensures higher precision by effectively filtering out unpre-
dictable tweets. Figure 5(a) shows the prediction precision
of our framework without any classification model and with
three different classification models using different δ values.
The prediction precision increases as the δ value decreases
because, as we mentioned, the capability to filter out lref �=
lcur tweets increase due to the higher percentage of lref �=
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Figure 5: Effects of different parameter values

lcur tweets in the training set. However, there would be a
point in which selecting more tweets for learning the classi-
fication model by decreasing the δ value does not improve
the prediction precision any more (or even worsens the pre-
diction precision). This is because more noisy tweets which
have low confidence in their referred location would be in-
cluded in the training set by decreasing the δ value.

Effects of different tfidf threshold values. Fig-
ure 5(b) shows the prediction precision of our framework
without any local keywords and with three different tfidf
threshold values. Since the number of local keywords de-
creases as we increase the tfidf threshold values as shown
in Table 1, more tweets are filtered out as “I don’t know”
tweets because tweets should have at least one local key-
word not to be excluded. Also, the precision continuously
increases because selected tweets by high tfidf threshold
for the prediction have unique location-specific keywords.
However, there is a trade-off between the prediction preci-
sion and the percentage of selected tweets. In other words,
if we increase the tfidf threshold to improve the prediction
precision, a smaller number of tweets are selected for the
prediction.

Unigram vs Bigram. In this section we compares un-
igram and bigram LMs under the same conditions. Fig-
ure 5(c) shows the prediction precision of bigram LMs with
three different smoothing techniques and unigram LMs us-
ing the naive Bayes model. The effective smoothing pa-
rameters are selected from a coarse search of the parameter
space. The result shows that unigram LMs are more effec-
tive than bigram LMs, which is consistent with the reported
results [25]. This is because tweets and Foursquare tips are
very short messages and it is rarely possible to include a bi-
gram (or trigram or more), which can be used to effectively
differentiate one location from another. Even though the
location names include two or more words, the examination
of prediction results verifies that unigram LMs are sufficient
to detect such names. Also the effective parameters of abso-
lute discounting and Jelinek-Mercer smoothing shows that
the smoothed bigram LMs work better when they assign
more weights on unigram LMs.

Approach Percentage
original Twitter data 0.72%
original Twitter data 0.58%

(excluding Foursquare & Instagram)
our framework (without validation step) 20.79%
our framework (with validation step) 2.76%

Table 5: Percentage of geo-tagged tweets

5.7 Percentage of geo-tagged tweets
Finally we summarize how many tweets are geo-tagged by

our prediction framework in Table 5. This result indicates

how well our framework tackles the location sparseness prob-
lem of Twitter. In the original Twitter data, only 0.72%
tweets have their geo-tag. For fair comparison with our
framework in which we exclude tweets from Foursquare and
Instagram because it is too trivial to predict their location,
the percentage of geo-tagged tweets in the original Twitter
data goes down to 0.58% if we don’t count the tweets from
Foursquare and Instagram. We report in this section the re-
sults of our framework using the δ and tfidf threshold value
of 0.5 and 0.2 respectively and the naive Bayes model as the
ranking technique because we think this setting strikes a bal-
ance between the number of geo-tagged tweets and the pre-
diction accuracy. Our framework equipped with all proposed
techniques including the validating step can geo-tag 2.76%
of all tweets, increasing about 4.8 times compared with the
percentage of geo-tagged tweets in the original Twitter data,
while placing 34% of predicted tweets within 250m from
their actual location. If we don’t use our classification-based
prediction validating method, we can geo-tag 20.79% of all
tweets with lower prediction accuracy as shown in Table 2.

6. CONCLUSION AND FUTURE WORK
We have addressed the location sparseness problem of

tweets by developing a framework for increasing the number
of geo-tagged tweets by predicting the fine-grained location
of each tweet using only textual content of the tweet. Our
framework is vital for many applications which require more
geo-tagged tweets such as location-based advertisements, en-
tertainments and tourism. Our prediction framework has
two unique features. First of all, we build the probabilis-
tic language models for locations using unstructured short
messages that are tightly coupled with their locations in
Foursquare, instead of using noisy tweets. Second, based
on the probabilistic models, we propose a 3-step technique
(Filtering-Ranking-Validating) for tweet location prediction.
In the filtering step, we develop a set of filters that can re-
move as many location-neutral tweets as possible to min-
imize the noise level and improve the accuracy of our lo-
cation prediction models. In the ranking step, we utilize
ranking techniques to select the best candidate location as
the predicted location for a tweet. In the validating step, we
develop a classification-based prediction validation method
to ensure the correctness of predicted locations. Our exper-
imental results show that our framework can increase the
percentage of geo-tagged tweets about 4.8 times compared
to the original Twitter data while locating 34% of predicted
tweets within 250 meters from their location. To the best of
our knowledge, this is the first work which incorporates ex-
ternal data source such as Foursquare, in addition to Twitter
data, for location prediction of each tweet. Furthermore, un-
like most existing frameworks which focus on coarse-grained



prediction such as 10km and 100km, our framework locates a
considerable amount of predicted tweets within one-quarter
kilometer from their location.

It should be noted that, for privacy advocates, our re-
sults can be interpreted as new threats to location privacy
for their short messages such as tweets. In other words,
our techniques can be used not only to provide the valuable
geo-tag information of tweets for location-based services but
also to give warning of potential risks to their location to
the privacy advocates. For example, when a Twitter user,
who is concerned about his/her privacy, posts a tweet, our
framework can detect that the location of the tweet can be
predicted with high confidence and give him/her a warn-
ing of potential threats to location privacy. Our framework
can also provide real-time warnings, while the user is writ-
ing a tweet, by checking whether the newly entered word is
included in the local keywords.

Even though the focus of this paper is exploring location-
specific information explicitly or implicitly included in the
textual content of tweets, our framework can be extended
by incorporating more information sources to further in-
crease the number of geo-tagged tweets and improve the
location prediction accuracy. One simple extension could
be to build time-based models (per day, week, month and
year) for each location and then utilize the models with the
timestamp of a given tweet to predict its location. For ex-
ample, if our time-based models for a museum indicate that
there is almost no activity after 6pm on weekdays, our pre-
diction framework would give very low ranking to the mu-
seum for a tweet which was posted at 9pm on a Wednes-
day. Another possible extension could be to consider a set
of tweets, including Foursquare check-in tweets, posted by
a single user as time series data. This information could
be used to fine-tune the prediction of our framework. For
example, if a user posted a Foursquare check-in tweet, we
can reduce the search space for predicting the location of
those tweets, posted by the same user and whose timestamp
is close to that of the Foursquare tweet. Furthermore, if a
user posted two Foursquare check-in tweets at two different
locations within a short period of time, we could predict the
location of those tweets posted between the two timestamps
of the Foursquare tweets by analyzing the possible trajectory
paths between the two locations using some interpolation
techniques, like the route matching algorithm [28]. Other
interesting extensions to our current framework includes in-
ference over future and past activities included in the tweets,
utilizing social relationships between Twitter users, spatial
and temporal relationship as well as semantic relationship
among different tweets.
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