
ThingsNavi: Finding Most-Related Things via
Multi-Dimensional Modeling of Human-Thing Interactions

Lina Yao, Quan Z. Sheng, and
Nickolas J.G. Falkner

School of Computer Science
The University of Adelaide

Adelaide, SA 5005, Australia
{lina, qsheng, jnick}@cs.adelaide.edu.au

Anne H.H. Ngu
Department of Computer Science

Texas State University
601 University Drive, San Marcos, USA

angu@txstate.edu

ABSTRACT
With the fast emerging Internet of Things (IoT), effectively and ef-
ficiently searching and selecting the most related things of a user’s
interest is becoming a crucial challenge. In the IoT era, human
interactions with things are taking place at a new level in ubiq-
uitous computing. These interactions initiated by humans are not
completely random and carry rich contextual information. In this
paper, we propose a things searching approach based on a hyper-
graph, called ThingsNavi, where given a target thing, other related
things can be found by fully exploiting human-thing interactions
in terms of multi-dimensional, contextual information (e.g., spatial
information, temporal information, user identity). In particular, we
construct a unified hypergraph to represent the rich structural and
contextual information in human-thing interactions. We formulate
the correlated things search as a ranking problem on top of this
hypergraph, in which the information of target things can be prop-
agated through the structure of the hypergraph. We evaluate our
approach by using real-world datasets and the experimental results
demonstrate its effectiveness.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services; H.4.0 [Information Systems]: General

Keywords
Internet of Things, things discovery, hypergraph, ranking

1. INTRODUCTION

(e.g., suggesting a device that can consume a video stream), and
things mashup (e.g., composing device functionalities for a new
service) [24, 25].

Given a target thing, searching its relevant counterparts still re-
mains a challenge due to the specific natures of things in IoT. We
summarize the main obstacles as follows:

• Lack of uniform features. Things are diverse and heteroge-
neous in terms of functionality, access methods or descrip-
tions. Some things have meaningful descriptions while many
others do not [4, 24]. As a result, it is quite challenging
to discover the explicit relationships among heterogeneous
things. Things cannot be easily represented in a meaning-
ful feature space. They usually only have very short textual
descriptions and lack a uniform way of describing the prop-
erties and the services they offer [7].

• Lack of structural interconnections. Correlations among things
are not obvious and are difficult to discover. Unlike social
networks of people, where users have observable links and
connections, things often exist in isolated settings and the ex-
plicit interconnections between them are typically limited [23].

With the development of ubiquitous computing, and recently
IoT, human-thing interactions can be easily recorded and obtained.
These interactions are not completely random and carry rich infor-
mation that can be mined and utilized [16]. Our study builds on
the theory of homophily from the field of social networks, which
implies that people with similar characteristics tend to form rela-
tionships [10]. Then, the presence of relationships among people
can be used to infer their similarities. Moreover, the stronger the
tie, the higher the similarity. This inference is particularly use-
ful when characteristics of people are not directly observable or
incomplete. We advocate that the homophily principle applies to
things as well, that is, things with strong interactive relationships
tend to have strong correlations. For example, kitchenware is more
frequently used during dining times and has higher likelihood to
stay together in a kitchen or dining room.

In this paper, we propose a unified hypergraph to represent the
various entities and heterogeneous relationships in collection of
things usage events. A hypergraph is a generalization of the or-
dinary graphs, where its edges, also known as hyperedges, are ar-
bitrary non-empty subsets of the vertex set [26, 2]. With our hyper-
graph modeling, the vertices represent various types of entities in
human-thing interactions (e.g., people, things, temporal and spatial
information etc.), and the hyperedges represent heterogeneous rela-
tions among entities via connecting arbitrary subsets of vertice. In
this way, we not only incorporate heterogeneous relationships, e.g.,
the friendships between users or similarities between locations, but

The Internet of Things (IoT) will connect billions of things, which
offers the capability of integrating the information from both the
physical world and the virtual world. With IoT, it becomes possible
to infer the status of real-world entities (i.e., things) with minimal
delay [17, 22]. With many things connected and interacting over
the Internet, there is an urgent need to effectively manage things,
which is critical for a number of important applications such as
things discovery (e.g., finding a quiet restaurant), recommendation

also utilize the users’ historical interactions on things collections.
Based on this unified hypergraph, we also develop an algorithm to
rank related things according to a query by propagating the infor-
mation of the target thing through the structure of this constructed
hypergraph. The main contributions of this paper are three-fold:

• We integrate the multi-dimensional, contextual information
of human-thing interactions into a unified hyper graph, in-
cluding a thing and its identity information (users), temporal
information (time stamps) and spatial information (location),
without information loss.

• The only data sources used in our approach are things us-
age events, which are captured from users’ interactions with
things. They are comparatively easy to obtain with recent
development of sensing technology and related ubiquitous
techniques.

• We conduct comprehensive evaluations of our proposed ap-
proach using real-world datasets, including one dataset col-
lected from our testbed and the CASAS datasets from Wash-
ington State University. The experimental results demon-
strate the feasibility of our approach.

The remainder of the paper is organized as follows. We review
some existing work related to this paper in Section 2. Section 3 de-
fines related concepts and formulates the research problems. Sec-
tion 4 describes the technical details of our ThingsNavi approach.
We present our evaluation results in Section 5. Finally, some poten-
tial application scenarios of our proposed approach are highlighted
in Section 6 and concluding remarks are given in Section 7.

2. RELATED WORK
Searching things (objects) is a key service in ubiquitous environ-

ments, such as the emerging Internet of Things (IoT) and smart en-
vironments. However, effectively searching things is significantly
more complicated than searching for documents because things are
tightly bound to contextual information (e.g., location) and are of-
ten changing from one status to another. In addition, things do not
have easily indexable properties, unlike human-readable texts in
the case of documents.

