Hypermedia APIs for Sensor Data

A pragmatic approach to the Web of Things

Spencer Russell
sfr@media.mit.edu

Joseph A. Paradiso
joep@media.mit.edu

Responsive Environments Group
MIT Media Lab
Massachusetts Institute of Technology
Cambridge, MA, USA

ABSTRACT

As our world becomes more instrumented, sensors are ap-
pearing in our homes, cars, and on our bodies [12]. These
sensors are connected to a diverse set of systems and pro-
tocols driven by cost, power, bandwidth, and more. De-
spite this heterogeneous infrastructure, we need to be able
to build applications that use that data, and the most value
comes from integrating these disparate sources together. In-
frastructure for the Internet of Things (including not just
consumer products but sensors and actuators of all kinds)
is becoming more commonplace, but we need an application
layer to enable interoperability and create a Web of Things.
Here we introduce a pragmatic, hypermedia approach to the
Web of Things, integrating HT'TP request/response inter-
actions with realtime streaming using HTML5 WebSockets.
We will discuss how our approach enables client/server in-
teractions that are both evolvable by the server and dis-
coverable by the client. Rather than attempt to define yet
another competing standard, we incorporate a collection of
complementary standards already in use. We will also de-
scribe our implementation of these concepts in ChainAPI, a
sensor data server in use by a variety of projects within our
research group. We will describe one of several end-to-end
applications as a successful case study.
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1. INTRODUCTION

It is becoming apparent that in addition to a transport layer
that enables the Internet of Things, it is important to de-
velop an application layer to provide wide-spread interoper-
ability and a consistent interface to Internet-connected de-
vices. While there are many efforts to develop new stan-
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dards and protocols such as AllJoyn' and MQTT?, other
projects [20] seek to use existing application-level Web stan-
dards such as HTTP to provide an interface that is more
familiar to developers, and also that can take advantage of
tooling and infrastructure already in place for the World
Wide Web. These efforts are often dubbed the Web of
Things, which reflects the relationships to existing Web stan-
dards and also the way in which the World Wide Web is built
on top of the Internet.

We can see some of the potential for Web-accessible sensor
data in the growth of services like Xively®. However, we
believe that the Web of Things should, like the Internet it-
self, be open and decentralized. Enabling interoperability
between millions of data providers and consumers means fo-
cusing on the interactions between those actors, not building
centrally-controlled services.

In previous work [13][18] we have built frameworks to col-
lect and process sensor data from a variety of sources, as
well as applications to visualize and experience those data.
Through these prototypes we identified several common use
cases and access patterns, as well as shared functionality
that would be better served by a common infrastructure.

Many of the main impediments to adoption of IoT standards
are social rather then technological. Often solutions require
developers to take on too much simultaneous complexity to
get started. The Semantic Web gives possible directions to
encourage interoperability, but many of those systems are
very complex, with highly-sophisticated data models. En-
suring compatibility with existing upper ontologies [9][7][14]
improves interoperability, but application developers are of-
ten unwilling to adopt the accompanying complexity. Pro-
viding simple, familiar interfaces to sensor data lowers the
barriers to entry, allowing developers to build sophisticated
applications without deep knowledge of the underlying sen-
sor architecture, enabling smarter, more efficient IoT sys-
tems [2].

To address these issues we have developed ChainAPI, a set
of Web service design principles for the Web of Things.

Yhttps://www.alljoyn.org/
http://mqtt.org/
3https://xively.com/



ChainAPT services interoperate with existing infrastructure,
and also allow developers to take advantage of semantic re-
lations and formal ontologies as they become useful, rather
than forcing the developer to confront them all at once. We
are working with developers outside our research group to
get insight and feedback into the barriers to adoption and
also which features are necessary to cover real-world use
cases.

2. HYPERMEDIA WEB SERVICES

The seminal work in Hypermedia Web Services is Roy Field-
ing’s PhD dissertation “Architectural Styles and the De-
sign of Network-based Software Architectures” [15]. Fielding
codified much of the design that had gone into the World
Wide Web into an architectural framework he called Rep-
resentational State Transfer, or REST. He lists the main
requirements that drove the design of the World Wide Web:

1. Low barrier to entry

2. Extensibility

3. Distributed hypermedia
4. Internet-scale

The Internet of Things certainly must be extensible and
Internet-scale. This work focuses on exploring the benefits of
lowering barriers to entry and hypermedia. While reducing
complexity and providing easy entry points for new devel-
opers are obviously good goals in isolation, there is often
a trade-off between design complexity and the expressive
power and generality of a system. The World Wide Web
gives a compelling model of a system that has proved itself
to be both accessible (driving wide and rapid adoption) and
extensible. Guinard, Trifa, and Wilde give a good intro-
duction to the application of RESTful design to the Web of
Things [20]. In particular they list five constraints of REST
architectures:

1. Resource Identification

2. Uniform Interface

3. Self-Describing Messages

4. Hypermedia Driving Application State
5. Stateless Interactions

They go on to describe how these constraints are well suited
to IoT applications. Building on that work and our previous
experience we developed seven design principles to guide our
system design, architecture, and implementation.

