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ABSTRACT
Device-free passive localization aims to localize or track tar-
gets without requiring them to carry any devices or to be
actively involved with the localization process. This tech-
nique has received much attention recently in a wide range of
applications including elderly people surveillance, intruder
detection, and indoor navigation. In this paper, we propose
a novel localization and tracking system based on the Re-
ceived Signal Strength field formed by a set of cost-efficient
passive RFID tags. We firstly formulate localization as a
classification task, where we compare several state-of-the-
art learning-based classification methods including k Near-
est Neighbor (kNN), Multivariate Gaussian Mixture Model
(GMM) and Support Vector Machine (SVM). To track a
moving subject, we propose two Hidden Markov Model (HM-
M)-based methods, namely GMM-based HMM and kNN-
based HMM. kNN-based HMM extends kNN into a proba-
bilistic style to approximate the Emission Probability Ma-
trix in HMM. The proposed methods can be easily applied
into other fingerprint-based tracking systems regardless of
their hardware platforms. We conduct extensive experi-
ments and the results demonstrate the effectiveness and ac-
curacy of our approaches with up to 98% localization accu-
racy and an average of 0.7m tracking error.

Categories and Subject Descriptors
C.4 [Special-Purpose and Application-Based System
]: Realtime and RFID-based system

Keywords
Localization, RFID, Hidden Markov Model, Gaussian Mix-
ture Model, Kernel-based, Nearest Neighbor

Ambient intelligence has been drawing growing attention
recently since it enables a smart environment which can

respond to people’s locations and behaviors using various
wireless signals, sensors, and radio frequency identification
(RFID). Under such smart environments, many attractive
applications can be realized, which will have huge impact to
our daily lives, such as aged care, surveillance, and indoor
navigation [17]. A key prerequisite of enabling this intelli-
gence is to localize and track people in the indoor environ-
ments. Over the past decade, localization and tracking has
been an active research area with several proposed solutions
such as LANDMARC [5], WILL [14], and Nuzzer [11].

RFID-based localization has gained much interest due to
its low-cost, easy deployment and scalability. Recently, many
RFID-based techniques for localization have been proposed
[5, 6, 8, 13]. Most of these techniques, however, require
the target subject to either carry a tag/reader or be ac-
tively involved with the localizing process, which might not
be practical. For instance, the attached tag/reader may be
lost or damaged, or elderly people with dementia may forget
to carry the device. As a result, a device-free RFID-based
passive localization solution is highly desirable. Localizing
and tracking subjects using such a solution does not require
subjects to carry any devices (e.g., wearable sensors or tags).

Figure 1: RSSI variation with distance

It is well known that Received Signal Strength (RSS) is
quite complicated in real environments due to variability
caused by multipath effects and ambient noise interference,
physical antenna orientation, and fluctuations in the power
source. The signal attenuates while increasing the distance.
Figure 1 shows the relationship between Received Signal
Strength Indicator (RSSI) of a passive RFID tag and its

1. INTRODUCTION
Ambient intelligence has been drawing growing attention

recently since it enables a smart environment which can



distance to an antenna. The RSSI does not strictly decrease
with the increase of distance, which cannot be expressed by
a linear or even a quadratic model. Thus, RSSI is highly
nonlinear and uncertain in a complex environment, which
may be further corrupted when introducing people’s pres-
ence or mobility. However, on the other hand, some un-
derlying distinguishable patterns can be observed like how
people disturb the pattern of RSS through certain learning-
based probabilistic methods. In this work, we deploy passive
RFID tags in the corners of the monitored area (see Figure 2)
which can form an RSS field (quantified by a 4-dimensional
RSSI vector). When a subject appears in different locations
inside the monitored area, the RSSI vector will present dif-
ferent patterns. According to aforementioned observations,
our proposed approach works on the following two intuitions:

• When a subject presents in an RSS field, the RSSI
vector in this field will change compared with the static
environment (no subject in this area).

• When a subject appears in different locations in an
RSS field, the RSSI vector of this field will embody
different fluctuation patterns.

Device-free RFID-based passive localization in general works
as follows. The RSSI vectors are first collected when peo-
ple present in various predefined locations, and then a given
testing location is mapped to one of these trained locations
based on the observed RSSI vector. Two existing research ef-
forts on RFID-based device-free localization [4, 20] are based
on the first intuition, which explore people’s location based
on an array of densely-deployed active tags [4] or an array
of mixed passive and active tags [20]. In this paper, we pro-
pose a new approach by considering both intuitions. Our
approach not only captures the binary information of RSSI,
but also quantifies the variation information to decode a
more accurate location. We verify our approach by setting
up a testbed. In particular, we deploy passive RFID tags
and an RFID antenna as a single RSS field (as showed in
Figure 2). A sequence of RSSI vectors collected from various
known locations along with corresponding correct location
labels are used to train a model, which is then used to esti-
mate the subject’s location for a given new RSS vector. Our
main contributions are summarized as follows:

• We introduce a pure passive tag-based localization and
tracking system and our experimental studies demon-
strate the feasibility and accuracy of the proposed ap-
proach. To the best of our knowledge, our work is one
of first few to deal with device-free passive localization
and tracking based on pure passive RFID tags.

