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ABSTRACT
Location-Based Services have become increasingly popular due to
the prevalence of smart devices and location-sharing applications
such as Facebook and Foursquare. The protection of people’s sensi-
tive location data in such applications is an important requirement.
Conventional location privacy protection methods, however, such
as manually defining privacy rules or asking users to make deci-
sions each time they enter a new location may be overly complex,
intrusive or unwieldy. An alternative is to use machine learning
to predict people’s privacy preferences and automatically config-
ure settings. Model-based machine learning classifiers may be too
computationally complex to be used in real-world applications, or
suffer from poor performance when training data are insufficient.
In this paper we propose a location-privacy recommender that can
provide people with recommendations of appropriate location pri-
vacy settings through user-user collaborative filtering. Using a real-
world location-sharing dataset, we show that the prediction accu-
racy of our scheme (73.08%) is similar to the best performance
of model-based classifiers (75.30%), and at the same time causes
fewer privacy leaks (11.75% vs 12.70%). Our scheme further out-
performs model-based classifiers when there are insufficient train-
ing data. Since privacy preferences are innately private, we make
our recommender privacy-aware by obfuscating people’s prefer-
ences. Our results show that obfuscation leads to a minimal loss
of prediction accuracy (0.76%).

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public Policy Issues—Privacy

General Terms
Security

Keywords
location-based services, privacy protection, recommender systems,
prediction

1. INTRODUCTION

.

The popularity of mobile devices such as smartphones and tablets
makes computing and services accessible anytime and anywhere.
In this ubiquitous computing environment, the availability of get-
ting users’ location information prospers an increasing number of
Location-Based Services (LBSs), e.g., MyTracks1, Foursquare2 and
Facebook check-ins.3 LBSs personalise users’ service experience
and enable users to share their location information and personal
tracks to others; however, they introduce location privacy issues at
the same time.

Overexposed location information can lead to many privacy prob-
lems. For instance, exposed users’ location information could be
collected and aggregated with other personal information to profile
behaviour. By combining and analysing the semantic information
of locations, durations of stay and frequencies, important places
such as home and offices can be inferred from the integration of
location information. Krumm et al. [15] show that by analysing
users’ trajectories, their home location can be distinguished within
60 metres. Anonymisation of such mobility patterns may be insuffi-
cient; Terrovitis and Mamoulis [22] show that even for anonymous
users’ trajectories, attackers who have partial knowledge about users
can still identify these trajectories with their owners.

Since some places such as hospitals, political institutions and
religious places have privacy implications on people who have re-
vealed their location there, revealing these places will cause the
disclosure of private facts such as health conditions, political views
or religions. Disclosure of private facts is the main privacy issue
caused by inappropriate location information dissemination.

Although it is possible to manually configure location sharing
rules to prevent inappropriate sharing of data, this may be difficult
for users. Users’ location privacy preferences have been shown to
be context-aware [1], which means they need fine-grained privacy
rules to control their location information exposure. Configuring
appropriate privacy rules, however, is not an easy task for them.
In another study, Sadeh et al. [20] find that users have difficulties
to configure their privacy rules, with settings being only 59% ac-
curate at controlling exposure. The need for expressive rules to
control location sharing is further demonstrated in a survey by Tsai
et al. [24]. It is therefore necessary to help users to articulate and
refine their privacy preferences.

To solve the usability problems, machine learning schemes have
been proposed that can learn from users’ previous privacy deci-
sions and predict their future privacy preferences, thereby reducing
the burden on users. But before such learning tools can train their
models, it is necessary to collect individual users’ privacy decisions

1http://www.google.com/mobile/mytracks
2http://foursquare.com/
3http://www.facebook.com/



in various contexts for a certain amount of time (e.g., several days).
Such model-based machine learning classifiers may not perform
well when the training data are insufficient (the “cold-start” pe-
riod). When there are not enough training data about a new user on
the predictor, or a user enters a new place where he or she has never
been, the prediction accuracy may be low. Meanwhile, users have
to reveal their privacy preference data to the prediction provider in
order to build the models. These preference data contain not only
users’ privacy decisions, but also their presence in corresponding
contexts (e.g., time, location, companion). Users may be unwilling
to share such sensitive data.

Besides predictions based on individual models, predictions based
on crowdsourcing, which uses opinions from a group of users, are
also used to provide privacy preference recommendations. These
crowdsourcing results could be made based on semantic analysis
of locations [23], or activities associated with locations [13]. Since
different users have different privacy preferences even for the same
kind of location, a general recommendation from crowdsourcing
based on the semantic analysis of locations may not be personalised
enough.