1. Assume a plurality of low-level device protocols and
abstract them from clients

2. Support a layered architecture allowing intermediaries
to handle services such as caching, authentication, and
encryption

3. Use hyperlinks to present resource relations and client
affordances

4. Support interoperability via shared vocabularies iden-
tified with URIs

5. Developers should be able to build clients without spe-
cialized tooling or libraries, using only familiar stan-
dards (HTTP, JSON, and WebSockets)

6. Provide semantic relationships without requiring full
Semantic Web buy-in from developers

7. Provide a mechanism for clients to subscribe to push
updates
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3. RELATED WORK

There are a wide variety of projects in the academic and
private sectors, and in fact the abundance of fragmented
systems and protocols is often cited as one of the main
challenges in IoT. To help make sense of this landscape we
will categorize some of these related projects into 3 groups:
data interchange formats, protocols, and platforms. In this
categorization we consider data interchange formats to be
portable specifications intended to package data for shar-
ing between heterogeneous systems. Protocols specify more
complex interactions between entities, such as acknowledg-
ments, authentication, and handshaking. A protocol may
specify the data interchange format, or may leave the pay-
load format open for arbitrary data (as HTTP does). Plat-
forms are specific instantiations and implementations in hard-
ware or software.

3.1 Data Interchange Formats

On the Web, JSON and XML are both extremely common
and often used as a basis for more detailed formats. This
paper will not contribute further to the JSON/XML dis-
cussion, except to point to the well-reasoned description by
Lanthaler [23] which aligns with the authors preference for
JSON.

The Sensor Modeling Language (SensorML) from the Open
Geospatial Consortium (OGC) is a data model with an XML
representation that can describe sensor metadata. Though
widely used and referenced in the literature, SensorML is
burdened by interoperability with general upper ontologies
and does not seem suitable for lightweight web services.

While not sensor-specific, the Hypermedia Application Lan-
guage (HAL) [21] provides a data model with both XML and
JSON formats that supports hypermedia i.e. links. HAL
has a focus on simplicity, but has the ability to use URIs as
link relations, which enables a global vocabulary that can be
shared between applications. A downside to HAL is that re-
lation URIs can only be used for link relations, not resource
attributes. JSON-LD [31] is another promising contender
in the JSON hypermedia space, and unifies the descriptions
of links and attributes. It has recently been adopted by
Google for embedding semantic data into emails and search
results [30]. JSON-LD can also be mapped to RDF, for
interoperability with existing Semantic Web tools.

3.2 Protocols

Much of the work in IoT research and development has been
at the protocol level. CoAP [29] and MQTT [24] both tar-
get protocols that can be used end-to-end from embedded
devices to clients. CoAP is inspired by REST and HTTP
but designed from scratch by the IETF [22], while MQTT
is modeled on a publish/subscribe architecture. XMPP be-
gan as a chat protocol, but because it supports extensions
it has been used for a wide variety of use cases, including
IoT. Any of these three would require adapting into Web
standard protocols such as HTTP, so while they could be
plugged into a system meeting our design principles, we will
consider them out of scope for this work. AllJoyn is a large
and sophisticated IoT solution started by Qualcomm that is
now under the AllSeen Alliance. AllJoyn does not fit into
our design principles of using existing protocols when possi-
ble and avoiding the need for extra tooling.



3.3 Platforms

There are many commercial and academic offerings to man-
age sensor data. One of the most well-known is Xively (for-
mally Cosm, formally Patchube). Xively supports access via
REST, Unix sockets, WebSockets, and MQTT. However, it
is a closed and monolithic system. Their integration of re-
quest /response API and push API was influential in our de-
sign, though they are not leveraging hypermedia, and rely
on out-of-band URLs hard-coded into the client.

In 2014 SparkFun announced data.sparkfun.com, which is
a very simple sensor feed publishing platform. It is open-
source, but the lack of a mechanism to link installations to-
gether prevents it from becoming a true distributed system.
Also, While it is very simple and accessible to web-savvy
developers, it doesn’t provide the necessary tools to build
more complex systems.

