
OSCAR: A Deployable Adaptive Mobile Bandwidth Sharing
and Aggregation System

Karim Habak*, Khaled A. Harras†, Moustafa Youssef‡
*Georgia Tech, †CMU-Qatar, ‡E-JUST

*karim.habak@cc.gatech.edu, †kharras@cs.cmu.edu, ‡moustafa.youssef@ejust.edu.eg

ABSTRACT
The exponential increase in mobile data demand coupled
with the rapid deployment of various wireless access tech-
nologies have led to the proliferation of multi-interface en-
abled devices. As a result, researchers focused on exploit-
ing the available interfaces on such devices in both solitary
and collaborative forms. Unfortunately, the proposed sys-
tems, that exploit these interfaces, face a formidable deploy-
ment barrier. Therefore, in this work, we present OSCAR,
a system that exploits multiple network interfaces on mod-
ern mobile devices. OSCAR provides a set of mechanisms
for sharing bandwidth across multiple collaborating devices
and enables this collaboration by providing users with shar-
ing incentives. We present an overview of the system cou-
pled with the OSCAR scheduler. We evaluate OSCAR via
implementation on Linux and compare our results to the
current optimal achievable throughput. Our preliminary re-
sults shows that in the throughput maximization mode, we
provide up to 150% enhancement compared to using only
one interface, without any changes to legacy servers.

1. INTRODUCTION
The Federal Communications Commission (FCC) has indi-
cated an expected data tsunami predicting a 25-50× increase
in mobile data traffic by 2015 [1]. This expected explosive
demand for mobile data, along with expensive data roam-
ing charges and user expectation to remain connected in all
places at all time, are creating novel challenges for service
providers and researchers to solve. A potential approach for
solving some of these challenges is exploiting all communi-
cation interfaces available on modern mobile devices.

Currently, researchers focus on exploiting all the available in-
terfaces on mobile devices in both solitary and collaborative
forms [3]. In the solitary form, they aim to exploit Internet
connectivity on any of the available interfaces by distributing
application traffic across them to achieve higher throughput
and/or minimize energy consumption [2, 5, 6]. In the collab-
orative form, the goal is to have mobile devices utilize their
neighbors’ potentially under-utilized bandwidth in addition
to their own direct Internet connections. These approaches
either deal with a small scale collaborative community man-
aged by a single authority [9], or utilize proxy servers to
handle and guarantee such collaboration [8]. Overall, solu-

tions proposed to date face a high deployment barrier, and
have focused on bandwidth maximization without paying
sufficient attention to energy or cost efficiency.

In this work, we present the OSCAR collaborative band-
width aggregation system that fulfills the following require-
ments: (1) Being deployable since it does not require changes
to legacy servers, applications, or network infrastructure.
(2) Exploiting available network interfaces in solitary and
collaborative forms. (3) Being able to adapt to real-time In-
ternet characteristics and the system parameters to achieve
efficient utilization of these interfaces. (4) Providing users
with incentives for sharing their bandwidth. (5) Leveraging
incremental adoption and deployment to further enhance
performance gains.

We evaluate OSCAR via implementation on Linux Operat-
ing System and show its ability to increase the overall system
throughput while achieving its cost and energy efficiency tar-
gets. Results show that, with no changes to the current In-
ternet architecture, OSCAR reaches the throughput upper-
bound, providing up to 150% enhancement in throughput
compared to the current Operating Systems without any
change to legacy servers. Our results also demonstrate OS-
CAR’s ability to maintain cost and the energy consumption
levels in the user-defined acceptable ranges.

2. SCENARIO AND SYSTEM OVERVIEW

When John is having a meal in a food court, or waiting for
the train at the station, he watches youtube videos, listens
to podcasts, and uses Facebook to get his social network
feeds; using his tablet equipped with WiFi, Bluetooth, and
3G interfaces. John connects to the congested free WiFi
hotspot because 3G roaming charges are too expensive. All
the data for the above applications go through this heav-
ily congested interface, leading to a very unpleasant expe-
rience. Meanwhile, Mark and Alice, who are sitting next
to John, are using a flat-rate 3G plan and a private WiFi
hotspot subscription, respectively. John’s experience can be
greatly improved by scheduling different applications’ traf-
fic through his available network interfaces using these un-
derutilized connections of Mark and Alice. Figure 1 depicts
such a scenario, based on OSCAR, in which John’s scheduler
directly uses the expensive 3G only for light weight impor-
tant data, while leveraging underutilized bandwidth from
his neighbors using his bluetooth and WiFi interfaces.

