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ABSTRACT

Personalized routing recommendation is receiving increasing
attention in both academia and engineering. The methodology of
how to customize multi-modal routing recommendation to
personal preferences of users however is still subject of current
research. In the context of the EU FP7 i-Tour project, we
developed a set of approaches to solve this problem which are
focused on multi-criteria link costs functions, measurement of
users’ travel preferences and real-time learning of user
preferences. The components developed have been successfully
integrated and tested as part of the i-Tour prototype system. In this
paper we provide an overview of the methods and results.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning; 1.6.5 [Simulation and
modelling]: Model Development—Modeling methodologies.

General Terms

Algorithms, Measurement, Performance, Experimentation,
Human Factors, Verification.
Keywords

Traveler information systems, multi-modal route planning, travel
preferences, stated choice experiments, multi-criteria costs
functions, Bayesian learning.

1. INTRODUCTION

In the field of Advanced Traveler Information Systems (ATIS),
there is a growing interest in the extension of conventional route
planners and navigation systems to consider multimodal routing
[1, 2, 3, 4]. A multimodal ATIS refers to an approach where
networks of different modalities (e.g., car, bike, bus, train) are
integrated in a single network. Links interconnecting the networks
represent transfers from one mode to another (e.g., parking the car
and boarding on a train). The systems are able to generate routes
for multimodal trips as well as for uni-modal trips. In this way,
multimodal route advice goes beyond the recommendation of
routes and also considers the choice of transport mode and
possible mode transfers during the trip, such as the use of a Park-
and-Ride facility. Furthermore, the integration of activity agenda
management and route planning is an objective of a next
generation of ATIS. In the area of user-oriented software
applications, several calendar or agenda systems have been
introduced in recent years, such as for example Google calendar,
Microsoft outlook calendar and Yahoo calendar. These systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

I-LOCATE 2014, December 02-04, London, Great Britain

Copyright © 2014 ICST 978-1-63190-039-6

DOI 10.4108/icst.mobiquitous.2014.257943

338

Theo A. Arentze
Eindhoven University of Technology
Den Dolech 2
Eindhoven, The Netherlands
+31 40 2472283

t.a.arentze@tue.nl

allow users to keep a personal daily activity agenda and obtain
alert messages. However, the existing calendar services are not
linked to a routing system (for planning and implementing trips)
and neither support conflict or constraints checking.

The i-Tour system is a new intelligent traveler information system
that offers users routing advice for multimodal trips in urban
environments [5]. The system has been developed as an open
platform and includes a number of advanced features such as
speech recognition, a trust and recommendation system and
integrated activity agenda management. Compared to existing
traveler information systems, i-Tour uses a comprehensive
representation of travel preferences of individual users in a so-
called user profile. In the system, user profiles are not static.
Based on a built-in learning model i-Tour is able to incrementally
learn the personal preferences of a user each time it receives
feedback on the travel choice a user makes. Thus, the i-Tour
system is adaptive and tailors its advice to the personal
preferences of a user incrementally by learning from his or her
choice behavior.

In this paper we focus on this latter feature of adaptability to
travel preferences of users, which corresponds to a long-standing
objective in ATIS development. We give an overview of the
components of the i-Tour multi-modal routing system that address
this objective. These components relate to various tasks defined in
the i-Tour project regarding the routing system. They are
described in detail in corresponding research reports and
conference and journal papers. Here the main lines of the
approach are discussed. To provide a background, the first section
focuses on the requirements for multimodal routing and
implementation of the basic multimodal routing system. The
sections that follow then focus on the innovative features related
to travel-advice personalization including multi-criteria link costs
functions, user interaction, measurement of user travel preferences
and learning of user preferences. Finally, the paper is concluded
with a summary of major conclusions.

2. REQUIREMENTS FOR A
MULTIMODAL ROUTING SYSTEM

2.1 Some definitions

Promoting multimodal transport is generally seen as a promising
way to alleviate today’s transportation problems of deteriorating
accessibility of city centers, reduced mobility, and negative
impacts of traffic on the environments. Rehrl [1] suggests that to
guarantee a high level of mobility in the long term, a shift from



uni-modal towards multimodal passenger transport is necessary.
He also predicts that 20% of the travelers would be willing to use
alternative means of transport if they had access to multimodal
travel information.