Microsoft Research has introduced HomeOS [11], which ab-
stracts over a set of existing home-automation protocols to
provide a PC-like interface, but it is very home-focused and
also does not provide a web-centric APT to client developers.

SPITFIRE [25] is a very promising step towards the Seman-
tic Web of Things, and motivates the benefits of semantic
sensor data well. However, they do not provide a hyperme-
dia API and instead rely on the use of Semantic Web tools
such as SPARQL. OpenloT [1] is a similar service based
on Semantic Web technologies and conforming to standards
such as the W3C Semantic Sensor Networks (SSN) specifi-
cations. Again however, the system is large and complex,
and relies on tools and specialized software to interact with
the service.

4. USING EXISTING STANDARDS

Wherever possible we have relied on existing standards and
protocols rather than reinventing our own. For instance, to
support hypermedia in our responses we are using HAL.
HAL has a large number of client libraries and was re-
cently adopted by Amazon for their AppStream API. HAL
can be rendered in JSON with a media type of applica-
tion/hal+json or XML (using application/hal+xml). In
this case we have chosen to focus on the JSON variant.
JSON-LD would also be a suitable representation, and they
can co-exist using the HT'TP Accept header to let the client
tell the server what representation it wants. We use the
TANA-standardized link relations edit-form and create-
form to indicate link relations that can be used for editing
and creating resources, and JSON-Schema [33] for represent-
ing the expected format. For our realtime API we are using
WebSockets, which is a simple and low-overhead protocol
with wide and growing adoption. Where possible we use
existing vocabularies, such as the QUDT* ontology for unit
names.

S. LAYERED ARCHITECTURE

Work is under way by multiple groups to adapt the TCP/IP
Stack to be more suitable for low-power, resource-constrained
devices [3]. Though this is a reasonable proposition and
would provide a suitable transport protocol for communi-
cation, it leaves open many questions that are important

“http://www.qudt.org/
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for secure and reliable communication over the open Inter-
net. Even if the devices themselves speak IP (whether using
WiFi, 6LoWPAN, etc.) there will still likely be a role for
a bridge or gateway node that can handle encryption, au-
thentication, discovery mechanisms, and other functionality
necessary to communicate and interoperate with the larger
Internet.

One of the benefits of the layered gateway approach is that
we can take advantage of existing HT'TP Caching and Proxy
infrastructure. It is a common pattern in modern web de-
velopment to have application web server processes handling
application logic, and to place a front-end HT'TP server such
as Nginx or Apache as a reverse proxy or gateway. In this
configuration, the proxy is responsible for handling SSL en-
cryption, defending against DDOS attacks, and in general
provides a front line of defense to the open Internet. The
application server processes (e.g. Node.js or Gunicorn) thus
operate in a safer environment and focus on handling appli-
cation logic. This architecture maps directly to loT applica-
tions, where lightweight devices can serve HT'TP or function
as gateways to Wireless Sensor Networks (WSNs) from be-
hind heavier-duty proxies.

The presence or absence of a gateway has been used in Web
of Things literature to divide direct from indirect integra-
tion [32]. In direct integration, the devices themselves are
capable of serving requests directly from clients. In indirect
integration there is a gateway or bridge that serves the re-
quests, and translates them to a protocol that the (presum-
ably lower-powered) nodes can understand. The assumption
is often that the main function of the gateway is to translate
between HTTP and a lower-power protocol such as ZigBee,
6LoWPan, etc. An unexplored middle ground is for end
devices to function as simple HTTP servers that are prox-
ied behind more heavy-duty ones. For example, a gateway
could handle SSL and authentication, but then forward re-
quests to the simpler devices for handling application logic.
This layered architecture and allows the simpler devices to
sit behind a protected firewall in a safe zone. By building
our simpler servers on HTTP we can use industry-standard
and field-tested front-end proxy servers instead of special
purpose IoT gateways.

Figure 1 shows a possible configuration of clients, proxies,
and sensors. Here there are a combination of traditional
low-power sensors in a WSN, as well as a set of sensors that
can serve HTTP requests, but are assumed to be relatively
resource-constrained i.e. they are not equipped to handle
large amounts of traffic, and don’t support advanced features
such as SSL. When one of the clients requests data (e.g. the
most recent temperature reading) from one of the sensor
nodes, it goes through a caching proxy. If the proxy does
not have a recent response, it will pass the request to the
sensor. The sensor will send the response with the data,
along with a standard HTTP Cache-Control header. The
sensor would likely set the cache lifetime to persist until
its next scheduled measurement. Subsequent requests from
other clients for the same data will be handled directly by
the Caching proxy, saving both power and bandwidth of the
sensor. This is particularly valuable when there are many
clients requesting the same data.
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The trade-off for this extra efficiency is additional latency
between the time a physical property is measured and the
time that it gets to the client. Because our system provides
both a request/response and a streaming interface, we as-
sume that clients seeking the lowest latency data will simply
connect to the realtime stream.