Another way to address the prediction of users’ location privacy
preferences is recommendation, where we can use a recommender
as a predictor to provide users with recommendations for location
privacy preferences. Rather than predicting from personal decision
histories, a recommender predicts a target user’s privacy prefer-
ences by using the opinions from other users who are similar with
the target user in terms of privacy preferences. User-user collab-
orative filtering (CF) [19], which is a technique of recommender
systems, has been used successfully for a long time in many areas
including electronic commerce such as Amazon. The assumption
behind the user-user CF recommendation is that users have simi-
lar preferences on some items (e.g., products, movies, and news)
may also have similar preferences on the other items. Thus when
predicting the location privacy preferences for a target user, we can
use the opinions from users who have similar location privacy pref-
erences with the target user as the recommendation.

In this paper, we attempt to apply user-user CF to provide rec-
ommendations of location privacy preferences. Since these recom-
mendations derive from crowdsourcing opinions, the system can
also perform well even if there are insufficient data for new users
during cold-start periods. Meanwhile, as the recommendation are
from users who have similar location privacy preferences to the
target user, the recommendations are personalised. Moreover, we
attempt to minimise the privacy risks of sharing preferences with
a recommender system by obfuscating users’ real location privacy
preferences with fake ratings without losing too much prediction
accuracy. Our contributions are as follows:

• we introduce a recommender based on user-user CF for rec-
ommending location privacy preferences for users and eval-
uate it using real-world data sets;

• we modify the recommender to enhance privacy by obfuscat-
ing preferences, and show that this does not sacrifice perfor-
mance while improving privacy;

• we show that our scheme outperforms the existing state-of-
the-art during cold-start periods.

The rest of this paper is structured as follows. In Section 2 we
present existing work on predicting users’ location privacy prefer-
ences and privacy-aware recommender systems. We describe our
scheme and how we evaluate its performance in Section 3 and 4.
The results of our experiments are presented in Section 5 and we
conclude our work in Section 6.

2. RELATED WORK
Users’ location privacy has always been an important issue since

the introduction of LBSs. Early work [2, 11, 6] focus on using
anonymity to protected users’ location information. Such methods
generate an area which contains the target users’ location and other
users’. By this means, the LBS provider will be prevented from
learning the exact locations of the target user. Apart from protecting
users’ location privacy from servers, users are also provided with
access control mechanisms which enable them to manually choose
to whom they want to share location information.

The usability issues, which cannot be solved by the conventional
protection methods or manual control, still remain. Users’ prede-
fined location privacy rules have a low accuracy to match their deci-
sions when they use LBSs and they also find it difficult to articulate
a lot of privacy rules by themselves [20]. To alleviate users’ burden
of configuring complex privacy rules, machine learning techniques
have been introduced by researchers to predict users’ privacy pref-
erences thereby helping them refine privacy rules or configuring
them automatically. In Online Social Network (OSN) area, Fang
and LeFevre propose a privacy wizard [9] to help users configure
their privacy rules in online social network automatically. They
use an active learning wizard to learn users’ privacy preferences by
asking them questions about different privacy decisions according
to different groups of friends, thereby building a binary classifier
based on the preference model. In the area of location privacy pro-
tection, Sadeh et al. [20] use machine learning methods (e.g., ran-
dom forest) to refine users’ location privacy rules. Results show
that, compared with user-defined rules, the machine learning clas-
sifier can improve the accuracy of the rules.

Besides prediction accuracy, another important metric when us-
ing predictor to automatically configure users’ privacy settings is
how often the prediction overexpose of users’ location information,
which is the privacy leaks caused by the prediction to third parties.
Bigwood et al. compare performances amongst different machine
learning classifiers and predefined settings [3]. They also take into
account the privacy leaks. Their results show that besides higher ac-
curacy, predictions by machine learning classifiers can cause fewer
privacy leaks than predefined rules. To make fine-grained predic-
tions, Bilogrevic et al. propose a system called SPISM [4] which
can semi-automatically predict decisions about location informa-
tion sharing including the granularity of exposure. These model-
based classifiers require a training process and are computationally
expensive compared to the user-user CF recommenders that we in-
vestigate here.

Apart from using individuals’ previous decisions to train mod-
els for prediction, another way to predict privacy preferences is to
garner recommendations through crowdsourcing. Toch proposes a
Super-Ego framework [23] that predicts privacy preferences based
on crowdsourced results. Recommendations are made based on se-
mantic categories of locations and the crowdsourced opinions for
the same semantic category. They also use a user bias factor, which
is a subtraction of the user’s average score from the average score
of the general population, and use it in a linear combination model
to personalise prediction results. Jin et al. [13] propose a system
that allows users to get privacy preference recommendations from
a server to configure their own location privacy rules. The recom-
mendation is made based on the activities happened in the loca-
tions. The results show that recommendations for location privacy
preferences from such a system are helpful to users.