Much like the traditional Web search, things search can be real-
ized by exploiting keyword-based methods, like Microsearch [20],
and Snoogle [22]. But the accuracy of these methods is not satis-
fying due to the insufficient content features of ubiquitous things.
Another mainstream solution to search in a ubiquitous computing
environment is via semantic Web related techniques. For example,
Mitetz et al. [11] present a scalable semantic-based search model
for Internet of Things. Perera et al. [15] propose a middleware for
sensor search based on users’ priorities and other characteristics of
sensors (e.g., reliability and accuracy). GSN [1], Microsoft Sen-
sorMap [12] and linked sensor middleware [8] support search for
sensors based on textual metadata that describes the sensors (e.g.,
type and location of a sensor, measurement unit, object to which
the sensor is attached). Such metadata is often manually entered
and then can be searched based on keywords. There are efforts
to provide a standardized vocabulary to describe sensors and their
properties such as SensorML1 or the Semantic Sensor Network On-
tology (SSN)2. Unfortunately, these ontologies and their use are
rather complex. Moreover, it is problematic for end users to pro-
vide correct descriptions of sensors and their deployment context

1http://www.opengeospatial.org/standards/sensorml
2http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

without the help from experts. In other words, these types of so-
lutions require expertise knowledge, e.g., define the descriptions of
things and their corresponding characteristics under a uniform for-
mat such as Resource Description Framework (RDF). Furthermore,
none of these solutions considers the rich information derived from
user’s historical interactions with things.

Alternative approaches for searching things are based on search-
by-example. The work in [21] adopts this approach to sensors, i.e.,
a user provides a sensor, respectively a fraction of its past output
as an example, and requests sensors that produced similar output in
the past. Ostermaier et al. [14] propose a real-time search engine
for Web of Things, which allows searching real-world entities hav-
ing certain properties. They associate a Web page to a real-world
entity (e.g., a meeting room) containing additional structured meta-
data about the sensors connected to it. This method exploits the in-
formation of historical data, but does not consider the relationships
among contextual information of things. Maekawa et al. [9] pro-
pose a context-aware Web search in ubiquitous environments, and
Yao et al. [23, 24] construct the models that capture the pairwise
relations between things via mapping the contextual information
into separate graphs. However, complex relationships between het-
erogeneous objects can not be captured in these approaches. In
addition, some useful information may not be maintained during
the graph construction process.

Compared with the related work mentioned above, our proposed
approach, to be detailed next, has two obvious advantages. First
of all, the only data source needed in our approach is the interac-
tions between users and things. These interaction events are easy
to obtain with recent development of sensor networks and radio
frequency identification (RFID) technology. Secondly, we solve
things searching problem by extracting the underlying relations
among ubiquitous things and their interconnections. The under-
lying relations are captured via mining the rich information hidden
in the human-thing interactions.

3. PROBLEM STATEMENT
The only data source used in our work is the interactions be-

tween humans and things, namely things usage events. Each event
happens when a person interacts with a particular thing. Each usage
event record is a quartuple of <ThingID,UserID, T imestamp,
Location> as described in the following.

DEFINITION 1 (THINGS USAGE EVENT). Let T = {t1, . . . ,
tn}, U = {u1, ..., um}, I = {i1, ..., ip} and L = {l1, ..., lq}
represent the set of things, users, timestamps and locations, re-
spectively. A usage event of a thing t, denoted by r ∈ R =
{r1, ..., ri} = {< t, u, i, l > |t ∈ T ∧ u ∈ U ∧ i ∈ I ∧ l ∈ L},
indicates that user u used thing t located in a specific location l at
timestamp i.

Our goal is to model the various relationships in things usage
events R, and to make prediction of correlations amongst things,
denoted as a query vector yi. Our research goal can be formally
formulated as Problem 1.

PROBLEM 1 (THINGS SEARCHING PROBLEM). Given a hy-
pergraph HG(V, E ,W), where V is the set of nodes and E is the
set of hyperedges, W are the weights of hyperedges. Each node in
V represents an entity in things usage events including users, time
intervals, things and locations. Each hyperedge represents the rela-
tions between entities. Given a query node indicating thing v ∈ V ,
our proposed method can provide a ranked list of nodes in V as the
most relevant things measuring by relatedness scores.

Figure 1: Overview of ThingsNavi

To solve this research problem, there are two sequential subprob-
lems that need to be solved, defined as Subproblem 1 and Subprob-
lem 2 respectively.

SUBPROBLEM 1 (MODELING). Given a collection of things
usage events R, construct a hypergraph-based model HG, repre-
senting the heterogeneous entities and their complex relationships
across and within the entities.

SUBPROBLEM 2 (RANKING). Given the constructed hyper-
graph HG, learn a ranking function that can produce a list of re-
lated things for each target thing.

Ideally, a solution should be robust in capturing and reflecting
the hidden patterns in usage events, and also be efficient in ranking
the candidates. In the rest of the paper, we will focus on introducing
our proposed approach, ThingsNavi.

4. OUR APPROACH
Our proposed solution can be decomposed into two stages: i) the

descriptive stage and ii) the predictive stage. The first stage aims
at embracing the multiple relationships in things usage events and
in particular, we propose a hypergraph to model the heterogeneous
entities and relations of things usage events (corresponding to Sub-
problem 1). In the second stage, we infer a list of most related
things given a querying thing by developing a ranking algorithm
on top of the descriptive model built at stage 1 (corresponding to
Subproblem 2). In this section, we will describe our proposed ap-
proach in details and Figure 1 depicts the high level overview of
ThingsNavi.

4.1 Subproblem 1: Modeling
We first introduce the motivations behind using a hypergraph to

model things usage events, and then describe how to realize the
modeling task defined in Subproblem 1.