Figure 1 shows that we have five communicating entities in
our scenario. Firstly, client devices equipped with multi-
ple network interfaces varying in their available bandwidth,
energy consumption rates, and cost per unit data. Each in-
terface has different paths to the Internet, either directly or
through neighboring client devices sharing their connectiv-

Currently, researchers focus on exploiting all the available in-
terfaces on mobile devices in both solitary and collaborative
forms [3]. In the solitary form, they aim to exploit Internet
connectivity on any of the available interfaces by distributing
application traffic across them to achieve higher throughput
and/or minimize energy consumption [2, 5, 6]. In the collab-
orative form, the goal is to have mobile devices utilize their
neighbors’ potentially under-utilized bandwidth in addition
to their own direct Internet connections. These approaches
either deal with a small scale collaborative community man-
aged by a single authority [9], or utilize proxy servers to
handle and guarantee such collaboration [8]. Overall, solu-

Figure 1: OSCAR scenario.
ity options. Secondly, a virtual bank representing a trusted
third party that handles payment or sharing reputation in-
centive mechanisms between client devices. Thirdly, legacy
servers which are typical non-modified Internet servers.
When communicating with these servers, OSCAR traffic
schedulers residing on clients use a connection-oriented mode
to schedule different connections to the available paths where
a TCP connection can be assigned to only one path. Fourthly,
connection resume-supporting legacy servers, such as
HTTP servers that support resuming the connections. OS-
CAR leverages these servers to enhance the performance by
switching to a packet-oriented mode, where each packet or
group of packets can be independently scheduled on a dif-
ferent path. Finally, OSCAR-enabled servers, represent
servers that may adopt and run OSCAR in the future, to
help clients with highly efficient packet-oriented scheduling.

3. OSCAR SCHEDULER
3.1 System Model
We assume a mobile device with m different paths to the
Internet. Each path represents a way to connect to the
Internet either by using the Interface’s direct connectivity
or by using the interface to communicate with one of its
neighbors sharing its Internet connectivity. Each of those
paths has its effective bandwidth bj and cost per unit data
cj , which can be the service provider usage cost or the cost
paid to the neighbor to use their connectivity. In addition,
each path uses one network interface and it has an energy
consumption rate aj , where aj equals the difference in power
consumption between the active and idle states of the used
interface. The data rate of each path interface is denoted
as rj . The device runs a set of connections that share these
interfaces and varies in their characteristics.

Our scheduling unit is a connection or a packet. We refer to
a standard network connection as a stream to avoid confu-
sion with the scheduling unit. Scheduling decisions are taken
when a new stream (number of streams active in the system
is n, including the new stream) is requested from an appli-
cation. OSCAR automatically determines whether the op-
eration mode is connection-based (Sn = 1), or packet-based
(Sn = 0) when the other end is OSCAR-enabled or supports
the resume mode. In the former case, the scheduler’s goal
is to determine to which path it should be assigned (sets
xnj = 1 for only one path j). In either case, the percent-
age of packets to be assigned to each path, i.e. paths rela-
tive packet load (wj), should be re-calculated based on the
current system load (L). Our OSCAR scheduler has three
modes of operation based on user preferences: (1) through-
put maximization, (2) energy minimization, and (3) cost
minimization. Due to space constraints, we only present a
brief overview of the throughput-maximization mode and
refer the readers to the accompanying technical report [4]
for detailed description of the three modes of operation.

3.2 Optimal Scheduling
In this section, we provide a brief overview of our throughput-
maximization scheduling mode. The decision variables are:
(1) If Sj = 1, which path to assign the new stream n to (vari-
able xnj) and (2) the new values for wj , ∀j : 1 ≤ j ≤ m.
The scheduler’s goal is to maximize the system throughput
under certain energy and cost constraints.