The latest study by Xie et al. [25] introduces recommender sys-
tems using collaborative filtering into the recommendation of lo-
cation privacy preferences. They combine the recommendations
from both user-user collaborative filtering and item-item collabo-



rative filtering. When using recommender systems, however, the
data used by recommenders are highly personalized, which poses
privacy threats to users’ personal information [21]. A number of
research projects protect users’ privacy when using recommender
system by using homomorphic encryption [5] or obfuscating users’
ratings [17, 18]. Polat and Du [18] use randomised response tech-
niques to obfuscate users’ binary ratings and the results show that
by using this method the recommendations are still accurate.

Compared with these previous studies, we here test our recom-
mender on real world data sets and test the performance of user-user
CF during cold-start periods. Moreover, we investigate privacy-
aware predictions and analyse the trade-off between the privacy
level and performance.

3. APPROACH

3.1 Overview
We propose a location privacy recommender based on user-user

CF, which provides users with recommendations for location pri-
vacy preferences. When recommending for a target user, the rec-
ommender uses opinions from other users who have high user sim-
ilarities with the target user, thereby keeping the results person-
alised.

Our scheme contains three stages. First we transform users’ pri-
vacy preferences to ratings and use them to formulate the privacy
rating matrix. Second, when predicting privacy preferences to a
target item for a target user u, we find the group of users who have
high user similarities with u as the neighbours. Finally, we cal-
culate the recommendation from the neighbours and if the result is
higher than the threshold then we take a positive decision as the pre-
diction, and vice versa. In addition, we further modify our scheme
in a privacy-aware way.

3.2 Generating rating vectors
To make recommendations for location privacy preferences, first

we need to transform users’ location privacy preferences to ratings
to different contexts. In recommender systems, users’ opinions are
described as a triple in the form of (user, item,rating), which means
that the user has given a rating to the item. The item could be any-
thing such as movies or books that we want to recommend to users.
The ratings could be continuous (e.g., a number between 0 and 1)
or discrete (e.g., like and dislike, or star ratings from 1 to 5). In our
scheme, in order to apply user-user CF to make location privacy
preference recommendations, we use contexts (i.e., the combina-
tion of location and time) as items and users’ decisions as ratings.
A decision can be positive (sharing) or negative (not sharing), and
we use 1 as a negative rating and 5 as a positive rating.

To formulate the item in the rating triple, we use the combination
of location attributes and the time attributes to describe contexts.
We denote the set of location attributes by L and the set of time
attributes by T . We can then use the Cartesian product of L and
T to represent all the possible combinations of location and time,
which are all possible contexts. We use I to represent the set of
items by:

I = L×T.

A user may have many preferences for the same time and loca-
tion context, and the decision in these preferences may be different.
In user-user CF, each user can have only one rating to an item. For
each user and each item, we therefore use the most frequent deci-
sion for the corresponding context as the rating.

After calculating users’ ratings for items which they have given
decisions, for each user we have a vector to describe his or her

ratings to every item, in the form of (ru,1,ru,2, . . . ,ru,|I|), where ru,i
means the rating of user u to item i. All these rating vectors can be
represented as a matrix formed with individual users as rows and
specific items as columns, where a value denotes the rating of a
user to a specific item.

In Table 1, we give a simple example which has 5 users (from
u1 to u5), 2 location categories (home and leisure) and 2 time slots
(morning and evening). Therefore we have 4 contexts as the items
for users to rate. Each cell represents a user’s location sharing deci-
sion, either positive (P) or negative (N), in the corresponding con-
text. Ratings could be blank if users have not been present in the
contexts, such as the NULL rating of u1 for (leisure,morning).

3.3 Calculating user similarity
Before recommending location privacy preferences of item i for

user u, we need to find the group of users with similar location pri-
vacy preferences with u and aggregate their opinions as the recom-
mendation. This group of users must have rated some items which
u has rated and also have rated item i. To calculate the similarity
between two users, say u1 and u2, we calculate Sim(�u1,�u2), where
Sim() is the similarity function and�u1 and�u2 are the rating vectors
of u1 and u2 respectively. The value range of Sim(�u1,�u2) depends
on the function. In our scheme we use the cosine similarity, which
is calculating the cosine of the angle between �u1 and �u2 in a |I|-
dimensional vector space, as the user similarity function and the
higher the value is, the more similar u1 and u2 are.

Users may have different standards to rate items. For instance,
if a user who usually gives low ratings to items gives a high rating
to a new item, this rating means more significant than a high rating
from another user who always gives high ratings. Normalisation is
thus used to convert rating vectors from different users to vectors
in the same scale when calculating user similarities. In our scheme,
we use the mean centring normalisation [7], which is commonly
used, to normalise the user vectors by subtracting the mean rating
of a user from each rating in the rating vector.

After calculating similarities, we take the n users with the highest
user similarities with u. In recommender systems, the value of n is
application specific. In our scheme we use the n = 8 which causes
the least overexposure in order to take users’ location privacy as
the most important metric. It also has good performance in terms
of prediction accuracy, as we show in Section 5.