The standard HTTP methods (GET, POST, etc.) have well-
defined semantics [16]. For instance, a GET request should
have no side effects in the server, and a PUT request should
be idempotent (making the request more than once has the
same effect as making it once and the request can be safely
repeated). Using these standard methods and adhering to
the defined semantics allows intermediate servers to behave
more intelligently and route traffic more efficiently. One
notable example is the caching proxy. There exist many
widely-used proxies such as Varnish®, Nginx®, and Squid”
that can take advantage of the HT'TP method along with
standardized cache lifetime HTTP headers to intercept the
request and serve a cached response from a previous request.
This reduces the load on the application server, which might
otherwise have needed to access a database or do other ex-
pensive calculations to re-build the response. In the case of
sensors the caching proxy could be a power-saving measure,
as the proxy could handle client requests without communi-
cating with the sensor.

6. LINK RELATIONS

Hyperlinks provide a mechanism for the server to present
affordances [17] to the client. These affordances could rep-
resent actions that the client has available to them, or simply
related resources. For example, Figure 2 shows a set of re-
sources and relations in a home. We see that Alice and Bob
are both in the Living Room, where there is also a thermo-
stat. There are two tracked values in the thermostat: the
setpoint and the temperature, and we can see that the set-
point can be considered a target value for the temperature.
In a hypermedia system each of these entities can be repre-
sented by a resource with a unique URI, and each of these

Shttps://www.varnish-cache.org/
Shttp://nginx.org/
"http:/ /www.squid-cache.org/
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relations (adjacent, in device, etc.) can be represented by
a hyperlink. This is also similar to the subject-verb-object
triple concept from the Semantic Web [5]. Linked resources
could also be virtual sensors such as an anomaly detection
algorithm that uses raw sensor data as input. Actions such
as editing the current resource or sending a command can
also be represented as links, and the presence or absence of
those links is a way for the server to communicate to the
client what they are allowed to do. Listing 1 has a typical
resource representation. In hal4json links are contained in a
reserved _links property of the JSON payload. The _links
property is a dictionary, keyed on link relation names (com-
monly referred to as “rels”).

The rel itself actually serve as a link to the human-readable
documentation that describes what that relationship actu-
ally means. This rel URI should also be used by clients as a
unique, persistent identifier. This gives flexibility to server
implementers as they can add new relation types, or even
new versions of existing relation types, to existing resources
without breaking older clients. As long as the new rels have
unique URIs, old clients will simply ignore them. It also
provides a mechanism for creating a shared vocabulary of
relation types by referencing rels from a shared repository.

Using URIs as relation names has the benefit of providing
a stable and unique identifier for relation names, but using
a full URI as a JSON dictionary key is cumbersome and
duplicates lots of data in a typically payload. To alleviate
this issue hal+json supports Compact URIs or CURIEs [6],
which are similar in functionality to an XML namespace.
In the context of hal+json CURIEs are simply a URI tem-
plate that can be used for each rel that references it. For
example, in Listing 1 the ch CURIE has a templated URI of
/rels/{rel}, so the rel ch:device becomes /rels/device.
This substitution is known as CURIE Expansion.

Actions such as posting new sensor data or adding a new
sensor require the client to send data to the server. The
client can send data to the server via POST requests with
data encoded in the body of the request with JSON. The
server can provide the client with the expected format of the
data using JSON-Schema [33]. A GET request to the given



relation will generate a response with the expected schema,
and a POST will edit or create the resource, depending on
the relation.

You can also see in Listing 1 that there is both an editForm
and edit-form relation. Notice that the editForm link has
a deprecation property that is a URI. This is how rela-
tions can be gracefully deprecated or changed. In this case
we renamed editForm to edit-form to match the TANA-
registered relation name. Older clients with the old relation
name will continue to function normally, and most HAL li-
braries are configured to log a warning if a deprecated link
relation is used. The deprecation URI can be viewed for in-
formation about the deprecation. Developers creating new
clients can clearly see which relations are deprecated and
avoid using them. HAL allows server developers to decide
on a deprecation lifetime policy appropriate for their appli-
cation.

To save on communication overhead, HAL also supports em-
bedded resources as a pre-caching strategy [21]. If there are
related resources that are likely to be requested, they can be
included in an _embedded property that is similar in struc-
ture to the _links property, except with full HAL resources
included instead of links. When a client application accesses
a related resource, most HAL client libraries are configured
to first check to see if the resource is embedded before re-
questing the it over the network.