4.1.1 The Intuitions
As mentioned before, a thing usage event is a four-element tuple

containing object, user, timestamp, location, which means there are

four types of entities and multiple relationships across these enti-
ties. We summarize three major challenges in order to exploit and
model such rich information from the usage events:

• How to model heterogeneous relations with minimized infor-
mation loss. The various entities and relations make it dif-
ficult to develop a unified framework taking into account all
things and relationships. For example, there are three types
of contextual attributes in things usage events. To illustrate
their relations with things, we generally need to construct
three separate graphs, e.g., a user-thing graph, a location-
thing graph, and a time-thing graph. However, dividing mul-
tiple relationships into separated graphs can cause non-trivial
information loss.

• How to model high-order relationships. There exist some
relations which are more complex, and it will cause informa-
tion loss if simply being modeled using low-order modeling
approach, e.g., using pairwise similarity based graphs or tra-
ditional multivariate regression methods. In addition, a pair-
wise relation between two nodes is only based on their own
characteristics. If one of them is corrupted, their relation will
be broken down as well. As a result, the relations between
pairwise nodes are not stable.

• How to reveal latent connections. The complicate dependen-
cies among a variety of entities make it hard to detect a latent
relationship between entities. For example, although the us-
age frequency of things t1 and t3 being used together falls
below some threshold, they might actually be meaningfully
related. Let us say <t3, t2> are used together frequently,
and <t1, t2> are also used frequently together. The pres-
ence of t2 actually provides some possible latent connection
for <t1, t3>, which needs to be uncovered.

Conventional graphs can only overcome these obstacles partially.
It is difficult to fully capture the heterogeneous and complex re-
lations in things usage events by using conventional graphs. For
instance, the underlying cross-entity relationships in things usage
events usually have richer structures than conventional graphs can
contain. Figure 2 (a) shows a simple example to compare the sce-
narios of using a conventional graph (left) and of using a hyper-
graph (right) to model user interactions on things. In this exam-
ple, both user u1 and user u2 access a thing t1. The conventional
graph obviously can not capture this connection. For example, to
show user u1 and u2’s relationships with t1, we need two edges
<u1, t1> and <u2, t1>. We can not get the relationship between
u1 and u2 on whether they access the same thing. However, the hy-
pergraph can tackle this problem and fit this scenario naturally due
to its edge can contain any number of arbitrary nodes. The hyper-
edge < u1,u2, t1 > clearly demonstrates the relations among the
entities. Figure 2 (b) shows one thing is highly possible to be ac-
cessed by multiple persons during a specific time frame. The con-
ventional graph (left) describing binary correlations can not capture
this high-order relations, on the other hand, the hypergraph (right)
can accomplish this complex relations naturally.

4.1.2 Hypergraph Overview
As a generalization of the conventional graphs, a hypergraph can

address challenges mentioned above (as demonstrated in Figure 2).
The fundamental idea is to explore the underlying similarity rela-
tionships among vertices via constructing a hypergraph with vari-
ous hyperedges to capture the high-order and complex similarities.
Hypergraphs have been extensively explored in recommendation
[3] and multi-label classification [19].

Figure 2: Illustrative example of hypergraph vs. conventional
graph on modeling things usage events for unified relations and
high-order relations: (a) the conventional graph (left) in which
a pair of user and thing is connected if the user accessed this
thing. This graph can not reflect whether the graph measures
pairwise relations, e.g., < u1, t1 > and < u2, t1 >, and the hy-
pergraph (right), where each hyperedge can contain any num-
ber of arbitrary nodes to exhibit more complex relations, e.g.,
hyperedges can be written as < u1, u2, t1 > (ellipse shadow),
from which we know both users < u1, u2 > access t1; (b) the
conventional graph (left) in which two things can be connected
if they are accessed by a same user, but it can not tell whether
this thing is accessed by other users, and the hypergraph (right)
can reasonably represents this complex relations.

Let HG(V, E ,W) be a weighted hypergraph with the vertex set
V = U ∪ T ∪ L ∪ S and the set of hyperedges E . A hyperedge e
is a non empty subset of V where ∪e∈E = V , W : E → R

+ is the
hyperedge weight. The hypergraph is said to be connected when
there is a path between each pair of vertices. A path is a connected
sequence of vertices over hyperedges {v1, e1, v2, e2, ..., ek−1, vk}
where {vi, vi+1} ⊆ ei. A hyperedge e is said to be incident with v

when v ∈ e. A hypergraph has an incidence matrix H ∈ R
|V|×|E|

and each entry h(v, e) is defined as follows [3, 26]:

h(v, e) =

{
1 if v ∈ e

0 if v /∈ e
(1)

So, the degree d(v) of vertex v and the degree δ(e) of hypergraph
degree e are defined as follows:

d(v) =
∑
e∈E

W(e)h(v, e)

δ(e) =
∑
v∈V

h(v, e) = |e|
(2)

where W(e) is the weight of the hyperedge e, and δ(e) is the num-
ber of vertices in e. We use De and Dv to denote the diagonal
matrices of the degrees of hyperedges and vertices, respectively.

Figure 3: Illustration of relationships representation via con-
structing a hypergraph from things usage events. There are
four types of entities in things usage events including things
T , users U , locations L and timestamps I. Nine types of re-
lations include friendship relations EUq

, location correlations
ELp

, things textual correlations ET k

relations of things usage
with different contextual attributes, e.g., ET T U , ET T I , ET T L,
EUUT , EIIT , and ELLT .

4.1.3 Unified Hypergraph Modeling
In this section, we describe the construction of a unified hy-

pergraph to model the rich contextual information in things usage
events. Figure 3 depicts how we map the entities and extracted
relations as a unified hypergraph.