• We propose kNN-based HMM and GMM-based HMM
methods, which track a moving subject by learning
underlying patterns of a stationary subject in differ-
ent locations. Specially, we transfer traditional kNN
classifier into a probabilistic style to estimate the emis-
sion matrix in HMM, which bridges the gap between
tracking and localization.

• We demonstrate the scalability of our system by ex-
panding a single RSS field into multiple RSS fields.
More importantly, our method can achieve an accu-
racy over 94% while reducing the training overhead
(collecting only 12 seconds training samples per grid),
which significantly simplifies the calibration stage.

The rest of the paper is organized as follows. Section 2
overviews related work on localization and tracking. We
present our environment setting and initial experiments for
intuition verification in Section 3 and formulate our reseaerch
problems in Section 4. Section 5 presents our prospoed so-
lutions. and the experimental results and analysis are pre-
sented in Section 6. Finally, Section 7 offers some concluding
remarks.

2. RELATED WORK
Localization has been an active research area over the

decades. In this section, we first review some state-of-the-art
localization systems, and then focus on RFID-based device-
free passive localization which is more related to our work.

Criket [7] adopts an ultrasonic Time-Of-Flight (TOF)-
based method to locate target subjects which carries a Bat
(transmitter) periodically emitting a short pulse of ultra-
sound. In [5], Ni et al. design a system to localize the target
object carrying an active RFID tag. It employs densely de-
ployed RFID tags to alleviate the fluctuation feature in RSSI
and then estimates target location by matching the measure-
ments with the stored fingerprints. With the popularity of
smart phones, FTrack [18] proposes to use the accelerome-
ter in mobile phones to capture user encounters and trails
for locating the number of floor levels where people present.
WILL [14] presents a wireless indoor localization approach
to locate people’s positions, requiring no prior knowledge of
access point locations. All these systems require a tracked
entity to carry a device (e.g., RFID reader/tags or mobile
phones), which might be impractical for some applications.

Device-free localization recently has become an active re-
search area since Youssef et al. first identify the challenges
of device-free passive localization in [19]. Most recent state-
of-the-art localization and tracking systems are based on
wireless sensor networks. Patwari et al. [21] propose a ker-
nel distance-based RTI (radio tomographic imaging) by us-
ing a kernel distance of histograms to locate a moving or
stationary person based on wireless TelosB nodes. Nuzzer
[11] estimates the location of entities by monitoring the RSS
at certain monitoring points using wireless networks, which
first constructs a passive radio map in an offline style, and
then uses a Bayesian-typed inference algorithm to optimize
a location with the largest probability. Xu et al. [16] de-
velop a fingerprinting-based device-free passive localization
system, in which several discriminant analysis approaches
are explored. In [15], the authors further extend the system
to count and localize multiple subjects based on the same
hardware platform, in which they first iteratively estimate
the number of subjects by a successive cancellation algo-
rithm and then a conditional random field (CRF) is used
to localize multiple subjects simultaneously. Ichnaea intro-
duced by [9] realizes the device-free passive motion tracking
by exploring several statistical anomaly detection methods,
an anomaly scores-based particle filter model, and a human
motion model.

WSNs-based localization systems require maintenance (e.g.,
replacing batteries). In contrast, passive RFID-based local-
ization systems are cost-efficient (cheap passive tags), easy
to deploy, and maintenance-free. Recently, some research
efforts have been proposed to deal with the device-free pas-
sive localization based on RFID technology. For instance,
based on densely-deployed passive tags, [12] utilizes RTI for
device-free indoor localization. Twins [3] is another very re-



Figure 2: Hardware Setup

cent system, which leverages observations caused by interfer-
ence among passive tags to detect a single moving subject.
Liu et al. [4] propose to deploy active tags into an array,
which captures localization information when the RSSIs of
tags (known position) variate beyond a threshold, and fre-
quent trajectory patterns can be mined based on estimated
localization sequences. Zhang et al. [20] develop another
tag array-based localization scheme using both active and
passive tags, which is more cost-efficient and much effective
on RSSIs noise reduction. However, those two schemes focus
more on mining frequent trajectory patterns and only model
the mapping from the binary information of tags (RSSIs
changed bigger than a threshold or not) to locations rather
than quantifying variation of RSSIs to locations. By com-
parison, our approach explores the relations between varia-
tion of RSSIs and locations, and only based on“pure”passive
RFID tags, which are more cost-efficient and practical (e.g.,
no maintenance needs).

3. SYSTEM OVERVIEW
In this section, we introduce our system hardware setup

and conduct several preliminary experiments to verify our
assumptions (two intuitions mentioned in the introduction).