Returning to the example described by Table 1, when making
recommendation for u2 about the decision in (leisure,evening), we
get the neighbours which contain u3,u4 and u5, because they give
the same ratings as u2 for the first three items. u1 will not be se-
lected since it has opposite ratings to u2.

3.4 Predicting privacy preferences
As explained above, the neighbours must have enough similarity

with user u and also have ratings for the predicted item. In practice,
the calculation of neighbours might fail; for example, u can be a
new user without any previous decisions or none of the neighbours
having rated item i. Therefore a baseline predictor is necessary
when the recommendation from neighbours fails. We use u’s mean
item rating, which is the mean value r̄u of u’s known ratings, as
the user baseline predictor. If u is a new user without any previous
ratings, then we use the mean rating of predicting item i, which is
the mean value r̄i of item i’s all known ratings from other users, as
the item baseline predictor. Under the extreme circumstance, when
the item baseline predictor fails, which means no one has rated item
i, we use the global mean rating which is the mean value of all
other known ratings as the baseline predictor. The prediction of
baseline predictors would be decimal. Since we use 5 to represent



User (home, morning) (home, evening) (leisure, morning) (leisure, evening)

u1 P N NULL N
u2 N P P ?
u3 N P P P
u4 N P P P
u5 N P P N

Table 1: An example location privacy rating matrix for 5 users and 4 items. Ratings are positive (P), negative (N) or unrated (NULL).
The question mark denotes the context in which a prediction needs to be made: (leisure, evening) for u2.

positive and 1 to represent negative, if the decimal prediction result
is greater than 3, we take the prediction as positive and vice versa.

If the neighbours can be generated successfully, we calculate the
prediction rating for the item i from the neighbours of u. We draw
on the user-based normalised prediction method [7] to make the
recommendation. We denote the prediction for user u for item i by:

r̂u,i = r̄u +
∑v∈Ni(u) wu,v(rv,i − r̄v)

∑v∈Ni(u) |wu,v| .

Ni(u) is the set of user u’s neighbours who have rated item i and
v indicates any user in these neighbours. rv,i is user v’s rating for
item i and (rv,i − r̄v) is the normalised rating by subtracting user v’s
mean rating r̄v. wu,v is the similarity between user u’s and user v’s
normalised rating vectors.

We use the median value between the negative and positive as
the decision threshold θ (θ = 3 in our experiments) and then the
recommendation for item i for user u can be represented as:

Ru,i =

{
negative if r̂u,i ≤ θ
positive if r̂u,i > θ

In our scheme, when r̂u,i = θ , we take the recommendation as
negative. The reason is that this equality means a low confidence
of the recommendation. In our scheme we want to decrease the
overexposure as much as possible thus we take the negative deci-
sion in this instance. In practice, users may have different thresh-
olds for decisions, which means a prediction result might be ac-
ceptable to some users to share their location data. But for some
privacy-sensitive users, they may have higher θ values. We leave
this question about users’ acceptance of recommendations for our
future research. In this paper we assume all the users have the same
threshold.

In the Table 1 example, for user u2 we have the positive subgroup
of neighbours {u3,u4}, whose recommendation for (leisure,evening)
is positive, and the negative subgroup of neighbours {u5}, whose
recommendation is negative. Since all these three users give the
same ratings with u2 for the first three items, their similarities with
u2 are the same. Thus the prediction should be greater than the me-
dian value between negative and positive and we take the positive
recommendation as the decision.

3.5 Obfuscating rating vectors
When using the location privacy preference recommender, users

have to reveal their rating vectors to the recommender. The rec-
ommender could be provided by a third party which is independent
with LBS service providers thereby avoiding the recommendations
being influenced by LBS service providers for their own benefits.
We assume that the third party recommender is semi-honest [10],
which means it follows the procedures of generating recommenda-
tions but also tries to learn more information about users. Since
rating vectors not only describe their ratings to different contexts,
but also mean they have been to the location at a specific time, the

recommender can learn users’ location information from their rat-
ing vectors. When making recommendations based on fine-grained
contexts, some contexts may contain sensitive information. For in-
stance, when users require recommendations for location release
decisions for a new context, they have to send their rating vectors
which may contain previous ratings for sensitive contexts such as
(club, working time) or (friend’s home, night), which should not
be known by the recommender. Since all users’ rating vectors will
be stored for generating recommendation and it is reasonable to
assume that users are matched with their rating vectors, the recom-
mender can record a specific user’s location history. Furthermore
the recommender will become a target for attackers who intend to
steal users’ location information.

In recommender systems, the sensitivity of items is a privacy is-
sue. Ideally we hope a recommender should provide users with
recommendations without knowing what the items are. Homomor-
phic encryption [5] has been introduced to achieve this but it is too
computationally expensive for large data sets in the real world due
to proof of user data validity and the need of a trusted third party.
An alternative approach is to add noise information which follow
a certain distribution into users’ original data. Thus the privacy of
individuals will be protected and the recommendation accuracy can
also be guaranteed because of the certain distribution of the noise.