A hyperedge in our things usage hypergraph can be a set of ver-
tices with either the same type or different types of relationships.
The former kind of hyperedges capture the relationships among
the same type of objects, while the latter capture the relationships
across different types of objects. Things usage events consist of
four types of entities. Let U denote the set of users, T denote the
set of things, I denote the set of timestamps and L denote the set of
locations. In our data model, we formalize a hypergraph HG that
contains six different implicit and complex relations with different
entities, namely external relationships across entities. Another two
high-order relationships are constructed within two types of enti-
ties including users and locations, as well as one relationship being
constructed based on the content similarity of two things, which we
call internal relationships. Table 1 summarizes all the hyperedges
modeled by our unified hypergraph. We briefly introduce them in
the following.

External Relationships. There are six external relationships in our
model:

• ET T U : this relation represents the scenario that two things
are used by a same person. The weight w(etitjuk) for this
relation is set to the frequency that both things ti, tj are used
by person uk, denoted as:

w(etitjuk) = |{(ti, tj , uk)}|ti ∈ T , tj ∈ T , uk ∈ U| (3)

and the weight can be normalized as:

w(etitjuk) =
w(etitjuk)√∑|T |

l=1 w(etltjuk)
√∑|T |

m=1 w(etitmuk)

(4)

Table 1: Hyperedges Derived from Things Usage Events
External Relations across Entities

Index Notation Hyperedges

1 ET T U Thing-Thing-User

2 ET T I Thing-Thing-Time

3 ET T L Thing-Thing-Location

4 EUUT User-User-Thing

5 ELLT Location-Location-Thing

6 EIIT Time-Time-Thing

Internal Relations within Entities

Index Notation Hyperedges

7 ELp

p-nearest locations

8 EUq

q-nearest users

9 ET k

k-nearest things

• ET T I . This represents the scenario that two things are used
in a same time period. The weight w(etitjik) for this relation
is set to be the frequency that both things ti and tj are used in
a same time period ik. The calculation is same as Equation 4.

• ET T L. This represents that two things are used in a same
location. The weight w(etitj lk) for this relation is set to be
the frequency that both things ti and tj are used in the same
location lk. The calculation is same as Equation 4.

• EUUT . In this relation, if one thing is used by two users, we
assign the weight to 1.

• EIIT . In this relation, if one thing is used at a same times-
tamp, we assign the weight to 1.

• ELLT . In this relation, if one thing is used in a same location,
we assign the weight to 1.

Internal Relationships. There are also three internal relationships
in our model:

• ELp

. In this relation, we consider the similarity between dif-
ferent locations. In the hypergraph, a hyperedge of this type
is each location and its top p similar locations. For each lo-
cation li, its weight of hyperedge is calculated as:

w(el
p
i) =

1

p

p∑
j=1

sim(li, lj) (5)

where sim(li, lj) is the similarity between two locations.
Given two locations, we measure their similarity using the
Jaccard coefficient between the sets of things used at each
location:

sim(li, lj) =
|Γo

i ∩ Γo
j |

|Γo
i ∪ Γo

j |
(6)

where Γo
i and Γo

j denote the set of used things at location li
and location lj respectively.

• EUq

. In this relation, we consider the similarity between
users. In the hypergraph, a hyperedge of this type represents

each user and her top q similar users. For each user ui, the
weight of hyperedge is calculated using:

w(eu
q
i) =

1

k

q∑
j=1

sim(ui, uj) (7)

where sim(ui, uj) is the similarity between two users, which
is influenced by the social links between users, reflecting the
homophily theory meaning that similar users may have sim-
ilar interests. We use the cosine similarity to calculate the
similarity between two users as follows:

sim(ui, uj) =
eαcos(b(ui),b(uj))∑

c∈Ω(ui)
eαcos(b(ui),(b(uc))

(8)

where cos(b(ui), b(uj)) =
b(ui) · b(uj)

||b(ui)||||b(uj)||
, Ω(ui) is the

set of the user ui’s friends (i.e., uj ∈ Ω(ui)), b(ui) is the
binary vector of things used by user ui, || · || is the L-2 norm
of vector b(·), and α is a parameter that reflects the prefer-
ence for transitioning to a user who interacted with the same
things.

• ET k

. Although things descriptions are limited3, to fully uti-
lize the available information, we extract bag-of-keywords
from the descriptions. By analyzing the textual descriptions,
it is possible to extract the most common terms that repre-
sent the corresponding thing (i.e., content-based features). It
should be noted that the common implementation of TF/IDF
gives equal weights to the term frequency and inverse doc-
ument frequency (i.e., w = tf × idf). We choose to give
higher weight to the idf value (i.e., w = tf × idf2). The
reason behind this modification is to normalize the inher-
ent bias of the tf measure in short documents. Traditional
TF/IDF applications are concerned with verbose documents
(e.g., books, articles, and human-readable Web pages). How-
ever, documents describing things are relatively short. There-
fore, the frequency of a word within a document tends to be
incidental, and the document length component of the TF
generally has little or no influence.

The weight of each thing in the content-level is the averaged
similarity between the querying thing and the other things,
which can be computed using:

w(etir) =
1

k

k∑
j=1

sim(ti, tj) (9)

where sim(ti, tj) is calculated using cosine similarity as fol-
lows:

sim(ti, tj) =
(ti) · (tj)
||ti||||tj ||

(10)

Based on hypergraph modeling introduced above, we can derive
the vertex-hyperedge incidence matrix H (as shown in Table 2) and
also the weight matrix W . The size of both matrices depends on
the cardinality of different element sets involved in the matrices,
and they are all sparse matrices.

4.2 Subproblem 2: Ranking
In this section, we describe our approach for ranking the related

things, which is designed to solve Subproblem 2.

3In our implementation, ubiquitous things are exposed as RESTful
Web services, and each of them has a short web description.

