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ABSTRACT
Synchronisation algorithms are central components of collab-
orative editing software. The energy efficiency for such algo-
rithms becomes of interest to a wide community of mobile
application developers. In this paper we explore the differen-
tial synchronisation (diffsync) algorithm with respect to en-
ergy consumption on mobile devices.
We identify three areas for optimisation: a.) Empty cycles
where diffsync is executed although no changes need to be
processed b.) tail energy by adapting cycle intervals and c.)
computational complexity. We propose a push-based diffsync
strategy in which synchronisation cycles are triggered when
a device connects to the network or when a device is notified
of changes. Discussions within this paper are based on real
usage data of PDF annotations via the Mendeley iOS app.
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diffsync will gain in relevance.
Discussions in this paper are based on real usage data of edit-
ing PDF annotations within the Mendeley iOS app. Mendeley
is a social document and content reference management tool.
References, and their related PDFs can be shared amongst a
group, and PDF annotations can therefore be edited by multi-
ple users. The Mendeley iOS app uses the diffsync algorithm
to synchronise PDF annotations.

POTENTIAL FOR ENERGY OPTIMISATION
There are three areas in which diffsync can be optimised w.r.t.
energy consumption for mobile devices, based on the under-
lying property of the unmodified differential synchronisation
that the complete diffsync cycle is executed in regular, fixed
intervals. Firstly, empty cycles are synchronisation cycles that
are carried out even though no changes have been made to the
document. Secondly, in 3G and GSM, tail energy is a medium
power state after a network connection has been set-up. De-
pending on connection type and implemented protocol, the
worst interval cycle for diffsync would be around 12s for 3G
or 6s for GSM [1]. Thirdly, computational complexity di-
rectly correlates with CPU energy consumption [2]. Small
changes have a high likelihood of being computationally less
complex than large changes [4]. This argues for taking care
to process small changes and small-sized items (the latter can
be ensured by an intelligent choice of data structure).

PUSH-BASED ENERGY OPTIMISATION OF DIFFEREN-
TIAL SYNCHRONISATION
The original diffsync paper [3] suggests adapting cycle inter-
vals to current editing activities in a client between 1s and
10s. However, this has been proposed in view of improving
performance (e.g. processing speed, avoidance of merge con-
flicts), rather than energy consumption.

In order to strike a balance between computational perfor-
mance and power consumption we propose to execute a diff-
sync only when changes occur, except for an initialisation cy-
cle. Concretely:

1. In the initial state, the client connects to the network. In
order to capture any changes that may have occurred in the
meantime an initial diffsync cycle will be required.

2. When the client item is edited, the client initiates a diffsync
cycle.

3. If a change arrives at the server, a push notification is sent
to all clients. On receiving the notification clients execute
a complete diffsync cycle.

INTRODUCTION
Differential Synchronisation (diffsync) [3] is a realtime syn-

chronisation algorithm that compares two states of an item 
(e.g., a document), computes the differences and necessary 
changes in fixed intervals of time, and then applies changes. 
Diffsync is easy to implement compared to the quasi-standard 
operational transform (OT), mainly because client and server 
code are nearly identical, and synchronisation code is inde-

pendent of user interface code. It is therefore “suitable for 
any content for which semantic diff and patch algorithms ex-

ist” [3]. As synchronous collaboration is increasingly medi-

ated by mobile devices, energy efficient implementations of 

 
 

 
 

 



Except at initialisation, no empty cycles are being carried out.
This is the central property of the push-based optimisation
of energy efficiency of diffsync. Note that reducing empty
cycles only reduces energy consumption significantly for 3G
and GSM connections, as empty cycles in WLAN drain the
battery only minimally. At the same time, all changes are
communicated to the server as fast as possible.
There are three possibilities how to identify that an edit has
occurred on the client: Firstly, the ”diff” part of the diffsync
algorithm could be executed in regular intervals until a differ-
ence (an edit) is detected. Secondly, the data structure (e.g.,
file, database, in-memory) in which the application stores its
content can be monitored for changes. Thirdly, it can be de-
cided which user interaction means that an edit has occurred.
Depending on the application and which granularity of edits
needs to be identified, this may be as simple as noticing a
user pushing a ”save” button, or as complex as tracking every
possible way of editing within a given UI.

Energy Consumption of Push Notifications on Mobile Devices
A network communication overhead is generated via push no-
tifications. In both Android and iOS, push notifications are
facilitated by a local service (on the mobile device) which
regularly polls for push notifications (Google cloud messag-
ing1, Apple push notifications2).
We quantified this overhead in an experiment based on the
Mendeley app on an iPhone 5s with a fresh install of iOS
7 and measuring battery drainage in % per minute: The local
service that polls for push notifications was run for 2h without
incoming push notifications (idle polling). Idle polling drains
≈ 0.02% of battery power per minute in addition to the idle
operating system. This is negligible. In a 2h run with a push
notificaton every 6s (active polling), added energy consump-
tion was 0.13% of battery power per minute. This is already a
more sever battery drainage. Consequently, if changes occur
regularly and frequently, it is more energy efficient to adapt
cycle time to editing activity.

Minimum Time Between Push Notifications
When the interval between push notifications becomes
smaller than 2s, the mechanism became highly unreliable in
our experiments, in the sense that the sequence of notifica-
tions was changed or notifications became lost. Server code
should therefore take care to send notifications about changes
only in intervals larger than 2s. In addition, clients need to
ensure that only one diffcycle is running at a time.

PUSH-BASED DIFFSYNC WITHIN MENDELEY
In the Mendeley app, synchronisation is on PDF annotations
such as textual highlights and notes. The data content ex-
changed in each cycle is based on differences in position,
and colour for highlights. The format of the exchanged data
set is based on standard JSON. The Mendeley app’s internal
data structure for PDF annotations is a dictionary where ev-
ery PDF annotation (highlight or note) is a dictionary entry

1http://developer.android.com/google/gcm/index.
html
2https://developer.apple.com/notifications/

identified by a unique ID. The “diff”-part of the diffsync al-
gorithm therefore works on single dictionary entries neglect-
ing the impact of computational complexity. Additionally,
we could identify the occurrence of edits on the client by lis-
tening to modifications of the data structure. In Mendeley
app’s original diffsync implementation, a fixed 2s cycle in-
terval was used.

Reduction of Energy Consumption in Mendeley
We analysed Mendeley usage data from a period of 4 weeks
in May 2014. On average, users spent 431, 4s (≈ 7min)
within a PDF, reading and editing. The interaction time varies
widely, with a minimum of 3, 3s and a maximum duration of
1977, 8s (≈ 33min). An overwhelming majority of diffsync
cycles (96.8%) are empty and waste energy.
Assuming, a user stays 7min in a document on a 3G con-
nection the original diffsync with a 2s cycle interval drains
the battery 1.729% in these 7min. The push-based diffsync
however drains the battery only 0.084% in these 7min (again,
measurements were on an iPhone 4s with a fresh install of
iOS 7), thus using only ≈ 5% of the original energy.

CONCLUSION
We have proposed and discussed a push-based optimisation
of differential synchronisation. For the Mendeley applica-
tion, given typical app usage, this energy-efficient diffsync
implementation leads to significant improvements. On a more
general note, we emphasize that energy optimisations of dif-
ferential synchronisation should be done based on knowledge
of a collaborative system’s usage data.
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