A mode might be defined by vehicle type or by transport function.
The part of the trip where a single mode is used is called a leg. A
multimodal trip is a trip where multiple modes are combined so
that a trip has multiple legs. A typical example is a trip in which a
bicycle is used first to access the railway system, train is used next
to travel the main distance and a local bus is used for the final leg
from the railway end station to the final destination. A uni-modal
trip is the opposite where a single mode is used for the entire trip,
such as a private car or a regional train service. In a more narrow
definition, which we will use here, a multimodal trip is a trip
where a particular private vehicle (car, bike, etc.) is combined
with a public transport mode (bus, train, etc.). According to this
latter definition, multimodal trips by definition make use of a Park
and Ride facility for the vehicle involved in the trip.

The i-Tour routing system should be able to find routes in
integrated multimodal networks and, hence, to generate
multimodal as well as uni-modal routes for trips. Since the i-Tour
routing system considers a multimodal network, transport mode
choice is an integral part of route choice in this system.

2.2 Multi-criteria evaluation and personalized

information

Existing routing systems often consider minimizing travel time as
the single objective for determining optimal routes. In reality,
however, individuals may wish to take multiple objectives into
account: besides travel time, also monetary costs, convenience
and possibly environmental impact. Multiple objectives are
particularly relevant when multiple modes are considered for a
trip. Therefore, a requirement of the i-Tour routing system is that
it is able to represent and handle multi-criteria costs functions for
transport links. The following criteria are considered relevant:

* Travel time

* Travel costs

* Delays (congestion)

» Risk of delay (travel time reliability)
* Convenience / comfort

*  Scenery
*  Emission
»  Safety

*  Generalized costs (combination of the above criteria)

Although convenience and comfort are conceptually different
criteria, in practice they are strongly correlated and, hence, they
are taken here together as a single dimension. In terms of the road
network, convenience may mean that a traveler assigns a higher
preference weight to high-level roads (highways) compared to
local routes (many turns, mixed traffic, equal level cross-sections,
and so on). In terms of public transport, seat availability and
avoiding transfers often lead to higher levels of convenience
experienced. Generalized costs are defined for transport links as a
weighted summation across all criteria using weights that reflect
specific preferences of the traveler in the specific situation. Note
that this is a broader conceptualization than usually adopted. In
the conventional meaning, generalized costs functions include
only travel time and travel costs.

It is noted that especially in terms of comfort/-convenience,
situational factors tend to play a role. One such condition is the
weather: modes such as walking and bicycling tend to be strongly
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affected by weather conditions. In addition, the activity program
and state of the traveler may play a role. For example, it's often
nice to walk to office on a not so busy working day, but
uncomfortable to walk back home after a busy working day. The
i-Tour system currently focuses on travel time, travel costs,
convenience/comfort and emission either as single criteria or
combined into generalized costs; more criteria can be added, if
desired, in future extensions.

Personalization of routing advice (and information) is important to
take into account possible differences between persons (e.g., the
person has a disability) as well as possible differences between
situations (e.g., travelling alone or with a child).

Personalization can be understood on two levels. The first level
concerns intrinsic preferences for certain transport modes (e.g.,
foot, bike or car) or routes (e.g., road A, road B). The second level
concerns what was referred to above as multiple criteria, i.e.
trade-offs between several objectives (e.g., minimizing travel
time, minimizing travel costs, maximizing convenience,
minimizing environmental impact). Personalization means that the
system takes into account possible differences in preferences
between individuals as well as between situations. For example,
individuals with tight budgets may give above-average weight to
costs, and so on. In order to give personalized advice, the i-Tour
routing system should be able to handle different preference
schemes (relative weightings of criteria) on above mentioned
criteria. The last criterion represents an overall evaluation based
on a given preference profile.

2.3 Environmental friendly travel

An important objective of the i-Tour personal mobility system is
to increase travelers’ awareness of the environmental implications
of their travel options, in particular, with regard to emission of
pollutants that affect global warming (CO2) and air quality
(Particular Matter - PM). i-Tour intends to achieve this by
providing information about emissions produced by trips made by
a user (feedback) and by the travel options he or she may consider
before making a trip. i-Tour keeps a track record of each user and
gives a reward (e.g., 10% monthly discount on public transport
fares) when a user has achieved some target in terms of emission-
savings by choosing environmental friendly options (e.g., using
public transport instead of car). For example, when a user decides
to leave the car at home and use public transport for a trip, i-Tour
will show the amount of emissions saved and how much still
needs to be saved for reaching the target. To provide this
functionality, the i-Tour routing system derives emission
consequences of routes using the current European standard
emission model (COPERT). Because emission is one of the
criteria included in evaluation of routes, the routing system does
not only give feedback on environmental consequences, but also
take these consequences into account in determining an optimal
route by incorporating this environmental dimension in
generalized link costs functions.