Table 2: The incident matrix H of the proposed hypergrah
ET T U ET T I ET T L EUUT ELLT EIIT ELp EUq ET k

T T ET T U T ET T I T ET T L T EUUT T ELLT T EIIT 0 0 T ET k

U UET T U 0 0 UEUUT 0 0 0 UEUq

0

I 0 IET T I 0 0 0 IEIIT 0 0 0

L 0 0 LET T L 0 LELLT 0 LELp

0 0

To infer the related things for a given querying thing, we adopt a
spectral clustering based semi-supervised learning framework [27].
The goal is that given the query thing ti, to estimate a ranking func-
tion f which allocates other things different relatedness scores f(i)
over the hypergraph HG, indicating their relevance to the querying
thing ti ∈ V . Let yi ∈ y be the query vector for thing ti. The learn-
ing process can be formulated under a regularization framework as
follows:

Q(f) = E(f) + μ�(f ,y) (11)

where E(f) is the quadratic energy function, which smooths the
vertices that are nearby according to Markov assumption, in other
word, the nearby vertices on HG should have similar relatedness
scores, �(f ,y) is the loss function measuring the difference be-
tween predicted relatedness score and true scores. μ is the regu-
larizer. The equation can be expanded as:

Q(f) =
1

2

|V|∑
i,j=1

∑
e∈E

1

δ(e)

∑
(vi,vj)⊂e

W(e)

∣∣∣∣∣ fi√
d(vi)

− fj
d(vj)

∣∣∣∣∣
2

+ μ

|V |∑
i=1

||fi − yi||2

(12)

The optimal relatedness scores can be learned recursively by
solving the optimization problem in a closed form [26]:

f∗ = argminfQ(f) = (1− α)(1− αΘ)−1y

where

α = 1/1 + μ and Θ = D−1/2
v HWD−1

e HTD−1/2
v

(13)

Equation 13 can be reformulated as:

f∗ = αΘf∗ + (1− α)y (14)

The detailed algorithm of our ThingsNavi approach for things
searching is summarized in Algorithm 1.

4.3 Complexity Analysis
Clearly, in our ThingsNavi approach, there are two main pro-

cesses that are responsible for computational complexity. One is
the hypergraph construction process during the training phase, and
the other is the searching and ranking process during the appli-
cation phase. We recall that the external hyperedges reflect the
pairwise relationships and similarities between two nodes while
the internal hyperedges characterize the neighboring information
on nodes. For the construction of internal relationships of the hy-
pergraph, e.g., given n nodes consisting of users and locations, we
need n2 similarity calculations. So the time complexity is O(n2)
in order to construct the pairwise hypergraph. Similarly, for the
construction of external relationships of the hypergraph, given m
nodes, it needs m2 similarity calculations. Thus its construction

Algorithm 1: ThingsNavi
Input: A sequence of things usage events H and query yi
Output: Related things ranking list {y1, y2, ..., yn}

1 Constructing hypergraph HG(V, E ,W) as described in
Section 4.1;

2 Computing incident matrix H;
3 Computing weight matrix H;
4 Computing vertice degree matrix Dv;
5 Computing hyperedge degree matrix De;

6 Computing Θ = D−1/2
v HWD−1

e HTD−1/2
v ;

7 Initializing relatedness score vector yi corresponding to ti as:
the i-th element is yii = 1, other elements are equal to 0;

8 Let f0 = yi;
9 while δ < ξ do

10 f j+1 = αΘf j + (1− α)yi;
11 for k = 1:n do
12 δ ← max |f j+1

k − f jk |;
13 end
14 end
15 Output {y1, ..ym} sorted by relatedness score with yi.

complexity is O(m2). Therefore, considering two kinds of hyper-
edges in this work, the final similarity incidence matrix H with
overall number of N entities has O(N2) complexity.

For the time complexity of our semi-supervised search and rank
algorithm, since our framework is inherited from graph-based SSL
(semi-supervised learning), in which the weighted hypergraph is
formed over labeled and unlabeled data (unlabeled data is the query
thing in this work, labeled data is the training data), the unlabeled
points will be assigned similarity scores based on the labels of their
neighbors. This learning process is typically slow and its time com-
plexity is O(N3). Overall, the complexity of our proposed ap-
proach is O(N3).

Currently, the validation of ThingsNavi is mainly conducted in a
small-scale testbed (see next section for details). The dataset col-
lected is not a large one and the performance of the approach is rea-
sonable. For example, the total number of nodes including things,
timestamps, locations and users of our dataset is 261, and the time
used for completing a query is about 11.07 seconds in a typical
desktop computer. It should be noted that our main focus of this pa-
per is to demonstrate the potential of using a hypergraph to model
the contextual relationships in human-thing interactions, which is
impossible to be captured by using ordinary graphs. Scalability and
performance improvement of ThingsNavi, which are important is-
sues for the approach to be applied in large scale IoT environment,
are the main concern of our future work. So far, we have already
explored some possible techniques (e.g., using the hashing func-
tion, batch tuning process) to accelerate the searching process and
to reduce the computational cost.

(a)

(b)

Figure 4: (a) some sensors and RFID devices; (b) sensor en-
abled microwave oven

5. THE EVALUATION
In this section, we report the experimental studies on evaluating

the proposed ThingsNavi approach. We will first describe the data
collection and the experimental settings, and then report various
experimental results.

5.1 Data Collection
To validate our approach, we set up a testbed in the first author’s

home where approximate 60 physical things (e.g., cups, laptop, mi-
crowave oven, fridge, kettle, toaster) are monitored by attaching
RFID tags and/or sensors. Figure 4(a) shows some devices used
in our experiment including RFID readers, sensors and tags, and
Figure 4(b) shows an example of a sensor-enhancement microwave
oven in our testbed.

Figure 5 depicts the overall architecture of our testbed. When
users interact with things, the Event Detector module records the
events which are captured, e.g., by RFID readers or inferred based
on sensor values. The related contextual information can be at-
tached to each event (e.g., location information calculated using the
localization algorithm, to be discussed later). Ten volunteers partic-
ipated in the data collection phase by interacting with RFID tagged
things for a period of four months, generating 20,179 records on the
interactions of the things tagged in the experiments. More details
of data acquisition can be found in [24].