3.1 Hardware Deployment
Figure 2 shows hardware, including an Alien ALR-9900+

Enterprise RFID Reader (20.3cm × 17.8cm × 4.1cm), two-
circular antennas (20cm×20cm×3cm), and squiggle Higgs-4
passive tags (1cm × 10cm). The reader operates at 840-
960MHz and supports UHF RFID standards such as ETSI
EN 302 208-1. We set the sample rate as 0.5s and each
tag reading contains a timestamp, a tag ID and an RSSI
value, which are processed by a computer with an I7-3537U
2.5GHz processor and 8G RAM, running in WINDOWS 7.
We describe our antenna and tag placement strategies

show an RSS field formed by passive tags (see Figure 2),
which can be easily extended into a larger area by combin-
ing multiple RSS fields (see Figure 7).

Antenna Placement: Ideally, all tag readings should be cap-
tured by the antenna. Based on our preliminary experi-
ments, we place the antenna in 1.5m above the ground, fac-
ing tags with approximately 45◦. However, during the local-
ization and tracking, an antenna can not guarantee to read

all tags, particularly for passive tags. We solve the problem
based on a fingerprint framework and develop a strategy to
deal with missing readings.

Tags Placement: Tags can be deployed in any geometric
shape since our proposed approach targets to learn a model
mapping different RSS distribution patterns to its corre-
sponding locations. For the simplicity, we place tags as a
square-shaped array.

Reading RFID tags: To be consistent and easy to feed into
algorithms, we send an RSSI request to all tags within a
sampling time. If we cannot receive RSSI readings of a cer-
tain tag, the RSSI value is set to 0. Thus, mathematically,
for all the time stamps, we have the RSSI vectors with the
same dimensions. In our settings, the tag detection range
can be up to 6 meters.

3.2 Intuitions Verification
In this section, we verify the two intuitions discussed in

Section 1. First, we design a simple testbed (see Figure 2)
which is a standard single RSS field formed by 4 passive tags
(in 4 corners) and an antenna. Then, we manually divide
the field into 9 virtual grids, which represent 9 different lo-
cations l1, l2, ..., l9. To verify the intuitions, we compare the
patterns of RSSI vector when a subject is located in different
locations.

Figure 3: RSSI vector are different due to the pres-
ence of the subject in different locations

Figure 3 depicts different RSSI patterns when a subject
presents in different locations. When the subject appears in
different locations, the RSSI vector shows different fluctua-
tion patterns, which confirms our intuitions. Therefore, our
preliminary studies have shown the feasibility and potential
of RSS field formed by sparse deployment of passive tags for
solving localization and tracking problems.

4. PROBLEM FORMULATION
In this paper, we target the following two main problems,

which are the key issues to realize device-free passive local-
ization and tracking.

Problem 1 (Localization). Can we reliably localize
the monitored subject by learning the RSSI changes? Namely,
given a sequence of RSSI vectors, reliably localizing a sta-
tionary subject.



Problem 2 (Tracking). Can we accurately track the
moving subject by learning the RSSI changes? Namely, given
a continuous sequence of RSSI vectors, accurately estimate
the trajectory of a moving subject.

The location estimation in this paper is regarded as a
classification problem where the task is to model how the
signal strengths are distributed in different geographical ar-
eas based on a sample of measurements collected at several
known locations.
We divide our testing area formed by D anchoring passive

tags into J grids, denoted by l = (l1, ..., lJ), S = [s1, ..., sN ]T ,
where s ∈ R

D, D is the number of anchoring passive tags.
We first measure the RSSI values for all anchoring tags when
the testing area is empty. Then a single subject appears
in J predefined grid and takes another collection of RSSI
values. As a result, we obtain profiling data H, which is a
(J +1)×N ×D matrix, quantifies how a subject affects the
RSSI from each grid plus the environmental RSSI without
a subject. Then, we can use H to train the model and get
the model parameters. By the end of the training phase, we
build a (J + 1)-class classifier.
In the testing phase, we collect the continuous new RSSI

vetors when a subject shows up or walks in random grids,
and the RSSI vectors forming observation data O = {o1,o2,
...,oT } implies how this subject’s presence or moving impact
the RSSI from random unknown grids. Then, we put O into
the (J + 1)-class classifier obtained in the training phase to
assign the subject a grid number. Problem 1 can be formu-
lated as finding the optimal posterior distribution p(lj |oi)
given a new sequence of observed RSSI vectors.

j∗ = argmax
j

Pr(lj |oi) (1)

Problem 2 can be formulated as tracking a moving subject
described by its state as location lt at time t, with dynamic
motion specified by Pr(lt|lt−1) given a continuous sequence
of RSSI vectors. In order to do this, we can maintain a
distribution over a sequence of observable RSSI O1:T and
corresponding locations l1:T :

Pr(o1:T , l1:T ) = Pr(l1)Pr(o1|l1)
T∏

t=2

Pr(ot|lt)Pr(lt|lt−1)

(2)
to estimate the expected lt under this distribution. A mov-
ing subject is described by its location lj , with motion spec-
ified by a Markovian dynamic model Pr(lj |lj−1). We need
to have a marginal posterior Pr(si|l1:j) and estimate the
expected value of lj under this distribution.
In the rest of this paper, we will introduce technical details

on how these two problems are solved.