7. BRINGING POLL AND PUSH
TOGETHER

In ChainAPI we integrated request/response interactions
with realtime push updates. While many interactions map
well to an HT'TP API in which clients make a request and
the server sends a response, it is very common in sensor
data systems to want new sensor data as soon as it is avail-
able. Standard HTTP is not well-suited to this task, as
the server cannot initiate communication with the client.
While many workarounds such as long-polling are in com-
mon use, HTML5 WebSockets were introduced to provide a
more standard mechanism.

Clients begin interacting with ChainAPI via the HTTP API,
submitting HTTP requests for resources and receiving re-
sponses with representations of those resources in hal+json.
In a response, the server may provide a realtime feed for re-
lated data simply by providing a ch:websocketStream link
relation. For example, in Listing 1 the server is telling the
client that there is a WebSocket stream for this sensor avail-
able at ws://example.com/ws/sensor-274. As new data
from the sensor is available it will be published to all sub-
scribed clients. Because there is a natural hierarchy in our
data (many devices in a Site, usually several sensors in each
Device), when clients subscribe to a resource they get up-
dates for all resources below them in the hierarchy.

This is a good example of the benefits of hypermedia and
linking, as the client does not need to be instructed ahead of
time how to find a given realtime stream, it can just follow
the link at run-time. This frees the client developer from
needing to figure it out from documentation, and also al-
lows the server developer to make changes as needed without
breaking clients. For instance, the streams could be served
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{
"updated": "2014-04-01T02:34:21.676564+00:00",
"dataType": "float",
"metric": "sht_temperature",
"value": 25.59,
" _links": {
"ch:dataHistory": {
"href": "/sensordata/?sensor_id=274",
"title": "Data"
}5
"curies": [
{
"href": "/rels/{rell}",
l|name||: " Ch" s
"templated": true
}
]5
"self": {
"href": "/sensors/274"
}J
"ch:device": {
"href": "/devices/33",
"title": "Office Thermostat"
}5
"ch:websocketStream": {
"href": "ws://example.com/ws/sensor-274",
"title": "Websocket Stream"
},
"editForm": {
"deprecation": "/rels/deprecation/editForm",
"href": "/sensors/274/edit",
"title": "Edit Sensor"
}5
"edit-form": {
"href": "/sensors/274/edit",
"title": "Edit Sensor"
}
}J
"unit": "celsius"
}

Listing 1: hal+4json representation of a sensor

from a totally separate server, or the HTTP server might
want to pass additional context information to the stream-
ing server through parameters in the URI query string.

Another option with some traction is MQTT [8], which is
optimized for resource-constrained devices and includes use-
ful features such as variable Quality of Service levels and the
ability to register a message to be sent on disconnect, known
as the “last will and testament.” For our applications these
have not been necessary and the simplicity of integrating
WebSockets with standard HTTP has proved beneficial. If
in the future we decide to support additional streaming pro-
tocols such as MQTT we can simply add new link relations
to allow clients to connect via those protocols, analogous to
the ch:websocketStream relation we currently use for the
WebSocket stream. Clients that support the new stream
type will be able to take advantage of it when the rel is



available, and older clients will simply ignore the new capa-
bility.

8. ENABLING SEARCH

In the early days of the World Wide Web, sites were pri-
marily accessed directly via their URIs, or via links from
other known sites. In the earliest days in fact, CERN had
an alphabetized index of available web content [28]. As the
web grew beyond what could be reasonably browsed and
bookmarked, the problem of finding information on the Web
changed. It was no longer enough for the content to be on
the web, it also had to be discoverable in a sea of other
pages. By 1994 search engines started to appear to allow
users to find the information they wanted [28]. With search
engines came the advent of crawlers that would index the
web and collect the metadata into the engine’s database.

As more sensors and sensor networks are added to the Web
of Things, similar issues will arise. By building a network
of interlinked sensor networks, our approach can serve as a
substrate on which a similar ecosystem of crawlers can in-
dex the available data and metadata. Search engines have
also been one of the spaces where semantic markup is begin-
ning to be adopted and used, as the engines use embedded
semantic information in pages to improve their results.

9. SUPPORTING RELATION ONTOLOGIES

One of the central issues in the IoT is simply the issue of
uniquely identifying objects in the system [3]. RESTful
design practices encourage HT'TP URIs as globally unique
identifiers. Providers can structure their URIs arbitrarily,
for instance to represent natural hierarchy in the system.
Link relations between objects not only represent identity,
but also where the linked object can be found, without need-
ing to first consult any sort of central registry. This archi-
tecture supports extremely loose coupling between related
resources and services.