Our dataset was augmented by using Washington State Univer-
sity’s CASAS datasets4, which was collected from a smart home
environment. In particular, we used dataset1 [5] and dataset2 [18].
From the datasets, we identified 52 more things (e.g., bowl, door,
coffee table and watertap) and deduced things usage events. For
the location information, we referred to the sensor layout of each
dataset for grouping sensors into corresponding locations. For ex-
ample, L-11 to L-15 are located in the bathroom, we therefore
mapped the location of things usage events related to L-11 to L-15

4http://ailab.wsu.edu/casas/datasets/

Figure 5: The architecture of our testbed

to the bathroom. Each activity can then be transformed as things
usage events, to be used in our experiments. For example, consider
the activity of “reading a magazine in couch”. For this record, we
converted it into two events, <magazine, person1, timestamp,
livingroom> and <couch, person1, timestamp, livingroom>.
In summary, there were 261 entities used in the experiments in-
cluding 179 things from six categories (e.g., entertainment, cook-
ing etc), 24 time intervals, 37 locations, and 21 users.

Each usage event is associated with three main pieces of infor-
mation: identity (user), temporal (timestamp) and spatial (location)
information. To obtain user information, in our experiments, we
used a manual labeling method where each participant needs to
mark and record their activities. For the temporal information, we
chose to split one day into 24 equal intervals (clusters). Each in-
terval is one hour. For example, if the timestamp of a thing usage
event is 9:07am, it will be assigned into the temporal cluster be-
tween 9:00am to 10:00am.

To get the localization information, we consider two situations.
The first one is static things (e.g., refrigerator, microwave oven).
The location information of such things are prior knowledge. The
other situation is mobile things (e.g., RFID-tagged coffee mug).
For such things, we provide a coarse-grain or fine-grain location
information. For the coarse-grain method, since the Received Sig-
nal Strength Indication (RSSI) signal received from a tagged thing
reveals its proximity to an RFID reader antenna. We divided an area
in multiple zones and each zone is covered with a mutually exclu-
sive set of RFID antennas. The zone scanned by the antenna with
the maximum RSSI is taken to be the thing’s location. For the fine-
grain method, it is determined by comparing the signal descriptors
from a thing at unknown location to a previously constructed radio
map or fingerprints. We used the Weighted k Nearest Neighbors al-
gorithm (w-kNN), where we find the most similar fingerprints and
compute a weighted average of their 2D positions to estimate the
unknown tag location [13]. For details, interested readers can refer
to our previous work [24, 23].

5.2 Evaluation Settings and Metrics
We selected 70% things usage events as the training set, and the

rest as the testing set. The training set is used to build the hy-
pergraph and learn the ranking function, and the testing dataset is
used as the ground-truth dataset to evaluate the performance of our
ThingsNavi approach. For each thing in the testing set, our ap-
proach produces top@x (x = 3,5,7) related things according to re-
latedness scores with the query thing. We measured how many
things in the top@x results are related to the query thing using the
metrics of F1-score and nDCG (the normalized Discounted Cumu-
lative Gain).

Top@3 Top@5 Top@7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1
 S

co
re

Trinity
STUnion
Hyper

(a)

Top@3 Top@5 Top@7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

nD
C

G

Trinity
STUnion
Hyper

(b)

0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision

R
ec

al
l

Top@3
Top@5
Top@7

(c)

Figure 6: Performance comparison with hypergraph and con-
ventional graph construction on top@3, top@5 and top@7: (a)
F1 score, (b) nDCG and (c) precision-recall

F1 is the harmonic mean of Precisionx and Recallx, which
can be calculated as:

F1x =
2 · Precisionx ·Recallx
Precisionx +Recallx

(15)

where Precisionx =
|Rel ∩Recx|

|Recx|
and Recallx =

|Rel ∩Recx|
|Rec| ,

Rel is the related things (we assume the things with same labels
are in a relevant set), and Recx is the set of top@x things output
by ThingsNavi. Considering that people tend to select only the top
few things, an approach with high top@x precision values is de-
sirable in practice. Precisionx measures how often is the related
things actually present when the approach predicts it is. Recallx
measures how many actually related things are recognized by the
approach. For the ranking position in the results, we also adopted

Top@3 Top@5 Top@7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1
 S

co
re

Content
IRO
ERO
HYPER

(a)

Top@3 Top@5 Top@7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

nD
C

G

Content
IRO
ERO
HYPER

(b)

Figure 7: Performance comparison with different combina-
tions of hyperedges on top@3, top@5 and top@7: (a) F1 score
and (b) nDCG

the normalized Discounted Cumulative Gain (nDCG) as the met-
ric, which is the normalized position-discounted precision score.
It gives more credit to the top-ranked things and is defined as the
following:

DCGx =

x∑
i=1

2reli − 1

log2(1 + pi)
(16)

where pi is the ranking position of the ith thing in the top@x things
list, and reli is the relatedness score of the ith thing at position
pi.The normalized DCG can be calculated using:

nDCGx = DCGx/IDCG (17)

where IDCG, also called Ideal DCG, is calculated by sorting things
of a result list by the relevance, producing the maximum possible
DCG till position pi. The range of IDCG is between [0, 1].

5.3 Performance Comparison
Things searching is a new research area and there is very lit-

tle work in the literature. We compared our hypergraph-based ap-
proach (i.e., ThingsNavi) with other conventional graph based ap-
proaches, which are described as follows:

• Trinity. This method constructs three separate graphs from
things usage events, namely a user-thing graph, a time-thing
graph, and a location-thing graph respectively. We name this
approach as Trinity [23].