5. PROPOSED SOLUTIONS

5.1 Localizing Stationary Subjects
For the localization problem, we introduce three state-

of-the-art learning-based classification methods, namely the
Multivariate Gaussian Mixture Model, the k Nearest Neigh-
bor, and the Support Vector Machine.

5.1.1 Gaussian Mixture Model
As stated in Equation 1, our goal is to maximize Pr(lj |oi).

It should be noted that we will drop the subscript i and j
for the sake of simplicity and clarity in descriptions.

Figure 4: Distribution pattern of RSSI and fitted by
learned GMM with two components

argmax
l∈l

Pr(l|o) = argmax
l∈l

Pr(o|l)Pr(l)

Pr(o)

∝ argmax
l∈l

Pr(o|l) · Pr(l)
(3)

where Pr(l) is the probability of finding the subject at lo-

cation l, which is set as a uniform distribution Pr(l) ∼ 1

J
.

We adopt the well-known idea of mixture models in statis-
tics. We first make a general assumption that the subject
could be in any of J grids with varying probabilities. Each
of these probabilities potentially generate a distribution of
RSSI vectors at each grid.

The key is to find the appropriate model that describes
Pr(s|l) distribution. We assume this distribution of each
grid l follows a Gaussian Mixture Model with qlm compo-
nents, mean μl

m and covariance matrix Σl
m:

fl(x) = Pr(x|l) =
M∑

m=1

ql,mN (x|μl,m,Σl,m)

=

M∑
m=1

ql,m√
(2π)D|Σl,m|exp(−

1

2
(x− μl,m)TΣ−1

l,m(x− μl,m))

(4)

where Φl = {ql,m, μl,m,Σl,m} is the model parameter set
at grid l, qm is the mixture weighted factor that describes
the prior probability of the mth mixture component, and
the μl,m and Σl,m are the mean and covariance of the mth

Gaussian distribution. For each grid, the maximum likeli-
hood estimation Φ̂l of Φl can be expressed as:

Φ̂l = argmax
Φl

Pr(x|l,Φl) = argmax
Φl

N∏
i=1

Pr(si|l,Φl) (5)

where s = {s1, s2, ..., sN} is the training set.
We use the Expectation Maximization (EM) to solve Equa-

tion 5. The EM algorithm is an iterative process consisting
of two steps: the expectation step (E-step) and the max-
imization step (M-step). The E-step is to find the pos-
terior probability Pr(l|s) given training RSSI set s. The
M-step is to maximize the expected log-likelihood of the ob-
served data. This leads us to re-estimate the parameters
for the next iteration based on the posterior probabilities
calculated. During the iterations, we generate a sequence
of model parameters Φ0

l ,Φ
1
l ...,Φ

∗
l , where Φ0

l is the initial
parameter and Φ∗ is the converged parameter when the
algorithm terminates with satisfying predefined conditions.
We adopt the Akaike Information Criterion (AIC) [1] as the



criterion to select the best number of components for each
GMM. Figure 4 shows the fitted GMM of RSSI with two
components.
After learning the model parameters with EM, given the

new RSSI signals o collected from the array of tags, the
probability that the subject may present at certain grids is
calculated according to the GMM parameters Φl on each
grid. The location with maximal probability is taken as the
predicted location of the subject.

5.1.2 k Nearest Neighbor
Nearest neighbour is based on some context dependent

distance measure that assigns an Euclidean distance between
any two RSSI samples. Given a set of training RSS data
and a testing RSS vector, the location is estimated from the
training samples whose observation RSS vector has the min-
imal distance when compared with the testing observation.
In particular, a testing RSSI sample is classified by a ma-
jority vote of its neighbors, with the RSSI being assigned to
the grid most common among its k Nearest Neighbors. In
the case of tied votes, we choose the nearest neighbor among
the k nearest neighbors.

5.1.3 Kernel-based Localization
Kernel-based learning (KL) methods localize objects based

on the fact that the smaller the distance between two RSSI
samples, the higher probability they are in the same or a
close location. Specifically, a sequence of RSSI is used as
the training set for a learning procedure. The result of this
procedure is a prediction model that will be used to local-
ize subject to previously unknown positions. A probability
mass is assigned to a kernel around each of observable RSSI
in the training data. Thus the resulting density estimate
for an observation o in location l is a mixture of n1 equally
weighted density functions, where n1 is the number of train-
ing data l:

krbf (oi;oj) =
1√
2πσ

exp
(
− (oi − oj)

2

2σ2

)
(6)

We compare the RBF kernel, linear kernel and polynomial
kernel in this paper to model pairwise similarity of RSSI
vectors in the feature space.

k(oi,oj) = (||oi − oj ||+ c)d (7)

where c and d are parameters to be determined in real ap-
plications.
We use LibSVM [2] to implement the kernel-based local-

ization. The choice of kernels is highly dependent on the
nonlinear and noisy characteristics of the localization prob-
lem due to possible path loss, shadowing and multipath ef-
fects etc. We examine the linear kernel, Gaussian kernel and
polynomial kernel, and find that the SVM classifier performs
the best with linear kernel in this work.