Additionally, HTTP has built-in mechanisms to handle re-
naming, as servers can respond with an HTTP Status 301
(Moved Permanently) to notify clients that the object can
now be found at a new URIL

An ontology is a formal description of objects, classes, and

concepts in a domain, as well as the relations between them [19].

In the Semantic Web context the entities in an ontology are
typically defined as a set of widely-available URIs so that un-
related actors and systems can reference shared concepts [5].
In fact, it’s this ontological common ground that enables the
most powerful aspects of semantically-linked data. Client
agents can take data from disparate sources and leverage the
ontology to combine it meaningfully, for example combining
temperature data from multiple sources, or automatically
combining sensor data from different systems that it knows
are nearby a particular latitude and longitude.

Implementing a fully Semantic Web-compatible system is
not a priority of ChainAPI, but we recognize the benefits
of shared ontologies to support cross-system compatibility.
ChainAPI-based services can use a shared vocabulary of link
relations to enable these types of use cases. In Listing 1,
notice the ch:dataHistory link relation, which expands (via
the CURIE) to the URI /rels/dataHistory. A client that
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sees and understands this relation knows that it will link
to a collection of data from the history of this resource. A
user-facing client might open the link in a separate window
that can graph the data. A Machine-to-Machine (M2M)
agent such as an indexing crawler might choose to ignore
the link because it is only concerned with sensor metadata
and not the actual measurements themselves. Perhaps it
will link back to the source for the raw data, while storing
the metadata in a more optimized index for the types of
queries it will run.

In addition to acting as a universally-unique identifier, the
rel name is also a URI that can be dereferenced by the
client to get more information on the relation semantics.
The human-readable documentation available at that URI is
useful during development, but machine-readable documen-
tation can also be made available, such as a JSON-Schema.
This machine-readable information could be used by a hy-
permedia client to display more information about the rela-
tion to the user, or to decide whether or not to follow the
relation in an M2M context.

Where possible we are using existing standard relation names.
Some that apply to the wider web are defined by the TANA,
such as next, previous, edit-form, etc. There are cur-
rently several available approaches to an ontology for sen-
sor data [9][7][14] but they typically focus on interoperating
with more universal upper ontologies and are too complex
for use by general web developers. Other work on integrat-
ing various ontologies with other existing sensor description
standards such as SensorML are promising [26], but finding
the right balance between simplicity and semantic expres-
sivity remains an open research area.

A shared vocabulary of relation types is one part of the
semantic picture, but for a fully self-describing service it is
also necessary for the client to access information about the
resource formats themselves. The IANA defines the profile
relation name that can be used to link individual resources to
a shared type that can be used as a context for interpreting
its attributes.

10. IMPLEMENTATION

To validate our design choices and experiment in a real-
world environment, we have implemented a server-side web
service, the ChainAPI server. We have also created several
client applications to use the service in different ways. The
software is released under the MIT license, and source code
is available on GitHub®.

10.1 Resources

As a hypermedia web service, ChainAPI provides clients
with a number of resources and describes relations between
them in the form of hyperlinks. The resource types we cur-
rently provide are:

Site A collection of Devices typically located within the
same geographic area or building.

Device A physical device in an enclosure. This device could
contain many sensors.

Shttps://github.com/ssfrr/chain-api



Sensor A single metric that is measured, such as tempera-
ture or humidity.

SensorData Raw data captured by the sensor.

10.2 Libraries and Tools

Our current implementation of the ChainAPI server is writ-
ten in Python, and diagrammed in Figure 3. We use the
Django® web framework for the request/response API and
database interactions. For managing the WebSocket con-
nections, we use a separate process built on the Flask'® web
framework. The two processes communicate with each other
through a ZMQ"' socket for event notification. We are cur-
rently using the PostgreSQL'? relational database. Nginx
acts as a reverse-proxy server to dispatch standard HTTP
and also WebSocket connections to the application servers.

It is currently only possible to create or modify resources
(including POSTing sensor data) through the HTTP inter-
face, but in the future clients will be able to use WebSockets
to reduce latency and overhead. When a client posts new
data, for example a sensor posting a new temperature mea-
surement, the HT'TP server stores the data in the database
and also sends an event notification over ZMQ to the Web-
Socket server, which in turn notifies any subscribed clients.
The URI provided to the client in the WebSocket links pro-
vides all the information the WebSocket server needs to de-
cide what data should be sent to the client. For example,
in the sensor resource in Listing 1, the WebSocket URI is
ws://example.com/ws/sensor-274, so when the client con-
nects to the WebSocket server, it will send any events tagged
sensor-274. This tagging mechanism is an implementation
detail, but it demonstrates that when the clients treat link
URIs as opaque, they can be used to pass data between
server components without requiring the state to be main-
tained in the server, which is a core component of RESTful
design.

