Tap to Interact: Towards Dynamically Remixing
the Internet of Things

Darren Carlson
Felicitous Computing Institute
National University of Singapore
13 Computing Drive
Singapore, 117417
carlson@comp.nus.edu.sg

ABSTRACT

The number of networked Smart Devices available in everyday
environments is rapidly increasing; however, many current
devices adopt mutually incompatible networks, protocols, and
application programming interfaces. As such, creating mobile
applications that dynamically discover and integrate ambient
functionality across multiple vertical markets remains challenging.
In this paper, we introduce a novel integration technique that
enables commodity mobile devices (e.g., mobile phones) to
mediate control messaging between incompatible Smart Devices
situated in the user’s environment. The approach enables a variety
of control capabilities and protocol translation services to be
dynamically installed into a user’s mobile device on-demand
using plug-ins. The approach features an intuitive “Tap to
Interact” workflow that allows a user to tap nearby Smart Devices
with a smartphone to install required interaction plug-ins and
automatically “wire” them together in interesting and potentially
unforeseen ways. In our demonstration, we show how this
approach enables a Sphero Robotic Ball to be utilized as a
physical interface for controlling media playback on an Apple TV,
interacting with networked-enabled lighting equipment, and flying
a Parrot AR Drone helicopter — by leveraging a commodity
smartphone as a plug-and-play Smart Gateway between mutually
incompatible devices.

Categories and Subject Descriptors

D.2.11 [Software]: Software Architectures — Domain-specific
architectures; Data abstraction. D.2.12 [Software]:
Interoperability — Distributed objects. D.2.13 [Software]:
Reusable Software — Domain engineering; Reusable libraries;
Reuse models.

General Terms
Management, Design, Experimentation, Human Factors.

Keywords
Ubiquitous Computing; Internet of Things; Control Protocols;
Plug-and-play; Smart Gateways.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

MOBIQUITOUS 2014, December 02-05, London, Great Britain

Copyright © 2014 ICST 978-1-63190-039-6

DOI 10.4108/icst.mobiquitous.2014.258014

376

Max Pagel
Felicitous Computing Institute
National University of Singapore
13 Computing Drive
Singapore, 117417
pagel@comp.nus.edu.sg

1. INTRODUCTION

As the Internet of Things (IoT) expands, the number of networked
Smart Devices available in many everyday environments is
rapidly increasing. Indeed, the estimated 10 billion current Smart
Devices is forecast to eclipse 26 to 100 billion units by the year
2020 [1, 2]. Unfortunately, no universally adopted application-
layer interoperability standards have yet emerged. As a
consequence, it is often prohibitively complex for developers to
create mobile applications capable of dynamically discovering and
interacting with Smart Devices across heterogeneous [oT system
boundaries[3].

To address the challenges of heterogeneous [oT environments, we
are developing Ambient Dynamix [4], a plug-and-play
middleware framework that enables mobile apps and Web apps
[5] to perform rich context sensing and fluid Smart Device
interactions through plug-ins that can be dynamically installed
into the user’s mobile device (e.g., smartphone or tablet).
Dynamix runs as lightweight background service, leveraging the
device itself as a sensing, processing and communications
platform. Dynamix comes with a growing collection of ready-
made plug-ins' and provides open software developments kits
(SDKs) and a scalable repository architecture, which enable 3rd
party developers to quickly create and share new plug-in types
with the community. An overview of the Dynamix Framework is
shown in Figure 1.
\

-

Mobile Device

(Network or File-system)

= —— Web Browser |
Android Application —)
Web Application £ N
Application Logic dynamix.js || listener.js
3 ? : I Plug-in
Metadata
AIDL Facade || AIDL Event }_ REST Facade REST \eeated)
API API API Event API —
. - Embedded Web Server
Dynamix Service ——I
Plug-in
Plug-in Security Sandbox ' (__Content
Capability Manager Context Manager i —
Plug-in, | [Plug-in, ‘PIug-in‘l ‘PIug-innl |
i
i Bootstrap
| T | | I i
————
v (¥ ¥ ¥ —
—‘ Driver ’—‘ Driver ’—‘ Driver DV;:I;‘:):ftz":'egs'"
itori
\f Local Hardware / Platform APIs f/
¥ L3 %

f
v /(*) v AN v /*\
s () o » =
B8 @ E < § O

Home
Automation

Actuator Media Device
Networks Control

Position Telemetry Sensor and
and Motion Data Device State

Figure 1: Overview of the Dynamix Framework

! http://www.ambientdynamix.org

A Dynamix Service is situated between a device’s local hardware
and (potentially many) Dynamix apps. Apps communicate with a
Dynamix Service through easy-to-use application programming
interfaces (APIs), including a Facade API (for requesting and
controlling context support) and an Event API (for receiving
framework notifications and context events). Dynamix
automatically discovers, downloads and installs the plug-ins
needed for a given sensing or control task. When the user changes
environments, new or updated plug-ins can be deployed to the
device at runtime, without the need to restart the framework.