3. MEASURING USERS’ PREFERENCES
3.1 Approach

How the different criteria are weighted in combination with base
preferences for particular modes determines a traveler’s
preference for certain routes and modes. These preferences are not
a-priori known. Therefore, to estimate the parameters empirically
Kerkman et al. [6] and Arentze and Molin [7] conducted a series
of choice experiments using the technique of Conjoint Analysis



also known as Stated Choice Experiments [8]. In the experiments,
subjects are presented hypothetical travel alternatives and are
asked to indicate what they would choose if the choice situation
were reality. Presented alternatives are constructed in terms of
attributes that are relevant for determining a preference (travel
time, travel costs, etc.). Based on an experimental design
attributes are varied in such a way that the separate effects of the
attributes on preference can be determined by statistical analysis
of the obtained choice data. Presenting choice tasks may seem
more cumbersome than just asking subjects to give preference
ratings for individual attributes. However, the advantage of using
choice tasks is that individuals are forced to make choices and,
hence, to make trade-offs between objectives just as they would
do in reality. It has been shown that this leads to more valid
measurements of true preferences [9].

Using this methodology, three experiments were designed. Each
experiment focuses on a particular domain of travel choice: 1)
route choice for a unimodal car trip, 2) choice between car,
public-transport and a multimodal option for a trip and 3) choice
between different public transport options for a trip. Thus, the
experiments cover uni-modal car trips, unimodal public transport
trips and multi-modal trips. The experiments were designed in
such a way that all preference parameters for the routing system
of i-Tour can be estimated. A unique feature of the experiments
furthermore is that possible influences of situational factors on
preferences were taken into account, to acknowledge the fact that
preferences may differ depending on context variables such as
purpose of the trip, weather conditions, travel party (traveling
alone or with others) and crowdedness. In each experiment a large
and representative sample of travelers participated and conducted
the choice tasks. The standard multinomial logit model was used
to analyze the choice data and estimate the parameters in a
random-utility-maximizing framework. We will now discuss the
set-up of the three experiments in more detail.

3.2 The route choice experiment for car trips
The purpose of this first experiment is to estimate the weights car
drivers assign to attributes of routes [6]. The choice tasks
presented to participants consistently consisted of two alternative
routes and a description of the context for an imaginary trip.
Using the stated choice experiment technique, the attributes of
choice alternatives as well as relevant context variables are varied
based on a factorial design. This design allows an analysis of the
relative importance of these attributes for the route choice of car
drivers as function of context variables. The attributes used to
describe routes are chosen based on existing literature on route
choice behavior [10, 11, 12]. Furthermore, the demands of the
routing system of i-Tour and the possibility of displaying the used
attribute information by an in-car navigation system are taken into
account when selecting the attributes and the attribute levels. As a
result the following attributes were selected:

- Travel time: estimated travel time when there are no delays.

- Estimated delay: predicted extra travel time due to traffic
congestion.

- Trip costs: costs defined as sum of fuel costs and a possible
road price (or toll).

- Comfort: degree of comfort determined by the number of
stops, turns, and intersections on the route and expressed by a
quality label.
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- Scenery: attractiveness of the landscapes the driver passes
through and views along the route, expressed by a quality
label.

- Environment and burden: the degree to which the route causes
nuisance for local inhabitants as unwanted traffic.

- Safety: degree of safety for the driver determined by presence
of intersections, separate lanes, mixed traffic, speed
differences and crash barriers.

The choice tasks are presented to the participants of the
experiment using an on-line questionnaire. After an explanation of
the task, each participant receives a random set of ten choice
tasks. In every task, the participant is asked to choose one of the
two route options that best reflects his or her preferences. The
choice experiment is followed by a subexperiment to reveal the
perceptions of the used quality labels as a function of observable
route characteristics (not further detailed here). 209 Participants
completed the entire questionnaire and the data of these 209
respondents were used in the analysis.