While are certainly a long way from Internet-scale, we have
a substantially larger installation then most comparable re-
search systems. As of October 24, 2014 there are 487 de-
vices in the system, which include 2230 separate sensors. We
have collected over 239,000,000 sensor data measurements.
These devices include custom hardware that communicates
over 802.15.4, commercial thermostats on the MIT Media
Lab’s Building Management System, and the Soofa solar
benches'® deployed in Boston, which are POSTing directly to
ChainAPI over a GSM modem.

10.3 HTML Interface

To assist developers building applications on top of ChainAPI,

we have developed a human-facing interface'* with HTML,
CSS, and JavaScript that can be viewed through a standard
web browser, as seen in Figure 4. Through this interface de-
velopers can familiarize themselves with the ChainAPI inter-
face before they start their client application, or to evaluate

“https://www.djangoproject.com/
Ohttp: //flask.pocoo.org/
"http://zeromq.org/
2http:/ /www.postgresql.org/
Bhttp://www.soofa.co
Y“http://chain-api.media.mit.edu/
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Figure 4: Chain API Explorer

ChainAPI for their use case. For each request, we display
the raw JSON of the response on the right side. On the left
we display a more user-friendly and interactive rendering of
the raw data.

Our HTML interface has the following capabilities

. Display resource attributes

. Display links as clickable HT'ML links

. Create and POST an HTML form from a JSON-Schema
. Plot time-series data on a graph

=W N =

Capabilities 1-3 are enough to enable a user to fully interact
with the API without any specialized code on the client side.
Plotting time-series data is a convenience to help visualize
the data, but is not a core requirement of client libraries. As
new features and capabilities are added to the server, they
automatically become available in the client interface with
no client-side code changes.

11. CASE STUDY:

TIDMARSH LIVING OBSERVATORY

The Tidmarsh Living Observatory project'® is a sensor de-
ployment at a former cranberry bog in southern Massachusetts
that is currently undergoing a restoration to a natural wet-
land. There are currently 65 sensors nodes deployed, each
sensing temperature, humidity, barometric pressure, and am-
bient light. Two nodes are equipped with additional soil
moisture probes, and one is measuring wind speed and di-
rection. Each node is powered by 3 AA batteries, with

http://tidmarshfarms.com/
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Figure 5: Tidmarsh Architecture

an expected battery life of 2 years, sampling every 30 sec-
onds. There are also several solar-powered nodes acting as
repeaters for the mesh network. Figure 5 shows an overview
of the Tidmarsh architecture.

11.1 Sensor Infrastructure

One of the goals of ChainAPI is to accommodate a wide
variety of heterogeneous underlying sensor systems and pro-
vide easy integration. In the case of Tidmarsh there was an
existing sensor installation that exposed the sensor data via
ZMQ. The sensors communicate with a base station using
Atmel’s Lightweight Mesh protocol over 802.15.4. Nodes not
within direct communication range of the base station can
route messages through solar-powered router nodes, which
are also collecting data. The base station serves as the
TCP/IP Gateway, which receives the RF messages and sends
them over WiFi to server via ZMQ. The message payloads
are left in their binary format and they are received by the
Binary to JSON translator, which parses the binary mes-
sages and generates JSON representations of the data. The
Binary to JSON translator acts as a ZMQ server, and the
JSON messages are sent to any connected clients.

11.2 ChainAPI Representation

To integrate the Tidmarsh sensor installation into ChainAPI,
we wrote a small bridge service that connects via ZMQ to
the Tidmarsh server and receives JSON messages on each
sensor measurement. The only URI needed by the service is
the address of the Tidmarsh Site resource on the ChainAPI
server, which is passed as an argument on initialization. On
initialization the bridge service first requests a list of all de-
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Figure 6: Tidmarsh Unity3D Client

vices on the server. Recall from section 10.1 that a device
is a collection of sensors in the same enclosure, so in this
case each Tidmarsh Node is a device. Within the Tidmarsh
system each node has a unique 2-byte identifier, which we
use as the device’s name field within ChainAPI. From the
device and sensor information that the bridge receives from
the server, it builds a hash that it can use to look up the
URI for a given sensor data as it arrives from the Tidmarsh
server. It then subscribes to the ZMQ feed from the Tid-
marsh server. As new data come in, the bridge simply looks
up the appropriate URI to post the new data to. If data
arrives from a sensor or device that the bridge does not
recognize, the bridge creates the necessary resource before
beginning to post data. This has the benefit that as new
sensors come online at Tidmarsh, their data immediately
begins flowing into ChainAPI.