In conventional IoT solutions, mutually incompatible devices are
integrated through the use of Smart Gateways [6], which are
implemented as a dedicated network appliance that serves as a
communication hub and provides protocol translation services. In
previous work [7], we described how Dynamix can transform a
user’s mobile device into an Adaptive Smart Gateway that moves
with the user — providing network access and protocol translation
services between mobile apps and encountered Smart Devices
through plug-ins that can be installed on-the-fly.

In this work, we introduce an extension of our Adaptive Smart
Gateway approach, which enables a Dynamix-enabled device to
serve as a mediator between mutually incompatible Smart Devices
— creating a personalized Smart Space that moves with the user.
To support this functionality, we first developed a set of intra-
plug-in communication features within the Dynamix Framework,
which enables plug-ins to consume the services of other plug-ins.
We then designed a control system library for Dynamix, called
Ambient Control (AC), that can be imported by plug-ins wishing
to participate in control scenarios. The AC Library provides a set
of control commands that define well-known interaction
semantics and associated arguments (e.g., MOVEMENT LEFT,
MOVEMENT UP, DISPLAY COLOR, etcetera). Thirty control
commands have been defined, and more are in development.

Control commands can be associated with a Dynamix plug-in
through a control profile that describes the commands a given
Dynamix plug-in can emit and consume. Control profiles are
registered as XML snippets in an Internet-based registry that can
be queried (e.g., using plug-in identifiers). A controllable plug-in
is responsible for mapping the semantics of its associated control
profile to the behavior of its underlying Smart Device. For
example, the Phillips Hue plug-in changes a light’s color to match
the value contained in incoming DISPLAY COLOR commands
and the AR Drone plug-in changes the helicopter’s pitch, yaw and
roll orientation to match incoming inertial measurement unit
(IMU) data.

A control configuration represents a specific arrangement of one
controllable plug-in (a receiver) and potentially many controlling
plug-ins (controllers). Multiple control configurations can operate
simultaneously within a single Dynamix instance. The AC Library
includes a Smart Wiring feature that optimally matches the inputs
and outputs of the plug-ins in a given control configuration
according to priority values. For example, the AR Drone plug-in
prefers SENSOR IMU commands, but can also accept
SENSOR_AXIS (i.e., joystick) commands if SENSOR IMU is not
available. The AC Library also provides translation between
control commands. For example, the derivative of a single value
sensor (e.g., audio pitch) can be translated to MOVEMENT UP and
MOVEMENT DOWN commands. Finally, the AC Library
coordinates requested control configurations by managing
required plug-in installations via Dynamix, handling the setup

377

handshake process between plug-ins and managing full duplex
communication channels between controllers and a receiver.

2. DEMONSTRATION

Using these new Dynamix features, users can uncover novel
interaction possibilities in many environments by dynamically
remixing encountered IoT resources on-the-fly. To showcase the
potential of this approach, we developed a demonstration® called
Tap to Interact (T2I), which was implemented as a Dynamix
application that utilizes the features of the previously introduced
AC Library. The T2I application enables users to tap mutually
incompatible Smart Devices with a Dynamix-enabled smartphone
in order to “wire” them together in interesting and potentially
unforeseen ways. The plug-ins required to communicate with
tapped Smart Devices are dynamically deployed into the user’s
mobile device during runtime, and control configurations are
automatically generated based on the order of the taps.

The demo consists of a sample environment containing Smart
Devices that expose heterogencous APIs for sensing and/or
control and adopt multiple network access technologies. These
devices include a Sphero Robotic Ball, an Apple TV, Phillips Hue
network-enabled lights, and a Parrot AR Drone helicopter. Radio-
Frequency Identification (RFID) tags are affixed to each device to
enable identification through tapping with a smartphone. Each
Smart Device, along with a Dynamix Device (a stock Samsung
S4), is connected in a home networking configuration, as shown
in Figure 2.

Jol

Dynamix Device

N ((((

L———@—-p—

) Bluetooth I
H (Wil i
L |
(C) I\
L1130
Sphero ARDrone Phillips Hue Apple TV
Robotic Ball Remote Control Helicopter Light System Media Controller

Figure 2: Demo Setup

The above Smart Devices are not inherently compatible; however,
all provide network-available APIs that allow sensing and/or
control. For example, the Sphero supports sensor data streaming
of its IMU data over a Bluetooth connection, which can be used to
determine the current orientation of the robot (the Sphero also
accepts movement and light control commands). The Apple TV
supports data connectivity over WiFi and allows media player
discovery and media device control via the AirPlay protocol. The
Phillips Hue light bulbs automatically form a mesh network using
ZigBee and provide light control (e.g., color and intensity) to
Internet based hosts through a hardware bridge device that
connects directly to a local network switch. Finally, the AR Drone
supports data connectivity over WiFi and accepts flight control
commands that can be used to remotely pilot the drone.