3.3 The mode choice experiment

In this second experiment conducted by Arentze and Molin [7],
choice tasks consist of three choice alternatives: a car option, a PT
option and a car + PT for a trip of approximately 20 km (PT
stands for Public Transport). The attributes correspond to the
considerations travelers presumably make when they choose a
transport mode: travel time in the different stages (access, main,
egress, search and waiting), travel costs (fuel, parking, ticket for
public transport), convenience (mode of public transport and
transfers) and reliability (possibility of a delay). At the same time,
these attributes correspond to the preference parameters that need
to be estimated for the routing system of i-Tour. Table 1 shows
the specification of attributes and attribute levels used in detail.
Context attributes for the trip are varied as well. These include the
type of activity for which the trip is made, flexibility in arrival
time, travel party, crowdedness, luggage carried and weather
conditions. Separate factorial designs were used for creating
contexts and choice-sets. Choice tasks are composed by randomly
combining a context and a choice-set. 438 individuals participated
in the experiment used for estimating the parameters of the i-Tour
routing system. Each of them completed 9 choice tasks.
Respondents were recruited from an existing large national panel
in the Netherlands.

3.4 The route choice experiment for public-

transport trips

Public transport options may differ on many aspects that are
important for determining a choice. The previous experiment
already provided insights in evaluations of different travel-time
and travel-costs components of public-transport trips. However,
these are related to a choice situation where car is also an
available option. When a choice for public transport has been
made or is forced because a car is not available, a more detailed
evaluation of available PT options becomes relevant. In a third
experiment conducted by Arentze and Molin [7], all three travel
options are public-transport options, but the specific modes differ:
the first option is a bus, the second option a local train (many
stops) and the third option is an intercity train (few stops and more
comfortable seats). The attributes that were varied for each
alternative include: in-vehicle travel time, access time, egress
time, possibility of delay, transfer time, travel costs, facilities at
stations and seat availability. The context was also varied using
the same attributes and attribute ranges as in the previous



experiment. The same factorial design was used to generate
contexts. For creating choice-sets, an efficient design was
developed based on prior expectations of values of parameters.
672 individuals did the experiment used for the estimation of the
i-Tour routing system. They were recruited from the same panel

that was also used for the mode choice experiment. Only
respondents that used train or some other modes of public
transport more than one time a year were considered for this
experiment.

Table 1. Attributes of choice alternatives in the mode choice experiment (source [13])

Car alternative

PT alternative

Car + PT alternative

main travel time (20, 25, 30 min.)

parking search time (0, 5, 10 min.)
possible delay (0, 10, 20 min.)

fuel costs — one way (2, 4, 6 Euros)
parking costs (0, 5, 10 Euros)

walk to destination (0, 6, 12 min.)

mode (bus, local train, intercity train)
access time (7, 12, 17 min.)
main travel time (20, 25, 30 min.)
transfer time (no transfer, 5, 10 min.)
possible delay (0, 10, 20 min.)

travel costs — one way (0, 2, 4 Euros)

PT mode (bus, train, tram)
car detour (0, -12.5%,-25%)
PT travel time (5, 10, 15 min.)
PT wait time (5, 10, 15 min.)
P&R costs (0, 2, 4 Euros)

egress time (2, 7, 12 min.)

egress time (2, 7, 12 min.)

3.5 Results of the choice experiments

The three experiments described above were designed such that
all preference parameters required for a multi-modal routing
system could be estimated. Willingness-to-pay values for travel
time savings that were found are consistent across the experiments
and also reasonably in line with findings in the literature although
they tend to be somewhat on the high end. The major findings can
be summarized as follows (for details see the original sources).

First, travel costs play an important role in the choice behavior.
Sensitivity is higher for costs that are clearly visible, such as ticket
prices and parking fees, and lower for fuel costs. Travelers for
whom car is an option need rather strong compensation before
they are willing to use less convenient public transport and Park-
and-Ride facilities. The results confirm general experience that
only in combination with restrictive parking policies in inner
cities, Park-and-Ride use will be considered as an option by car
users. Public transport is less attractive when seat availability is
uncertain and reliability is limited (possibility of a delay).
Walking time in access and egress stages of a trip and transfer
time are weighted considerably higher than in-vehicle time.
Furthermore, the results indicate that car drivers are to some
extent sensitive to environmental consequences of their route
choices implying that travel information systems that provide
feedback on such consequences can have positive effects for the
environment. Finally, it is found that not only socio-demographic
differences between persons play a role, but also context
variables, such as purpose of the trip, travel party and flexibility in
arrival time.