Objective Function: The objective of the scheduler at any
decision instance is to maximize the overall system through-
put (T) which is equivalent to minimizing the time needed
to finish the whole system load. The objective function can
be written as follows:

= Minimize max
j

(∑n
i=1

(Li (1− Si)wj) +
∑n

i=1
(LiSixij)

bj

)

Where the left summation represents the packet-oriented
mode load (each term, Li (1− Si)wj , is the number of bytes
from the packet-oriented stream i load assigned to path j)
and the right summation is the connection-oriented mode
load. Note that any stream i will be either connection-
oriented (Si = 1) or packet-oriented (Si = 0) and thus will
appear in only one of the two summations. Dividing the
sum of two loads by the available bandwidth on that path
(bj) gives the time needed for path j to finish its load.

Constraints: The following constraints must be satisfied:
(1) To maintain the cost efficiency, the average cost per unit
data should not exceed the threshold set by the user; (2) To
maintain the energy efficiency, the average energy consumed
per unit data should not exceed the threshold set by the
user; (3) For a new connection-oriented stream, it should be
assigned to only one path; and (4) For the available packet-
oriented streams, their total load should be distributed over
all paths. we omit the mathematical formulation of these
constraints due to space constraints

Solution: In general, this problem is a mixed 0-1 Integer
Programming problem, which is an NP-complete problem.
However, it has a special structure that allows for an efficient
solution. In particular, we have two cases: if the new stream
that triggered the scheduling decisions is packet-based (Sn =
0) and if it is connection-based (Sn = 1). In the former
case, xnj = 0∀j. The problem becomes a standard linear
programming problem. Hence, it can be solved efficiently to
determine the different values of wj . In the later case, we
need to determine the binary variables ∀jxnj such that only
one of them equals 1 and others are 0. Our algorithm sets
each one of them to 1 and then solves the resulting linear
programming problem to find ∀jwj . The value that achieve
the best objective is then selected as the optimal decision.

4. PERFORMANCE EVALUATION
In this section we evaluate the performance of OSCAR via
implementation on Linux Operating System using the Click
modular router[7]. To evaluate the performance of OSCAR,
we use a testbed that consists of six nodes: an OSCAR-
enabled server, two legacy servers with only one of them
supporting the resume functionality, a main client, a neigh-
boring device sharing its bandwidth, and a traffic shaper,
which connects the clients (the client device and the neigh-
boring device) to the servers. Both clients are enabled with
multiple network interfaces. On the main client, we run
different applications that vary in terms of the number of
connections per second they open (β), the average connec-
tion data demand (λ). The client is connected to the traffic

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

M
bp

s)

Percentage of streams with OSCAR-enabled servers (%)

IF1

IF2 (Current OS)

Through Neighbor (IF3)

XPUT Bound
OSCAR (α = 15%)
OSCAR (α = 0%)

 0

 0.01

 0.02

 0.03

 0 20 40 60 80 100

C
os

t (
$/

M
b)

Percentage of streams with OSCAR-enabled servers (%)

IF1

IF2 (Current OS)

Through Neighbor (IF3)

OSCAR (α = 0%)
OSCAR (α = 15%)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

E
ne

rg
y

(m
J/

M
b)

Percentage of streams with OSCAR-enabled servers (%)

IF1

IF2 (Current OS)

Through Neighbor (IF3)

OSCAR (α = 0%)
OSCAR (α = 15%)

(a) Throughput (b) Cost (c) Energy
Fig. 2: Impact of changing the percentage of streams with OSCAR-enabled servers (γ).

shaper node through two interfaces: IF1 and IF2. It is con-
nected to the neighboring device via IF3 at the client and
IF4 at the neighbor. The neighboring device is connected
to the traffic shaper through IF5. The neighbor shares its
available bandwidth with incentive cost of 0.03$/Mb. Each
server is connected to the traffic shaper using a single high
bandwidth link (L). We note that the combined bandwidth
of IF1, IF2 and IF5 is less than each server bandwidth to test
the true impact of varying the interface characteristics and
scheduling strategies. We define γ ∈ [0, 100] as the percent-
age of connections that have the OSCAR-enabled servers as
their destination. When γ = 0, all connections are with
legacy servers, when γ = 100 all the connections are with
OSCAR-enabled servers. Table 1 summarize the character-
istics of the interfaces used in our evaluation.