Using the AC Library, we developed Dynamix plug-ins for each
Smart Device within the demo environment. Each Dynamix plug-

2 http://ambientdynamix.org/demos/tap-to-interact

in exposes the underlying features of its associated Smart Device
and bundles all resources required for interacting with it. For
example, the Sphero plug-in bundles the Orbotix Sphero native
Android SDK® and the AR Drone includes the AR Drone SDK*.
Each plug-in also registers a control profile with the registry,
indicating which control commands it can consume and emit.

To begin the T2I demo, the user first taps the Sphero robot using

the ground. As the user changes the pitch, yaw and roll of the
Sphero, its IMU data are sent to the drone plug-in, which maps
them directly to the flight control system of the helicopter —
changing the orientation of the helicopter to match the Sphero.
Gently shaking the Sphero again automatically lands the
helicopter. As shown in Figure 4, Dynamix bridges the network
access technologies and application-layer protocols of all Smart
Devices connected to the smartphone, enabling them to operate

the Dynamix-enabled smartphone, which registers the Sphero as a
general control surface. The plug-in required to control the
Sphero is installed automatically into Dynamix and its associated
control profile is downloaded. Next, the user taps the Apple TV,
which similarly installs its associated plug-in and control profile.
The T2I application establishes a control configuration that wires
the Sphero device as a controller for the Apple TV. Once the
Dynamix AC Library sets up the configuration, the Sphero’s IMU
data are sent to the Apple TV’s plug-in, which maps them to its
media control system. The user can then pick up the Sphero
device and use it as a controller for the Apple TV, as shown in
Figure 4 (top). In this configuration, tilting the Sphero forward
automatically plays a video on the Apple TV, and tilting the
Sphero backwards pauses the video. Rotating the Sphero left and
right shuttles the video backwards and forwards respectively. The
Apple TV plug-in is also automatically wired to the Phillips Hue
plug-in in a feedback configuration, sending DISPLAY COLOR
commands to the Phillips Hue plug-in, which dims the lights
during playback to simulate a home theater scenario. An overview
of this control configuration is shown in Figure 3.

Control . [Tap To Interact]

Orchestration

smart 0T

Wiring l_ _ll l

Control R 5 AR DA

Profiles EE ‘gg ig

Dynamix - T . S

Plug-ins ‘ ‘ ‘ [31.]
loT

Substrate m a

(2]

Sphero Apple TV Phillips Hue

Figure 3: The Sphero/Apple TV/ Hue Control Configuration

Next, the user taps the AR Drone helicopter to install its
associated plug-in and control profile. In this case, the T2I
application establishes a control configuration that wires the
Sphero device as a controller for the helicopter. Once the
Dynamix AC Library sets up the configuration, the Sphero’s
acceleration and IMU data are sent to the AR Drone plug-in,
which maps them to its flight control system. The user can then
pick up the Sphero device and use it as an intuitive flight
controller for the helicopter, as shown in Figure 4 (bottom). In
this configuration, when the user shakes the Sphero gently
(causing an impact acceleration), the AR Drone plug-in initiates
flight and hovers the helicopter approximately one meter above

(5]

(6]

(7]

3 https://github.com/orbotix/Sphero-Android-SDK

4 https://projects.ardrone.org/projects/show/ardrone-api

378

together in ways not previously possible.

YAmbient Dyna

Plug-and-play Context Framework

Figure 4: A Sphero Controlling an Apple TV (Top) and a
Drone Helicopter (Bottom) using a Dynamix-enabled Mobile

Phone as an Adaptive Smart Gateway

REFERENCES
P. Middleton, P. Kjeldsen and J. Tully, Forecast: The
Internet of Things, Worldwide, 2013, Gartner, Inc., 2013.

C. MacGillivray, V. Turner and D. Lund, Worldwide Internet
of Things (IoT) 2013-2020 Forecast: Billions of Things,
Trillions of Dollars, IDC Corporate, 2013.

M. Blackstock and R. Lea, “IoT Mashups with the WoTKit,”
Proc. International Conference on the Internet of Things
(IoT 2012), IEEE, 2012.

D. Carlson and A. Schrader, “Dynamix: An Open Plug-and-
Play Context Framework for Android,” Proc. International
Conference on the Internet of Things (IoT 2012),2012.

D. Carlson, B. Altakrouri and A. Schrader, “AmbientWeb:
Bridging the Web’s Cyber-physical Gap,” Proc.
International Conference on the Internet of Things (loT
2012),2012.

D. Guinard, V. Trifa and E. Wilde, “A Resource Oriented
Architecture for the Web of Things,” Proc. International
Conference on the Internet of Things (IoT 2010), IEEE
Computer Society, 2010, pp. 1 - 8.

D. Carlson, B. Altakrouri and A. Schrader, “An Ad-hoc
Smart Gateway Platform for the Web of Things.,” Proc.
IEEE International Conference on Internet of Things
(iThings 2013), IEEE Computer Society, 2013.