To enable users to use the recommender in a privacy-aware way,
which means the recommender cannot easily know whether a rat-
ing is a real rating of a user, we obfuscate users’ rating vectors by
introducing fake ratings. The method is based on the work of Polat
and Du [18]. A recommendation with full privacy means the rec-
ommender cannot learn if a rating for an item is real. To achieve
this, for each user, we denote the number of rated items by mt and
a noise factor by α. This provides an upper limit of the number
of fake ratings denoted by mmax = αmt . Then we randomly create
an integer m f between 0 and mmax and m f ∼ U [0,mmax]. Finally
we randomly add m f fake ratings in blank positions of the rating
vector and m f /2 of them are positive ratings and the rest of them
are negative ratings. Since the fake ratings are randomly generated,
their influence on users’ similarity when calculating on plenty of
users should not be significant.

4. EVALUATION
We evaluate our scheme to answer three questions:

1. can our recommender perform as well as model-based ma-
chine learning classifiers with sufficient training data?

2. can the privacy-aware recommender increase the privacy level
of recommendations without too much loss of performance?

3. can our recommender improve the prediction performance
compared with the other two schemes during the cold-start
period?

4.1 Datasets
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Figure 1: Confusion matrix of actual decision and predicted
decision.

We use the LocShare dataset from the CRAWDAD wireless net-
work data archive [16] , which contains real-world user location
privacy preference data. These data were collected both in London
and St Andrews and have been sanitised to protect the privacy of
participants.

Because of the sparsity of samples in London, we only use the
data from St Andrews. We use users’ identifications (N = 40), cate-
gories of location, time when they made location privacy decisions
and the decisions. For the set of location categories, we have:

L= {Food and Drink,Leisure,Retail,Residential,Academic,Library}
and for the set of time slots, we have:

T = {Morning,Noon,A f ternoon,Evening,Night}.
Thus the item set I should be in the form of:

I =L×T = {(Food,Morning),(Food,Noon), . . . ,(Library,Night)}
and cardinality of I (the number of items) is:

|I|= |L| · |T |= 30.

4.2 Metrics
When recommending location privacy preferences, we divide the

data set into training sets and testing sets. A training set is used to
generate the rating matrix and a testing set is used to be compared
with the recommendations. For each location preference in the test
set, we assume all the decisions have not been given. Then we use
the recommendation model generated from the training set to make
recommendations for the user and item.

To compare the actual decision in test sets and the predicted
decision (recommendation) made from the recommender, we use
a confusion matrix as shown in Figure 1 to represent the possible
results.

The first metric is accuracy – how many predictions among all
predictions are successful; that is, the recommendations match users’
actual decisions. According to the confusion matrix, we define the
prediction accuracy as:

Accuracy =
T P+T N

T P+T N +FP+FN
Another metric is the number of privacy leaks – how many pre-

dictions cause the overexposure of users’ location information. When
using recommendations as predictors, there are two types of fail-
ures (i.e., FN and FP). The FN will conceal users’ location in-
formation when they actually want to share and the FP will reveal

users’ location information when they actually want to conceal. In
terms of privacy, the FP is more harmful than FN because the for-
mer will accidentally cause location privacy leaks. Therefore when
comparing different schemes which have similar prediction accu-
racies, the one with fewer privacy leaks is more reliable. We define
privacy leaks as:

Leak =
FP

T P+T N +FP+FN

We implement the recommender in a privacy-aware way by adding
fake ratings, so the performance of recommendations (both Accuracy
and Leak) will be affected. The aim is to provide an acceptable
trade-off between the utility and the privacy level of the recom-
mender. Thus we take the loss of Accuracy and the increase of Leak
caused by fake ratings into account. We also consider the privacy
level of the recommender, which is the probability of preventing
the recommender from observing users’ real ratings.

Note the Leak is different from the privacy level of the recom-
mender. The Leak is the failure caused by the recommender when it
overexposes location information to third parties. The privacy level
of a recommender is the probability of hiding real ratings (either
the truth that a user has rated an item, or the real value of a rating)
from the recommender.

4.3 Methodology
We compare our scheme with existing model-based machine learn-

ing classifiers and crowdsourcing semantic predictions. The former
builds individual models from users’ decision histories and predicts
based on the models it learns. The latter uses the crowdsourcing
opinions from the same semantic category of locations.