11.3 Client Behavior

We developed an interactive 3D client built on the Unity3D
game engine'® to explore and experience the data from the
sensor network. As with the Tidmarsh bridge, the client
begins by requesting a summary of the site, which includes
all devices and sensors at that site. The summary also in-
cludes geographic location for each device, which the client
uses to place each sensor in the 3D environment. Similar to
the bridge, this client builds a hash to map incoming data,
but now in the opposite direction (mapping URISs to in-game
objects). New data that comes in from the WebSocket sub-
scription will have a link to the containing sensor, so the
client needs to quickly map that URI into an in-memory ob-
ject representing the sensor. As the client parses the sum-
mary of devices and sensors at the site, it builds up such
a map and instantiates the objects in the game world. As
new data comes in, the client looks up the game object in
the hash and updates the sensor values. In this client the
incoming data is visualized and displayed spatially on a real-
istic representation of the real-world topology (see Figure 6).
The client also incorporates generative music that is driven
by the incoming sensor data.

To maintain portability and security, working within the
Unity3D environment places substantial constraints on li-
brary availability. Here the choice to use standard web tech-
nologies sped up development time considerably. With no

http://unity3d.com/




tooling or language support beyond standard HTTP, Web-
Socket, and JSON parsing we were able to quickly interface
with the ChainAPI server and access the data in realtime.

12. FUTURE WORK

A general pattern has emerged in the clients we’ve built
where they often begin with one or more requests for the
current state of the resources of interest, after which they
subscribe to push updates. The gap between the initial state
query and the push updates presents a potential for lost
data. One solution would be for the client to subscribe to
the updates before requesting the initial state, thus pushing
responsibility for merging out-of-order data to the client.
Because this pattern is so common a better solution is de-
sirable. Because the initial state information and the Web-
Socket link for updates are often in the same response, we
should be able to include timestamp information in the Web-
Socket link itself, which the WebSocket server can use on a
new client connection to send any messages that otherwise
would have been lost. Because the clients treat link URIs as
opaque we can add this functionality to the server at a later
time without changes to the client.

The ontology that has arisen from our applications is un-
derdeveloped and ad-hoc. While we have discussed how a
shared vocabulary could be implemented within our system,
more research is necessary to determine a widely-usable set
of relations, preferably based on existing ontologies and stan-
dards.

Much of this work is predicated on the assumption that we
should strive to simplify the client/server interfaces in Web
of Things to drive adoption. To validate this assumption we
need to build on our qualitative experience with formal user
studies.

We have not yet explored the best security models to ap-
ply to this architecture. Building on existing web technolo-
gies gives us access to a wealth of proven security tools and
paradigms, but we need to work on implementing more fine-
grained access control while maintaining the scalability ad-
vantages such as caching. In addition to access control, there
are myriad privacy concerns, as well as questions of track-
ing data provenance through these layered, multi-tiered sys-
tems [4]. There have been great strides in these areas [10]
but there are still many open research questions, as well as
opportunities to integrate with existing systems.

Efficiently querying sensor data at large time scales will re-
quire working with the data at multiple resolutions. Down-
sampling the raw data brings up many questions that require
further research including effective ways to handle miss-
ing data. Sampling and interpolation questions extend into
space as well, and our work provides a framework for virtual
sensors [27] to be created and linked together with the raw
data.

As discussed in Section 8, the Web provides a successful
model to handle massive decentralized growth in the form
of search engines. A collection of hyperlinked sensor data
forms a substrate for a more sophisticated ecosystem of
crawlers, aggregators, portals, etc. that can be extremely
loosely-coupled to the underlying data. It also enables these
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engines to index the data to optimize for different use cases.
Exploring this space is a rich avenue for future research.

13. CONCLUSION

In this work we have introduced a number of design prin-
ciples that can be used together to build Web of Things
applications that are extensible and scalable while maintain-
ing low barriers to entry and interfaces that are familiar to
the modern web developer. We have described ChainAPI,
our implementation demonstrating and validating that these
ideas can support quick development cycles for sensor net-
work applications, and easily integrate with existing infras-
tructure. We have achieved these goals using almost entirely
existing protocols and standards brought together in a uni-
fied architecture based on REST and Hypermedia principles.
This approach also supports data sharing and interoperabil-
ity through a shared vocabulary of link relations. With such
a proliferation of standards and protocols for the Internet of
Things the challenge becomes integrating the pieces into a
coherent whole, and ChainAPI is a concrete step in that
direction.
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