5.2 Tracking Moving Subjects
To track a moving subject, we propose two Hidden Markov

Model-based methods, namely GMM-based HMM and kNN-
based HMM, to decode the sequential RSSI observations into
continuous subject’s trajectories. HMM has shown tremen-
dous success in spatio-temporal features recognition, and its
basis elements are briefly described as the following. Given
O is the observed sequence of RSSI vectors and L denotes
the location sequence of the monitored subject, our goal is

Figure 5: GMM-based HMM

to find the most likely location sequences L∗, which can be
denoted as:

L∗ = argmax
L

Pr(L|O) (8)

Specifically, we define a distribution over a sequence of
observable RSSI O1:T and the corresponding locations l1:T :

Pr(o1:T , l1:T ) = Pr(l1)Pr(o1|l1)
T∏

t=2

Pr(ot|lt)︸ ︷︷ ︸
B

Pr(lt|lt−1)︸ ︷︷ ︸
A

(9)
Thus, the HMM recognition approach can be divided into

three main steps, namely emission matrix, state matrix, and
viterbi searching:

• Emission MatrixB: Given RSSI sequenceO = {o1, ...,
oi}, calculating the probability of each RSSI oi belong-
ing to each grid lj , denoted as Pr(oi|lj).

• Transition Matrix A: Calculating the probability of a
subject moving from grid li to grid lj . The probability
is denoted as: Pr(lj |li).

• Viterbi Searching: Searching the most likely sequence
of grids {l1, l2, ...lj}, given a continuous sequence of
observation RSSI vectors {o1,o2, ...oj}.

5.2.1 Emission Matrix
The emission matrix Bij = Pr(oi|lj) in our case infers the

current state based on the observation RSSI vector o at each
time stamp, which generates a grid likelihood map in terms
of corresponding o. We aim at maximizing the likelihood
Pr(lj |oi) when grid i is occupied. In other words, we would
like to maximize the probability that the estimated grid i
matches the actually occupied grid.

GMM-based HMM. For GMM-based HMM (see Figure 5),
we propose to use GMM to produce its Emission Matrix that
can be obtained from Equation 4 in Section 5.1.1. As for the
static subject case, we assume the observed RSSI vectors in
each location follow a multivariate Gaussian mixture model
(Equation 4 defined in Section 5.1.1):

Pr(oi|lj) =
M∑
m

qmN(μm,Σm) (10)

kNN-based HMM. In Section 5.1.2, we use kNN to clas-
sify unknown RSS vectors, which obtain the best accuracy
among other popular classification methods. Thus, for the
tracking problem, we extend the traditional kNN into a
probabilistic style, in which, for each possible state, the pro-
posed kNN method will give an emission probability based



Figure 6: kNN-based HMM

on current observed RSSI vector (see Figure 6). To the best
of our knowledge, we are the first to introduce the kNN-
based HMM for the tracking problem, which can be gener-
ally applied into other fingerprint-based tracking systems.
Specifically, kNN-based HMM approach would be obtained
as: assuming for each observation oj , we search its k Near-
est Neighbors from the training set s, denoted as N(oj), and
N i(oj) = {sk|sk ∈ N (oj) ∩ sk ∈ li},and emission matrix is:

Pr(oj |li) =
∑|N i(oj)|

sk∈N i(oj)

1

dis(oj , sk)∑|N (oj)|
sk′∈N (oj)

1

dis(oj , sk′)

(11)

where dis(o, s) indicates the Euclidean distance between two
RSSI vectors o and s.

5.2.2 Transition Matrix
Transition matrix measures the probability of a subject

commutes to next location at time t. The transition is a
Markov process where each state is conditionally indepen-
dent of all other states given the previous state, which can
be defined as Aij = Pr(at = li|at−1 = lj). However, from
commonsense, a subject can only move a step at a time,
meaning that it is highly unlikely for the subject to move
from the lower-left corner to the upper-right corner (e.g. in
Figure 9, from location 53 to location 22). Therefore, we
adopt two transition strategies to calculate the next state
for each given current state, defined as follows:

• Transition without Constraint. The monitored subject
can move to any locations in this testing area without
any transition constraint under equal probabilities.

• Transition with Constraint. The monitored subject
can only move to a location which is adjacent (includ-
ing current location which means still) to current lo-
cation with equal probabilities. The probabilities of
moving to other locations are zero.

Since we do not know when people will change their mov-
ing directions, we assume that, to simplify our model, peo-
ple move to other legitimate locations with equal probabil-
ities. Based on the two strategies, we propose two types of
transition matrix in HMM. We can model our two different
transition processes as one. Assuming we have J locations:
J = {l1, l2, ..., li, ..., lJ}, each location li denotes the subject
appears in grid i. Assuming for current state li, all the pos-
sible states the subject can move to belong to the set Ωi,
and the number of states contained in the set is |Ωi|. Thus

the transition probability matrix can be expressed as:

Pr(lj |li) =
⎧⎨
⎩

1

|Ωi| if lj ∈ Ωi

0 if lj /∈ Ωi

(12)

5.2.3 Viterbi Searching
The Viterbi algorithm defines Vj(t), the highest probabil-

ity of a single path of length t which accounts for the first t
observations and ends in state lj :

Vj(t) = arg max
l1,l2,...,lt−1

Pr(l1l2...lt = j,o1o2...,ot|A,B)

(13)
where A and B can be found in Equation 9. Further, we can
have:

Vj(1) = Bj(o1)

Vj(t+ 1) = argmax
i

Vi(t)AijBj(ot+1)
(14)

where Bj(o1) = Pr(o1|lj) and Aij = Pr(lj |li). Finally,
we can estimate the optimal path with maximum likelihood
for GMM-based HMM and kNN-based HMM, sketched by
Figure 5 and Figure 6.