First, we test the performance of the recommender with sufficient
training data. We assume that the system has run for a period of
time and every user has provided enough privacy preferences. We
use the classifiers (Naïve Bayes, J48 and Rotation Forest) from [3]
and the crowdsourcing semantic predictors from [23] in our test as
the benchmark. We set the neighbourhood size (n= 8) that can pro-
vide the fewest Leak in our experiment. In the comparison among
our scheme and other methods, we consider both Accuracy and
Leak. We run 100 rounds of experiments and in each round we use
different random seeds to generate 10 subsets. Then we use 10-fold
cross-validation to evaluate the performance.

Second, we test the performance of the privacy-aware recom-
mender by adding fake ratings into the training sets. We test the
influence of different noise factors α on the performance of our rec-
ommender and for each α value we also run 100 rounds of 10-fold
cross-validation tests. We use the performance of the recommender
without noise as the benchmark and with this we can measure the
loss of Accuracy and the increase of Leak.

Finally, we test the recommender with insufficient training data,
to evaluate performance in the cold-start period. We assume the
system has run for a period of time, which means users have al-
ready given enough ratings, and then a new user with little previous
information uses the recommender. In this scenario, the prediction
may be inaccurate for this new user because of the lack of indi-
vidual information. We compare the performance of our recom-
mender with the best performance of model-based classifiers and
the crowdsourcing semantic prediction. For the training sets, every
time we select one user as the new user and remove all the data
of this user from the training sets. Then we increasingly add the
data of the new user by small fractions into the training sets to train
the recommender and classifiers. We use the rest of the data of the
new user as the testing sets. For each user we run 100 rounds and
in each round we use different random seeds to generate the small



fractions of data added into training sets. To simulate the cold-start
period, we start with 1% of the new user’s data and increase it with
1% until 10%. Parameters of our experiments are shown in Table 2.

We use the model-based machine learning classifiers from the
Weka package [12] to implement and the Lenskit recommender
toolkit API [8] to implement the recommenders in our experiments.

5. RESULTS
The results of our experiments meet our expectations. First, user-

user CF recommenders can perform as well as model-based ma-
chine learning classifiers do and better than crowdsourcing seman-
tic prediction does. Second, the privacy-aware recommender will
not sacrifice too much performance to increase the privacy level.
Third, the user-user CF recommender can improve the performance
during cold-start period.

We also tested a recommender in our experiments based on Ma-
trix Factorization [14] (MF), which is known as a more advanced
scheme. It uses gradient descent to learn a matrix factorization and
we use 200 counts of iterations as the stopping condition. We test
the number of latent features from 1 to 20 and our results show that
the number of latent features which can provide the best perfor-
mance is 1. The overall performance and the performance during
cold-start period of MF scheme, however, are worse than the user-
user CF in our experiments.

5.1 Overall performance
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Figure 2: Accuracy and Leak of CF (CF-A has the highest
Accuracy and CF-P has the lowest Leak ), MF, model-based
machine learning classifiers (J48, Naïve Bayes, Rotation For-
est) and crowdsourcing semantic predictions. The CF recom-
mender outperforms crowdsourcing semantic prediction and
MF in terms of both Accuracy and Leak. The Accuracy of us-
ing CF is close to the best performance of model-based machine
learning classifiers and it causes fewer Leak.

When comparing the performances of the user-user CF recom-
mender, MF, model-based classifiers and crowdsourcing semantic
prediction, we consider both Accuracy and Leak. As shown in Fig-
ure 2, the x-axis represents the Leak and the y-axis represents the
Accuracy. We hope the predictor can be as accurate as possible and
meanwhile cause less overexposure, which means a good predictor
is supposed to be on the left-top of the plot.

The performance of crowdsourcing semantic prediction (Seman-
tic) is on the right-bottom. Its Accuracy is 55.68%, which approx-
imates the performance of random guess. It has the most Leak

among all the schemes. The reason of the poor performance of
crowdsourcing semantic prediction may be the fact that different
users have different privacy preferences even for the same context.
A general prediction from crowdsourcing for a semantic category
is not personalised.

Among the machine learning classifiers in our experiments, the
Rotation Forest (RF) performs the best both in terms of Accuracy
and Leak. The performance of J48 decision tree is close to that of
RF. The performance of Naïve Bayes is worse than RF and J48 but
is still better than Semantic. The good performance of the model-
based machine learning technique is expected since in our 10-fold
cross-validation experiment the classifiers can use 90% of the user
data to train models. These models could describe users’ location
privacy preferences comprehensively and are sufficient for the test-
ing data.

Our privacy-aware user-user CF recommender (CF-P, n = 8) has
the fewest Leak (11.75%) compared with all its counterparts, which
means it causes the least overexposure of users’ location informa-
tion. And the Accuracy of our recommender (73.08%) is close to
the RF (75.30%), which is the best performance of the model-based
classifiers in our experiments. We also show the highest Accuracy
(CF-A, n = 22) that our recommender can achieve when using
another size of neighbourhood. The increase of the Accuracy is
not significant (0.43%) however it causes more Leak (increased by
0.78%). The MF has a lower Accuracy (69.77%) and causes more
Leak (15.10%) than CF does.We use two-sample paired t-test as
the significance test for RF and CF, RF and MF, Semantic and CF,
Semantic and MF, and CF and MF. The results show that p < 0.001
for all pairs.
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Figure 3: The change of Accuracy with the increase of neigh-
bourhood size (n). Accuracy increases until n reaches 5 and
changes slightly until n reaches around 18. Then it keeps stable.