• STUnion. This method builds two graphs: a spatio-temporal
graph and a social graph. The two graphs model things usage

0

5

10

0
2

4
6

8
0.5

0.55

0.6

0.65

0.7

0.75

p (location)q (user)

F1
 S

co
re

@
3

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

(a)

0

5

10

0
2

4
6

8
0.5

0.55

0.6

0.65

0.7

0.75

p (location)q (user)

nD
C

G
@

3

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

(b)

0

5

10

0
2

4
6

8
0.5

0.55

0.6

0.65

0.7

p (location)q (user)

F1
 S

co
re

@
5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

(c)

0

5

10

0
2

4
6

8
0.5

0.55

0.6

0.65

0.7

0.75

p (location)q (user)

nD
C

G
@

5

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

(d)

0

5

10

0
2

4
6

8
0.5

0.55

0.6

0.65

0.7

p (location)q (user)

F1
 S

co
re

@
7

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

(e)

0

5

10

0
2

4
6

8
0.5

0.55

0.6

0.65

0.7

0.75

p (location)q (user)

nD
C

G
@

7

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

(f)

Figure 8: Performance with different combination of p with q: (a) and (b) are F1 and nDCG on top@3, (c) and (d) are F1 and nDCG
on top@5, (e) and (f) are F1 and nDCG on top@7

contextual information and user-thing relationships respec-
tively. We name this approach as STUnion [24].

Figure 6 shows the significant improvement of the performance
by using our proposed hypergraph-based approach. Our approach
outperforms the other two conventional graph based methods. The
reason is that a hypergraph-based approach naturally integrates var-
ious relationships into a unified framework without information
loss, and the high-order correlations across different entities are
well-captured, including users’ preference, as well as the contex-
tual connections of things. Compared to the hypergraph based uni-
fied framework, the other two methods use conventional graphs,
which squeeze the complex relations across heterogeneous entities
and cause some information loss. We also notice that STUnion
outperforms Trinity because it integrates spatial information and
temporal information together.

5.4 Impact on Hyperedges of Relations
In our proposed approach, we incorporate nine different hyper-

edges, indicating different relationships across or within heteroge-
neous entities to construct the hypergraph. In this way, the hyper-
graph can represent the complex relationships encoded in things
usage events. To evaluate the impact of different relations over
the hypergraph, we conducted experiments using several different
combinations of hyperedges for hypergraph construction.

The first category of relationships including hyperedges index 1,
index 4 and index 8 in Table 1, which encodes the users access pat-
terns on things along with internal user relations and things’ char-
acteristics. We name these combined relations as IRO. Another
category of relationships includes hyperedges index 2, index 3, in-
dex 5, index 6, and index 7, which are considered to decode the
things similarity in terms of contextual dependencies. We name it
as ERO. The third category considers hyperedges index 9, which
represents textual-level similarity between things. We name it as
the pure content-based approach (Content for short). The fourth
category, HYPER, includes all the relationships.

The results are shown in Figure 7. It is obvious that the hy-
pergraph (HYPER) outperforms the other three combinations. The

reason is that HYPER considers multiple relationships between dif-
ferent entities, which fully makes use of the rich information hidden
in these relations. It is noted that ERO outperforms IRO, which
reflects that the contextual factors play a more dominant role in
finding the desirable things.

5.5 Parameters Tuning
In our proposed method, we need to determine the values of p

and q (see Equation 5 and 7 in Section 4.1) for locations and users,
which indicate the number of nearest neighbors for locations and
users respectively. To examine the effects of these parameters, we
evaluated different combinations of p ∈ [1, 7] and q ∈ [1, 7] with
F1 and nDCG on top@3, top@5 and top@7. Figure 8 shows
that the performance reaches the best with p=3 and q=4. We also
observe that p has bigger impact on the performance compared to q.
The possible reason is due to the close dependence between things
and their locations, e.g., kitchenware is mostly in the kitchen area.

6. APPLICATION SCENARIOS
Our model can be generalized and applied to many applications

in mobile and ubiquitous environments. Here, we briefly describe
some application domains to show the usefulness of our approach.

Human Activity Recognition. Our proposed approach provides a
new angle to learn human activities in the ubiquitous environments.
For example, we can set the sensors, RFID tags, their correspond-
ing values and timestamps as nodes, to build a hypergraph, where
some clustering algorithms (e.g., spectral clustering, modularity-
based clustering) or proximity learning algorithm (e.g., random
walk) [6] can be used to build the connections between users’ ac-
tivities and sensing values.

Location-based Services. Things usage events have similar struc-
ture with check-in records in location-based services, which usu-
ally comprise of <user, place, timestamp>. Our approach can be
easily adapted to this area by mapping different data sources in the
check-in records (e.g., user, place and timestamps) via hypergraph
and then inferring human mobility patterns or landmark locations
via selecting different nodes on the hypergraph for querying.

Healthcare. Our approach can contribute to the healthcare domain
because the medical equipment/resource usage records are an im-
portant data source in healthcare. For example, it is possible to
detect any abnormal medical equipment usage behaviors by e.g.,
detecting whether “left-ins” happen (e.g., glove left inside patient)
after a surgery.

7. CONCLUSION
Recommending the right things to use at a specific time and lo-

cation is a fundamental concern in the emerging Internet of Things
(IoT) research and development. In this paper, we propose to solve
this problem by mining things usage events. Our approach, named
ThingsNavi, exploits a hypergraph to encode various relationships,
forming a robust representation of things usage events without in-
formation loss. A ranking algorithm is also developed for rec-
ommending the most related things to a given specific thing (i.e.,
querying thing). The experimental results using real-world datasets
demonstrate the effectiveness of the proposed approach.

There are several main directions for our future research. The
first one centers on dealing with the dynamism of things. In real
situations, physical things are more dynamic compared with tradi-
tional Web resources (e.g., movement of things). We plan to im-
prove our model that can adaptively propagate up-to-date informa-
tion from the hypergraph and make more accurate recommenda-
tions. The second one focuses on refining our model for pattern
identification from human-thing interactions by considering spe-
cific contextual conditions. Finally, we also plan to evaluate our
approach using larger-scale datasets.