5.2.4 Forward Calibration
When applying the proposed approach to tracking, we

find some latency in detecting a subject in the corresponding
grid, which is mainly caused during the RSSI collection pro-
cess and by the delay of signals sent by passive tags [10]. The
RSSI collector is programmed with a timer to poll the RSSI
with a predefined order of transmission, taking around 1 sec-
ond to complete a new measurement with no workarounds.
To cope with the impact of this latency, we adopt a for-
ward calibration mechanism to calibrate the estimated lo-
cation sequences to offset the latency, which uses a moving
time averaging window to recalculate the coordinates of lo-
cation sequence obtained by Viterbi Searching. Specifically,
the technique estimates the location coordinates by averag-
ing the last few location coordinates obtained by either the
discrete space estimator or the spatial averaging estimator.
The estimated location lt at time t can be calculated using:

ĉ′t =

∑t+|w|−1
i=t ĉi

|w| (15)

where |w| is the window length. ĉi is uncalibrated coordi-
nates of the center of predicted grids at time t by Equa-
tion 13.

6. EXPERIMENTS
We first tested our methods in a standard RSS field (Fig-

ure 2), in which we virtually divided a testing area into
9 grids, with each grid of 0.6m × 0.6m in size. Then we
conducted a multi-RSS field experiment (Figure 7) to test
the robustness and scalability of our approaches, in which
we combined 6 RSS fields to monitor a 3.2m× 4.8m testing
area and divided each RSS field into 4 virtual grids.

6.1 Data Collection and Metrics
The RFID reader monitored and collected RSSI values at

the sampling rate of 0.5s. We collected training RSSI mea-
surement from tags for each grid based on two strategies [16].
In the first case, the subject stood at the center of each grid
and span around so that the resulting training data would



Figure 7: Multiple RSS fields Experiment

focus on the grid center but involve different orientations.
In the second case, the subject walked randomly within the
cell. For each case, we collected training data for one minute
in each virtual grid. Thus we spent 20 minutes for the single
RSS field experiment and 50 minutes for the multi-RSS field
experiment.
We used two metrics, accuracy and error distance, to mea-

sure our proposed approaches in terms of localization and
tracking respectively. The accuracy is defined by:

Acc. =

∑N
i I(l̂i, li)

N
(16)

where I(a, b) is an indicator, which is 1 if a is equal to b,

0 otherwise, l̂i is the predicted grid, (i.e., the center of the
estimated grid), li is the actual number of grids, and N is
the total number of observation RSSI vectors.
The error distance denotes the averaging accumulated er-

ror distance for each grid in each continuous trajectory, de-
fined as

Diserr. =

∑|T |
i dis(ĉi, ci)

|T | (17)

where ci is the coordinates of the actual coordinates in sam-
pling time i, dis(ĉi, ci) is the Euclidean distance between
predicted coordinates and actual coordinates, |T | is the total
number of test sample generated by a subject in a trajectory.

6.2 Single RSS Field Experiment
Before evaluating our approach in localization and track-

ing, we need to take care of two main issues: one is about
experimental setting, e.g., what is the optimal grid size, and
the other is about how to deal with delay issue we found dur-
ing the experiments. Based on our empirical study during
this work, the smaller the grid size, the worse localization
accuracy will be due to more indistinguishable disturbance,
and more profiling data are needed as well. In our work,
high resolution for locations is not our main concern. For
instance, in an elderly people assistant system, caregivers
are generally interested to know which sub-area or room
the elderly is other than a very fine-grained location point.
Therefore, in our experiment, we divided one single RSS field
into 9 virtual grids, which can locate people in a 0.6m×0.6m
resolution. For the latency, we adopted the forward calibra-
tion algorithm to recalculate the coordinates for tracking.