As shown in Figure 3 and Figure 4, the performance of the rec-
ommender becomes better with the increase of the neighbourhood
size until it reaches a certain value. After that point, the perfor-
mance keeps stable without significant change. The reason is that
when the neighbourhood size is small at the beginning, the differ-
ence between individual users will influence the recommendation.
As the neighbourhood size increases and more users are selected,
the influence of individual neighbour users will be reduced because
of averaging. If we keep increasing the neighbourhood size, users
with low similarities will be introduced but their contributions to
the group weight (group similarity) are not significant. Thus the
performance of the recommender will not change too much.



Overall performance test Rounds of experiments: 100
Per round: 10-fold cross-validation

Privacy-aware recommender Rounds of experiments: 100
Per round: 10-fold cross-validation
α from 1.0 to 20.0 increases by 0.5

Cold-start test Rounds of experiments: 100
Per round: Iterate each user as the new user
Per user: Add personal data from 1% to 10% increase by 1% to training sets

Table 2: Parameters of three experiments
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Figure 4: The change of Leak with the increase of neighbour-
hood size (n). Leak decreases until n reaches 5 and changes
slightly until n reaches around 16. Then it keeps stable.

The results suggest that our proposed recommender has a close
overall performance to the best performance of model-based ma-
chine learning classifiers and significantly outperforms crowdsourc-
ing semantic predictions. Meanwhile our recommender causes less
overexposure of location information, which makes a more reliable
predictor. The MF scheme, as a more advanced scheme, did not
achieve better performance than user-user CF in our experiments.
Since the number of latent features with the best performance on
our data set is 1, we think that our data set is too small for MF to
find latent features, which leads to its poor performance.

5.2 Privacy-aware recommendations
By adding fake ratings into users’ rating vectors, we prevent the

recommender from learning users’ real ratings. The recommender
can only guess whether an item is really rated by a user with a
certain probability. The more fake ratings we add, the lower the
probability of the exposure of a user’s real rating will be. Mean-
while the performance of the recommender will be influenced by
the added noise. We hope the influence could be controlled within
a certain range.

As shown in Figure 5, the x-axis represents the noise factor α
and the y-axis represents the Accuracy of the privacy-aware recom-
mender. The horizontal dashed line represents the Accuracy of the
recommender without fake ratings. We take the value of α from 1.0
to 20.0. As the α increases, the loss of Accuracy increases (from
0.76% to 5.35%). To evaluate the privacy level of the privacy-aware
recommender, we use the percentage of expected value of fake rat-

ings among all the ratings (
E(m f )

E(mf )+mt
). Since m f ∼ U [0,mmax],

E(m f ) =
mmax

2 = αmt
2 . Therefore we have the privacy level (PL)
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Figure 5: Accuracy of the privacy-aware recommender with dif-
ferent noise factor (α). The dashed line represents the Accuracy
of the recommender without fake ratings. The loss of Accuracy
is minimal (0.76%, α = 1) when α is small. It increases with the
growth of α and reaches 5.35% when α = 20.

α
α+2 . When α = 0, which is the recommender without fake ratings,
the PL is 0, which means the recommender knows that all the rat-
ings in the vector are real and the user has been in the corresponding
contexts. When α = 1.0, the PL is 33.33%, which is at the expense
of only 0.76% loss of Accuracy. Figure 6 shows the increase of
Leak caused by adding fake ratings (from 0.86% to 2.21%). When
α = 20, the theoretical expected fake ratings should be ten times as
true ratings. The length of a rating vector, however, is fixed (|I|=30)
and in our data set the average number of rated items per user is 7.
Therefore the actual number of fake ratings sometimes could not
be its theoretical expected value and that is the reason why the in-
fluence of fake ratings tends to be stable as α increases. It also
means that the increase of attack expense is more significant when
α is small, due to the fixed length of a vector. Here we only anal-
yse attacker’s difficulty of detecting fake ratings in a single vector.
Integrating individual vectors and detecting which items contribute
more than others in the recommendation might be a more powerful
attack method to detect fake ratings and apparently it needs more
computational expenses. We leave this topic for future research.

The results show that by randomly adding fake ratings which
follows uniform distribution, the privacy-aware recommender can
provide higher privacy level at the expense of minimal loss of per-
formance. When the number of users is large enough, the contri-
bution of fake ratings to users’ similarities will become very small
due to their randomness. By this means, individuals’ rating vectors
are obfuscated and their privacy can be protected.