The concrete result of these studies is a set of quantitative
preference values that are used to define settings of the parameters
of the link costs functions used in the routing system of i-Tour.
Using these settings least-costs paths generated by the routing
system should match preferences of travelers. Hereby, context
variables can be taken into account. For example, when someone
is traveling with a young child, an already existing preference for
train over bus could become stronger and when a trip is made for
leisure purpose willingness to accept somewhat longer travel
times could increase. The estimation results provide exact
measures for all such trade-offs. Nevertheless individuals may
differ in terms of all or some of these preferences. The estimates
that were obtained give a good first guess of what the actual
preferences of a particular user (of the i-Tour system) will be. The
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choice experiments can be made available for users of the i-Tour
system. Visual versions of the experiments have been developed
to make the experiments more appealing and attractive. At
registration a new user is invited to conduct the choice tasks.
Whenever a user conducts the choice tasks, he or she provides
data that the system will use to fine-tune the parameters.
Furthermore, based on the learning module described in the next
section, the system has the ability to learn user-specific
preferences based on feedback on the user’s revealed choice
behavior.

4. LEARNING USERS’ PERSONAL
PREFERENCES

4.1 Approach

The purpose of the learning module is to allow the i-Tour system
to incrementally learn the personal preferences of individual users
while they use the i-Tour system and reveal their preferences for
particular travel options [13]. Based on this learning capability the
i-Tour system is able to increasingly tailor its travel advice to the
specific preferences of an individual user. Thus the learning
component enables the system to realize personalization of
advice, which is a major stated objective of a new generation of
ATIS.

The learning model developed for the i-Tour system is based on a
new approach. The following requirements were formulated for
the learning model:

» The system learns personal preferences of users incrementally
based on users’ revealed choices in choice situations. Each time a
choice of a user is revealed the system updates its beliefs about
the preferences of that user.

* Preferences relate to the parameters of the evaluation functions
(link costs functions) the routing system uses to generate travel
advice. The preference parameters are hidden in the sense that
they cannot be observed but only inferred from overt behavior.

* The learning method is consistent with principles of Bayesian
belief updating. At the same time, the method must be robust and
scalable to allow large sets of simultaneous users of the system to
be handled simultaneously.
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Figure 1. The Bayesian learning model

In the remainder of this section we briefly describe the learning
model. The model and results of testing are described in detail in
[13].

4.2 User profile

A user profile defines values of a pre-defined list of preference
parameters. The parameters determine the way a user is supposed
to trade-oftf different objectives such as minimizing travel time,
saving travel costs and avoiding inconveniences and effort when
he or she can choose between multiple travel options. Technically,
the parameters are the constants and coefficients of link costs
functions in the multimodal network model the routing system
uses to generate routes in a multimodal transport system.

In the system, the parameters are stored as a flat list of items
referred to as the Preference table. An example of a Preference
table is shown in Table 2. The values shown are based on the
combined results of the three experiments. Using these attributes
and attribute values allow the link cost functions to be
considerably more refined than in existing routing systems.
Furthermore, different values apply for different context variables,
such as weather and traveling together with a child, and age of the
person (senior or not). In the i-Tour database, there is a preference
table for each registered user of i-Tour as well as a default
specification of the preference table. The default specification
corresponds to estimated values based on the experiments; this
represents the a-priori beliefs of the system, i.e. the beliefs when
no specific information is available for a user. The system learns
the preferences based on the choices a user makes at moments
when several alternatives are available for a trip (e.g., a public
transport and a car-based alternative) and the choice made by the
user is revealed to the system. Each time a choice is revealed, the
i-Tour system updates its existing beliefs about the users’
preferences. The updated beliefs are stored in the Preference table

342

for the user concerned so that on a next occasion the travel options
identified by the system will be better adapted to that user’s
preferences.

4.3 The learning method

The learning method is based on the Bayesian method of belief
updating. The preference parameters that should be learned by the
system are unobserved or hidden variables. What is observed are
choices from available alternatives in particular circumstances,
whereas what needs to be inferred are preferences in terms of
relative weights (values or utilities) the traveler assigns to travel
time, travel costs, transport modes and so on. There is a causal
relationship between the hidden values and choice outcomes. This
causal relationship is defined by the discrete choice model, which
is a logit model.