We evaluate OSCAR using two classes of applications: browsers
(λHTTP = 22.38KB) and FTP applications (λFTP = 0.9498MB).
The connection establishment rate follows a Poisson process
with mean (β) connections per second (βHTTP = 13 con/sec,
and βFTP = 1 con/sec).

4.1 Results
In this section, we evaluate the performance of OSCAR us-
ing three metrics: throughput, energy consumption per unit
data, and cost per unit data. We vary both the the per-
centage of connections with OSCAR-enabled servers (γ) adn
the percentage of resumable connections (α). We compare
OSCAR against the theoretical throughput upper bound.
Figure 2 shows the effect of increasing the percentage of
streams established with OSCAR-enabled servers (γ) on the
performance of the OSCAR scheduler for different values of
α (the percentage of resumable streams to legacy servers).
We set the energy consumption and cost limits to their max-
imum limits (131.36 Joule/Mb and 0.03 $/Mb respectively)
to highlight the throughput gains that can be achieved by
OSCAR. Based on Figure 2(a), we share the following obser-
vations: (1) Even when γ = 0 and α = 0 (i.e. only working
with legacy servers with no resume support), OSCAR can
enhance the throughput by 150% as compared to the cur-
rent OSs. (2) When γ and α are low, most of the streams
are connection-oriented, rendering the scheduling decision
coarse grained; once the stream is assigned to a path, all
its packets have to go through this path until termination.
This reduces the scheduling optimality. (3) For α = 0%,

Table 1: Experimental Interfaces Characteristics.

Network Power Cost D. Rate BW
Interface (mWatt) ($/Mb) (Mbps) (Mbps)
IF1 (WiFi) 634 0 11 1
IF2 (3G) 900 0.02 42 2
IF3 (Blue.) 95 0 0.7232 0
IF4 (Blue.) 95 0 0.7232 0
IF5 (WiFi) 726 0 11 1

the system reaches its throughput upper bound when we
have only 30% of the streams connecting to OSCAR-enabled
server (γ = 30). (4) This need of OSCAR-enabled servers
decreases as α increases, till it reaches 0% when α = 35%.

Figure 2(b) shows that OSCAR significant increase in through-
put comes with even better cost for the user. This can be
explained by noting that the current OSs use the interface
with the maximum throughput, which happens to be the
costly 3G interface in our case. OSCAR, on the other hand,
mixes the different interfaces, leading to lower cost. In addi-
tion, Figure 5(c) shows, as we relaxed the constraints on the
energy consumption, that OSCAR uses more energy con-
sumption than the current operating systems to achieve its
superior throughput gains.

5. CONCLUSION
We proposed OSCAR, a system that exploits multiple net-
work interfaces on modern mobile devices, and presented an
overview of it as well as its scheduler. We evaluated OSCAR
using our prototype implementation. Our preliminary re-
sults shows that in the throughput maximization mode, we
provide up to 150% enhancement compared to using only
one interface, without any changes to legacy servers.

6. REFERENCES
[1] FCC’s national broadband plan.

http://www.broadband.gov/.
[2] K. Habak, K. Harras, and M. Youssef. OPERETTA:

An optimal energy efficient bandwidth aggregation
system. In IEEE SECON, 2012.

[3] K. Habak, K. A. Harras, and M. Youssef. Bandwidth
Aggregation Techniques in Heterogeneous Multi-homed
Devices: A Survey. ArXiv e-prints 1309.0542, 2013.

[4] K. Habak, K. A. Harras, and M. Youssef. OSCAR: A
Collaborative Bandwidth Aggregation System.
ArXiv:1401.1258, Jan. 2014.

[5] K. Habak, M. Youssef, and K. Harras. DBAS: A
Deployable Bandwidth Aggregation System. IFIP
NTMS), 2012.

[6] K. Habak, M. Youssef, and K. A. Harras. An optimal
deployable bandwidth aggregation system. Computer
Networks, 2013.

[7] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Trans.
Comput. Syst., 2000.

[8] P. Sharma, S.-J. Lee, J. Brassil, and K. G. Shin.
Aggregating bandwidth for multihomed mobile
collaborative communities. IEEE TMC, 2007.

[9] D. Zhu, M. Mutka, and Z. Cen. QoS aware wireless
bandwidth aggregation (QAWBA) by integrating
cellular and ad-hoc networks. In QSHINE. Citeseer,
2004.