5.3 Cold-start test
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Figure 6: Leak of the privacy-aware recommender with differ-
ent noise factor (α). The dashed line represents the Leak of
the recommender without fake ratings. The increase of Leak
is minimal (0.86%, α = 1) when α is small and reaches 2.21%
when α = 20. Its change with the growth of α is not significant.

50%

55%

60%

65%

70%

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
Training Data (%)

A
cc

ur
ac

y

Type
CF
MF
RF
Semantic

Figure 7: Accuracy of CF, MF, RF and crowdsourcing semantic
prediction during the cold-start period. CF recommender can
provide higher Accuracy than RF (except 4%) until using 6% of
personal data for training. The Accuracy of using CF is higher
than using crowdsourcing semantic prediction. MF performs
slightly worse than CF does.

We compare the performance of CF, MF, RF and Semantic schemes
during the cold-start period. As shown in Figure 7, the x-axis rep-
resents the percentage of the new user’s data added into the train-
ing sets and the y-axis represents Accuracy. From 1% to 5%, CF
has higher Accuracys than RF does, except 4%. After 5%, the RF
has enough data of the new user to train the personal model and
the Accuracy surpasses CF’s. The Semantic scheme has the lowest
Accuracy during the whole period. The addition of the new user’s
data has little impact on the crowdsourcing opinions. MF performs
slightly worse than CF does.

Figure 8 shows the comparison among the Leak of four schemes.
The CF has the fewest leaks during the whole period. Compared
with RF, the Leak of CF is much fewer than the RF’s at the be-

10%

20%

30%

40%

50%

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
Training Data (%)

P
riv

ac
y 

Le
ak

s

Type
CF
MF
RF
Semantic

Figure 8: Leak of CF, MF, RF and crowdsourcing semantic
prediction during the cold-start period. The CF recommender
causes fewer Leak than RF and crowdsourcing semantic predic-
tion during the cold-start period. MF performs slightly worse
than CF does.

ginning of this period. Due to the low influence of the new user’s
data on crowdsourcing opinions, the performance of the Semantic
scheme does not change too much and its Leak are more than the
CF’s. MF performs slightly worse than CF does.

The results show that our proposed scheme can improve the per-
formance of prediction during the cold-start period. This means
when a new comer uses the recommender, the prediction qual-
ity can reach an acceptable level in a shorter period of time. It
also suggests that our scheme can significantly decrease the over-
exposure of location information during the cold-start period, es-
pecially at the beginning. This means that applying user-user CF
recommender to predicting users’ location privacy preferences is
more reliable than using model-based machine learning classifiers
or crowdsourcing semantic prediction. In future work we will con-
sider the design of a hybrid predictor which has the benefits of both
user-user CF and model-based machine learning classifiers.

6. CONCLUSIONS
In this paper, we have proposed a location privacy recommender

by using user-user CF. We test this technique on real-world data sets
and compare its performance with other schemes including, matirx
factorization, model-based machine learning classifiers and crowd-
sourcing semantic prediction. The results suggest that our scheme
outperforms crowdsourcing semantic prediction, both in prediction
accuracy and privacy leaks. With providing fewer privacy leaks,
the prediction accuracy of user-user CF is close to the RF method,
which is the best performance of model-based machine learning
classifiers. During the cold-start period, our scheme shows better
performance both in prediction accuracy and privacy leaks than the
RF scheme does.

We also implement a privacy-aware recommender which enables
users to obfuscate their rating vectors by adding fake ratings. The
results show that the privacy-aware recommender can increase the
privacy level of recommendations at minimal expense of loss of
performance. Due to the randomness of the added noise and their
distribution, this expense will become negligible when the number
of users is high enough.

The results of our experiments suggest that besides using model-
based machine learning classifiers to predict users’ privacy pref-



erences based on their previous decisions, recommendations from
people who have similar privacy decisions can also match users’
future decisions and can keep a low possibility of privacy leaks.
Since recommender systems based on CF have been widely used in
practice and it is less computationally expensive than model-based
systems, it will be more practical to be used to predict privacy pref-
erences in real-world applications. In addition, the privacy-aware
feature makes it reliable.

Our future work is to better understand common users’ accep-
tance of the recommender, we plan to conduct user studies to in-
vestigate under what circumstances they trust the recommenda-
tions from social choices. We are also interested in the question
of whether the form of recommendations (e.g., recommendations
only, recommendations with confidence or reasons) has an impact
on users’ decisions. The expected results will help us make the
recommender more informative for users.

Another direction of future work is to investigate fine-grained
ratings of location privacy preferences. In this paper, due to the
limitation of data sets, we only use two kinds of decisions for shar-
ing or not sharing. Finer-grained scales (e.g., ratings from 1 to 5
with 1 as the interval) might describe users’ preferences more pre-
cisely.
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