Localization: Figure 8 shows the results of localizing a sub-

Figure 8: Results Comparison on Localizing a Sub-
ject with Different Training Ratio

Table 1: Error distance on tracking a moving subject
(m), TC: Transition Constraint

Methods Without TC With TC

kNN-based HMM 0.63 0.53
kNN-based HMM + Forward Cali-
bration

0.42 0.35

GMM-based HMM 0.61 0.60
GMM-based HMM + Forward Cali-
bration

0.48 0.39

ject with three different methods on varying training ratios
(from 10% to 90%). We used 2 minutes of the mixed data
(contained the stationary data and the dynamic data) for
training. The test set was collected when target stood in 9
different locations and no presence for 30 seconds each. For
the localization experiment in the single RSS field, we set k
as 2, which gives the best performance for kNN. The linear
kernel is the best setting for SVM. We adopt AIC [1] for se-
lecting the best number of components for each GMM, which
mainly range from 2 to 6. Our proposed approach performs
very well, and the localization accuracy can reach as high as
98.91% when using all the training data. More importantly,
only with 36 seconds training data for each grid, our sys-
tem can achieve localization accuracy over 90%. Specially,
by kNN, we only need to collect 24 seconds training data
to get an accuracy as high as 95%. In previous work, the
shortest time needed for collecting training data to get same
localization accuracy is about 1 minute [16]. Among all the
three classifying methods, kNN achieves the best accuracy,
which underpins our proposed kNN-based HMM method for
detecting motions of a subject.

Tracking: Table 1 shows the results on tracking a moving
subject using GMM-based HMM and kNN-based HMM un-
der transition constraint and without transition constraint
respectively. We set up one moving path along the grids (see
Figure 3): 1 → 4 → 7 → 8 → 9 → 6 → 3 → 2 → 1. As
the table shows, the kNN-based HMM with forward calibra-
tion achieves the best performance, and the tracking error
is about 0.35m. It is noted that, for GMM-based HMM,
the tracking errors are similar regardless of transition con-
straints. The reason is that we still use the fixed length mov-
ing window to smooth all the raw estimated coordinates in
the dynamic tracking case. However, the latencies for differ-
ent paths and walking velocities are different. In our future
work, we will explore a dynamic moving averaging window
for an adaptive varying length smoothing.



Figure 9: Multiple RSS fields and testing paths

6.3 Multiple RSS Fields Experiment
In this section, we report the experimental results using a

larger monitored area stacked by 6 RSS fields.

6.3.1 Results on Localization
To be more practical, we define the following three sce-

narios in our multiple RSS fields experiment.

Scenario 1 (Stationary). Assuming a subject stands
in an unknown place in the monitored area still, such as
watching TV or waiting for someone.

Scenario 2 (Dynamic). Assuming a subject keeps mov-
ing around or performing some activities in a small unknown
area, such as cooking in the kitchen or doing exercises in a
gym.

Scenario 3 (Mixed). Assuming a subject presents in
an unknown place who performs a combination of Scenario
1 and Scenario 2, such as doing some exercises for a while
and then watching TV.

Based on the predefined three scenarios, we collected three
types of data for testing: i) a subject is standing in each grid
for 20 seconds, ii) a subject keeps moving around within
each grid for 20 seconds, and iii) combining both activities
for 40 seconds in each grid. Before that, we also collected
one-minute stationary data, 1-minute dynamic data and 2-
minute mixed data for each grid, for training purpose. The
localization results varying with training ratio (only use par-
tial collected data to train classifiers) are shown in Table 2.
For Scenario 1, all classification methods achieve good ac-

curacy. In particular, we can achieve 94% localization ac-
curacy with only 12 seconds training data per grid by using

Table 2: Localization accuracy on multiple RSS
fields. kNN: k=2; GMM: component number=4;
SVM: linear kernel, termination criterion=0.01,
C=1, other parameters as default [2].

Scenario Train. Ratio (%) 20 40 60 80 100

Scenario 1
kNN 0.94 0.94 0.95 0.96 0.98
GMM 0.88 0.91 0.93 0.96 0.97
SVM 0.94 0.95 0.95 0.97 0.98

Scenario 2
kNN 0.52 0.58 0.62 0.64 0.66
GMM 0.48 0.55 0.61 0.62 0.64
SVM 0.51 0.56 0.56 0.56 0.60

Scenario 3
kNN 0.66 0.67 0.75 0.80 0.81
GMM 0.60 0.62 0.72 0.79 0.79
SVM 0.66 0.67 0.74 0.76 0.76

Table 3: Average tracking error on multiple RSS
fields (m), TC: Transition Constraint

Methods Path Without TC With TC

kNN-based HMM
Path 1 0.94 0.88
Path 2 0.89 0.80
Path 3 0.99 0.93

kNN-based HMM+
Forward Calibration

Path 1 0.94 0.68
Path 2 0.64 0.65
Path 3 0.80 0.74

GMM-based HMM
Path 1 1.24 1.42
Path 2 0.91 0.94
Path 3 0.84 1.19

GMM-based HMM+
Forward Calibration

Path 1 0.85 1.08
Path 2 0.71 0.70
Path 3 0.79 0.57

kNN, which exhibits great advantages than other fingerprint-
based schemes. For Scenario 2, the best localization accu-
racy is 66% achieved by kNN. It is worth to mention that,
performance is more sensitive to the size of training data in
this case. More training data can better interpret more in-
formative RSSI patterns in this dynamic scenario compared
with the stationary scenario. For Scenario 3, the localiza-
tion accuracy can reach 81%. To conclude, kNN achieves
the best localization accuracy and is also more robust to
the RSSI uncertainties, especially when the training data is
small. It should be noted that GMM and SVM can also
achieve reasonably good performance.