8. REFERENCES
[1] K. Aberer, M. Hauswirth, and A. Salehi. A middleware for

fast and flexible sensor network deployment. In Proc. of the
32nd Intl. Conference on Very Large Data Bases, pages
1199–1202. VLDB Endowment, 2006.

[2] S. Agarwal, K. Branson, and S. Belongie. Higher order
learning with graphs. In Proc. of the 23rd Intl. Conference on
Machine Learning, pages 17–24. ACM, 2006.

[3] J. Bu et al. Music recommendation by unified hypergraph:
combining social media information and music content. In
Proc. of the Intl. Conference on Multimedia, pages 391–400.
ACM, 2010.

[4] B. Christophe, V. Verdot, and V. Toubiana. Searching the
Web of Things. In Proc. of the 5th IEEE Intl. Conf. on
Semantic Computing, pages 308–315, 2011.

[5] D. Cook, M. Schmitter-Edgecombe, et al. Assessing the
quality of activities in a smart environment. Methods of
information in medicine, 48(5):480, 2009.

[6] Y. Fujiwara, M. Nakatsuji, M. Onizuka, and M. Kitsuregawa.
Fast and exact top-k search for random walk with restart.
Proceedings of the VLDB Endowment, 5(5):442–453, 2012.

[7] T. Kindberg et al. People, places, things: Web presence for
the real world. Mobile Networks and Applications,
7(5):365–376, 2002.

[8] D. Le-Phuoc, H. N. M. Quoc, J. X. Parreira, and
M. Hauswirth. The linked sensor middleware–connecting the
real world and the semantic web. Proceedings of the
Semantic Web Challenge, 2011.

[9] T. Maekawa, Y. Yanagisawa, Y. Sakurai, Y. Kishino,
K. Kamei, and T. Okadome. Context-aware web search in
ubiquitous sensor environments. ACM Transactions on
Internet Technology (TOIT), 11(3):12, 2012.

[10] M. McPherson, L. Smith-Lovin, and J. Cook. Birds of a
Feather: Homophily in Social Networks. Annual Review of
Sociology, 27(1):415–444, 2001.

[11] R. Mietz, S. Groppe, K. Römer, and D. Pfisterer. Semantic
models for scalable search in the internet of things. Journal
of Sensor and Actuator Networks, 2(2):172–195, 2013.

[12] S. Nath, J. Liu, and F. Zhao. Sensormap for wide-area sensor
webs. Computer, 40(7):0090–93, 2007.

[13] L. Ni, Y. Liu, Y. Lau, and A. Patil. LANDMARC: Indoor
Location Sensing Using Active RFID. Wireless Networks,
10(6):701–710, 2004.

[14] B. Ostermaier, K. Romer, F. Mattern, M. Fahrmair, and
W. Kellerer. A real-time search engine for the web of things.
In Internet of Things (IOT), 2010, pages 1–8. IEEE, 2010.

[15] C. Perera, A. Zaslavsky, P. Christen, M. Compton, and
D. Georgakopoulos. Context-aware sensor search, selection
and ranking model for internet of things middleware. In
Proc. of IEEE 14th Intl. Conference on Mobile Data
Management (MDM 2013), 2013.

[16] M. Philipose, K. Fishkin, M. Perkowitz, D. Patterson,
D. Fox, H. Kautz, and D. Hahnel. Inferring activities from
interactions with objects. Pervasive Computing, IEEE,
3(4):50–57, 2004.

[17] Q. Sheng et al. Ubiquitous RFID: Where are we?
Information Systems Frontiers, 12(5):485–490, 2010.

[18] G. Singla, D. J. Cook, and M. Schmitter-Edgecombe.
Recognizing independent and joint activities among multiple
residents in smart environments. Journal of Ambient
Intelligence and Humanized Computing, 1(1):57–63, 2010.

[19] L. Sun, S. Ji, and J. Ye. Hypergraph spectral learning for
multi-label classification. In Proc. of the 14th ACM SIGKDD
Intl. Conference on Knowledge Discovery and Data Mining,
2008.

[20] C. C. Tan, B. Sheng, H. Wang, and Q. Li. Microsearch: A
search engine for embedded devices used in pervasive
computing. ACM Transactions on Embedded Computing
Systems (TECS), 9(4):43, 2010.

[21] C. Truong, K. Romer, and K. Chen. Sensor similarity search
in the web of things. In World of Wireless, Mobile and
Multimedia Networks (WoWMoM), 2012 IEEE International
Symposium on a, pages 1–6. IEEE, 2012.

[22] H. Wang, C. C. Tan, and Q. Li. Snoogle: A search engine for
the physical world. In Proc. of the 27th Conference on
Computer Communications (INFOCOM). IEEE, 2008.

[23] L. Yao and Q. Z. Sheng. Exploiting latent relevance for
relational learning of ubiquitous things. In Proc. of the 21st
ACM Intl. Conference on Information and Knowledge
Management (CIKM 2012), 2012.

[24] L. Yao, Q. Z. Sheng, B. Gao, A. H. H. Ngu, and X. Li. A
Model for Discovering Correlations of Ubiquitous Things. In
Proc. of IEEE Intl. Conference on Data Mining (ICDM
2013), 2013.

[25] L. Yao et al. Exploring recommendations in internet of
things. In Proc. of the 37th Intl. ACM SIGIR Conference on
Research & Development in Information Retrieval, 2014.

[26] D. Zhou, J. Huang, and B. Schölkopf. Learning with
hypergraphs: Clustering, classification, and embedding. In
Advances in Neural Information Processing Systems, 2006.

[27] X. Zhu. Semi-supervised learning literature survey.
Computer Science, University of Wisconsin-Madison, 2:3,
2006.