Bayesian belief updating for the case of continuous, multiple
variables is intensively studied for the purpose of estimating
(preference) parameters of discrete choice models as an
alternative to the traditional maximum likelihood methods. In this
area, so-called Gibbs sampling is used to obtain draws from a
posterior multivariate distribution of parameters [14, 15]. For the
purpose of parameter estimation this method is very powerful.
However, for the present purpose of incremental learning it has a
serious drawback. The method is computationally very demanding
as many thousands of draws are needed to obtain estimates
(beliefs) for any set of observations. For incremental learning the
sampling procedure would need to be repeated for each single
observation making that this method is computationally too
demanding. Therefore, an alternative method is developed that
requires less computation and yet achieves accurate learning
results.



Table 2. Example of a Preference Table

travel time value
Car base -0.06
road type Local -0.015
highway +0.015
unsafe road  yes (no=0) -0.015
env. burden  housing (no h. = 0) -0.015
purpose utility (fun = 0) +0.01
PT base time (min.) -0.04
purpose utility (fun = 0) +0.01
bike base time (min.) -0.1
heavy bags yes (no = 0) -0.02
senior yes (no = 0) -0.02
weather raining (dry = 0) -0.02
with child yes (no = 0) -0.02
purpose utility (fun = 0) +0.01
walking base time (min.) -0.15
heavy bags yes (no =0) -0.025
senior yes (no = 0) -0.025
weather raining (dry = 0) -0.025
with child Yes (no =0) -0.025
purpose utility (fun = 0) +0.015
mode value
walking 0
bus -3.5
train base -3.2
local train -0.15
intercity 0.15
ferry -1.5
other PT 3.2
bike -1
car -2
Other PV -1.5
Transfer value
bike to PT base 0
heavy bags yes (no =0) -0.1
senior yes (no = 0) -0.1
purpose utility (fun = 0) 0.1
E;iR)to PT base -1.2
heavy bags yes (no =0) -0.1
senior yes (no =0) -0.1
purpose utility (fun = 0) 0.1
within PT base -0.4
heavy bags yes (no = 0) -0.1
senior yes (no = 0) -0.1
purpose utility (fun = 0) 0.1
waiting base time (min.) -0.1
with child yes (no = 0) -0.05
purpose utility (fun = 0) 0.05
seat value
seat uncertain 035
availability (always = 0) )
travel costs value
PT- ticket costs (euro) -0.2
fuel costs (euro) -0.1
parking fee costs (euro) -0.15
toll costs (euro) -0.4
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The proposed new method differs in two ways from existing
sampling procedures: 1) belief updating of parameters (in the
preference table) is conducted sequentially assuming some order
of the parameters when a choice observation is entered to the
system and 2) random sampling is replaced by a method of equal-
interval sampling from a distribution. This new heuristic method
was tested using the data obtained from the choice experiments
described above. Since in the experiments repeated choices are
observed for each participant separately, the system could be
applied to learn the personal preferences incrementally of each
individual across the repeated choice observations. The results of
this test indicate that the learning model enables the system to
improve the prediction of choice behavior considerably for seen
cases (around 40% increase of model fit). Furthermore, an
improvement of prediction of unseen (holdout) cases shows that
the system has learned something essential about the behavior.
Compared to a Gibbs sampling approach the heuristic method
learned even faster and nearly as good.

5. CONCLUSION

In this paper, we described the multimodal routing system
developed for the i-Tour system highlighting the approach used to
accomplish adaptability to personal travel preferences of users.
We highlighted the specifics of our approach and the innovative
properties of the routing system. To summarize, the system
contributes to adaptability with the following innovations:

1. A comprehensive representation of travel preferences of users
and multiple objectives in multi-criteria link costs functions.

2. Measurement of travel preferences using large-scale choice
experiments.

3. An adaptive and personalized system of travel advice using an
incremental Bayesian learning model of user’s preferences.

The learning model allows the routing system of i-Tour to provide
personalized travel information to users. The results of test
applications shows that the system rapidly starts to differentiate
between users and improves its ability to explain and predict their
choice behavior. Using this model, the i-Tour system is able to
adapt to personal preferences of users. Initially, it assumes that the
user has average preferences. With every observation of a choice
of a travel alternative, the system updates the internal user profile
(i.e., Preference table). The updated user profile is used in a next
occasion when a routing request is posed by that user. In this
continuous interactive process, the travel options generated by the
system will be increasingly adapted to the preferences of the
specific user.

Although separate components have been tested at various test
sites, a next step in this R&D project will involve extensive
testing and illustration of the integrated system in full-scale
applications.
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