6.3.2 Results on Tracking
In this section, we report experimental results on tracking

problem. We evaluated the kNN-based HMM and GMM-
based HMM on three different paths (Figure 9). In addition,
we extensively investigated how to select parameters of the
models and how to cope with system latencies.

Table 3 shows our overall tracking performance regarding
the three paths, among which kNN-based HMM with for-
ward calibration under the Transition Constraint achieves a
better result (average tracking error is 0.7m). However, for
Path 3 which is more complicated compared with other two
paths, GMM-based HMM with transition constraint has the
smallest estimated error of 0.57m. This may lie in fact that
GMM can better capture and quantify the mapping from
RSSI vector to the likelihood of each possible grid for some
complicated trajectories.

Window Size in Forward Calibration: Latency is the most
common concern in indoor localization systems [10]. Based
on our proposed forward calibration algorithm, one of key
issues is to decide the window size. Figure 10 shows the



Figure 10: Estimated tracking errors for different
window sizes using kNN-based HMM

Figure 11: Estimated tracking errors for different k
values in kNN-based HMM and component numbers
in GMM-based HMM

relevance between the tracking error and the window size of
forward calibration when dealing with latency in different
paths. We can find that the least tracking error is achieved
by window sizes ranged from 8 to 11. To reduce the bur-
den of computational resource, we selected 8 as the optimal
window size of forward calibration to reduce the latency.

Parameters Selection: We investigated the parameters set-
ting by using path 2 as an example. As Figure 11 shows,
the tracking error slightly decreases and reaches the minimal
error when k is 8, which is the best k value for path 2. The
red line with square marks exhibits the relation of number
of GMM components between tracking error in GMM-based
HMM method. For GMM case, the best tracking accuracy
can be achieved at 4, 6 or 8 GMM components. However,
lager number of components potentially results in problems
of overfitting or ill condition especially for the case of small
number of training data. Larger number of components also
increases the computational cost. We set the number of
components as 4 in our experiment.

Stationary Data vs Dynamic Data: We added dynamic train-
ing data (before black dot line, the first 50%) as the first
stage, and then stationary training data (after black dot line,
the last 50%) as the second stage in Figure 12. From the
results of kNN-based HMM, estimate error decreases with
more training data. More training data can provide more
useful anchor RSSI vectors on unknown RSSI vector to make
a better majority vote compared with GMM-based HMM.
In addition, we observed that the last 40 percent stationary
training data do not lead to a better result. However, when

Figure 12: Estimated tracking errors for different
percent of training data

adding more dynamic data in the first stage, the estimate
error declines from 0.85m to about 0.7m, which indicates the
possibility of enhancing the model accuracy by integrating
more dynamic data into the training set.

6.4 Discussion
In this section, we compare our work with other state-of-

the-art localization systems. Since it is hard to setup exactly
same experimental deployment, it is hard for us to directly
compare the experimental performance of our approach with
other existing similar solutions. Nevertheless, we have per-
formed some high level comparison analysis and the findings
are summarized in Table 4.

From the table, it is clear that our proposed localization
system has several advantages, including very low hardware
cost, less pre-calibration burden (low training overhead),
easy extension to larger areas (high potential in scalability),
maintenance free, and high accuracy compared with other
device-free passive localization systems.

7. CONCLUSION
RFID-based localization and tracking has some promising

potentials. In this paper, we present the design, implemen-
tation, and evaluation of a device-free RFID-based localiza-
tion method based on probabilistic classification, using pure
passive RFID tags. We explore three learning-based clas-
sification methods to deal with localization problem. We
propose to model RSSI distribution at each grid as a mul-
tivariate Gaussian Mixture Model, and Expectation Maxi-
mization is used to learn the maximum likelihood estimates
of the model parameters. This approach enables us to local-
ize the subject based on the maximum a posteriori estima-
tion. We further introduce multivariate Gaussian mixture
models based HMM and kNN based HMM to track a moving
subject based on continuous sequence of RSSI. We validate
and evaluate our proposed approaches using a testbed con-
sisting of pure passive RFID tags. The results demonstrate
the feasibility and effectiveness of our approaches.

The experimental results show that the performance of
our approach in tracking a moving subject is relatively worse
than localizing a stationary subject. In our future work, we
will investigate how to improve the accuracy in real-time
tracking by reducing RSSI noise and extracting more infor-
mative and distinctive features. We will also study how to
enhance our approach to enable multi-subjects localization
and tracking.



Table 4: Comparison of different device-free passive localization systems

Items Active Tags [4, 20] RTI [21] NUZZER [11] SCPL [15] Ichnaea [9] TagTrack

Measured Physical Quantity RSS threshold RSS attenuation RSS changes RSS changes RSS changes RSS variance
Hardware Cost High High Medium Medium Medium Low

Non-LoS Localization No No Yes Yes Yes Yes
Complexity of Single Node/device Medium Medium Medium Medium Medium Low

Training Overhead Low Low High Medium Low Low
Potential Scalability Medium Low High Medium High High

Accuracy Medium High High Medium Medium High
Maintenance (Replace battery etc.) Medium High Medium Medium Medium Low
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